Spaces:
Runtime error
Runtime error
File size: 10,801 Bytes
a1ece17 19d498a a1ece17 5fe67f2 a1ece17 d64050c 55abd01 c32023c 55abd01 a1ece17 55abd01 19d498a c32023c 0bbec58 19d498a 0bbec58 55abd01 c32023c 55abd01 c32023c 55abd01 c32023c 55abd01 19d498a 55abd01 0bbec58 19d498a 0bbec58 55abd01 8e35bc7 55abd01 c32023c 55abd01 19d498a 55abd01 19d498a 8e35bc7 19d498a 55abd01 8e35bc7 55abd01 19d498a 55abd01 19d498a 55abd01 5993d2f 056ab4f 55abd01 c32023c b85505a c32023c b85505a 55abd01 5993d2f 55abd01 5993d2f 55abd01 8e35bc7 55abd01 c32023c 53075d2 c004d97 55abd01 c32023c 55abd01 0bbec58 53075d2 48f5984 0bbec58 48f5984 0bbec58 c32023c 53075d2 0bbec58 8e35bc7 c32023c 0bbec58 8e35bc7 0bbec58 c32023c a1ece17 48f5984 a1ece17 d64050c a1ece17 d64050c a1ece17 d64050c 5fe67f2 a1ece17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from torch import nn\n",
"import torch.nn.functional as F\n",
"from datasets import load_dataset\n",
"import fastcore.all as fc\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib as mpl\n",
"import torchvision.transforms.functional as TF\n",
"from torch.utils.data import default_collate, DataLoader\n",
"import torch.optim as optim\n",
"import pickle\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"plt.rcParams['figure.figsize'] = [2, 2]"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset mnist (/Users/arun/.cache/huggingface/datasets/mnist/mnist/1.0.0/9d494b7f466d6931c64fb39d58bb1249a4d85c9eb9865d9bc20960b999e2a332)\n",
"100%|ββββββββββ| 2/2 [00:00<00:00, 35.54it/s]\n"
]
}
],
"source": [
"dataset_nm = 'mnist'\n",
"x,y = 'image', 'label'\n",
"ds = load_dataset(dataset_nm)"
]
},
{
"cell_type": "code",
"execution_count": 112,
"metadata": {},
"outputs": [],
"source": [
"def transform_ds(b):\n",
" b[x] = [TF.to_tensor(ele) for ele in b[x]]\n",
" return b"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [],
"source": [
"dst = ds.with_transform(transform_ds)\n",
"plt.imshow(dst['train'][0]['image'].permute(1,2,0));"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(torch.Size([1024, 1, 28, 28]), torch.Size([1024]))"
]
},
"execution_count": 103,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bs = 1024\n",
"class DataLoaders:\n",
" def __init__(self, train_ds, valid_ds, bs, collate_fn, **kwargs):\n",
" self.train = DataLoader(train_ds, batch_size=bs, shuffle=True, collate_fn=collate_fn, **kwargs)\n",
" self.valid = DataLoader(valid_ds, batch_size=bs*2, shuffle=False, collate_fn=collate_fn, **kwargs)\n",
"\n",
"def collate_fn(b):\n",
" collate = default_collate(b)\n",
" return (collate[x], collate[y])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [],
"source": [
"dls = DataLoaders(dst['train'], dst['test'], bs=bs, collate_fn=collate_fn)\n",
"xb,yb = next(iter(dls.train))\n",
"xb.shape, yb.shape"
]
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {},
"outputs": [],
"source": [
"class Reshape(nn.Module):\n",
" def __init__(self, dim):\n",
" super().__init__()\n",
" self.dim = dim\n",
" \n",
" def forward(self, x):\n",
" return x.reshape(self.dim)"
]
},
{
"cell_type": "code",
"execution_count": 106,
"metadata": {},
"outputs": [],
"source": [
"def conv(ni, nf, ks=3, s=2, act=nn.ReLU, norm=None):\n",
" layers = [nn.Conv2d(ni, nf, kernel_size=ks, stride=s, padding=ks//2)]\n",
" if norm:\n",
" layers.append(norm)\n",
" if act:\n",
" layers.append(act())\n",
" return nn.Sequential(*layers)\n",
"\n",
"def _conv_block(ni, nf, ks=3, s=2, act=nn.ReLU, norm=None):\n",
" return nn.Sequential(\n",
" conv(ni, nf, ks=ks, s=1, norm=norm, act=act),\n",
" conv(nf, nf, ks=ks, s=s, norm=norm, act=act),\n",
" )\n",
"\n",
"class ResBlock(nn.Module):\n",
" def __init__(self, ni, nf, s=2, ks=3, act=nn.ReLU, norm=None):\n",
" super().__init__()\n",
" self.convs = _conv_block(ni, nf, s=s, ks=ks, act=act, norm=norm)\n",
" self.idconv = fc.noop if ni==nf else conv(ni, nf, ks=1, s=1, act=None)\n",
" self.pool = fc.noop if s==1 else nn.AvgPool2d(2, ceil_mode=True)\n",
" self.act = act()\n",
" \n",
" def forward(self, x):\n",
" return self.act(self.convs(x) + self.idconv(self.pool(x)))"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [],
"source": [
"def cnn_classifier():\n",
" return nn.Sequential(\n",
" ResBlock(1, 8, norm=nn.BatchNorm2d(8)),\n",
" ResBlock(8, 16, norm=nn.BatchNorm2d(16)),\n",
" ResBlock(16, 32, norm=nn.BatchNorm2d(32)),\n",
" ResBlock(32, 64, norm=nn.BatchNorm2d(64)),\n",
" ResBlock(64, 64, norm=nn.BatchNorm2d(64)),\n",
" conv(64, 10, act=False),\n",
" nn.Flatten(),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [],
"source": [
"def kaiming_init(m):\n",
" if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):\n",
" nn.init.kaiming_normal_(m.weight) "
]
},
{
"cell_type": "code",
"execution_count": 195,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"train, epoch:1, loss: 0.0776, accuracy: 0.9172\n",
"eval, epoch:1, loss: 0.0372, accuracy: 0.9818\n",
"train, epoch:2, loss: 0.0571, accuracy: 0.9828\n",
"eval, epoch:2, loss: 0.0287, accuracy: 0.9863\n",
"train, epoch:3, loss: 0.0425, accuracy: 0.9847\n",
"eval, epoch:3, loss: 0.0256, accuracy: 0.9865\n",
"train, epoch:4, loss: 0.0271, accuracy: 0.9868\n",
"eval, epoch:4, loss: 0.0378, accuracy: 0.9826\n",
"train, epoch:5, loss: 0.0395, accuracy: 0.9844\n",
"eval, epoch:5, loss: 0.0307, accuracy: 0.9873\n"
]
}
],
"source": [
"model = cnn_classifier()\n",
"model.apply(kaiming_init)\n",
"lr = 0.1\n",
"max_lr = 0.3\n",
"epochs = 5\n",
"opt = optim.AdamW(model.parameters(), lr=lr)\n",
"sched = optim.lr_scheduler.OneCycleLR(opt, max_lr, total_steps=len(dls.train), epochs=epochs)\n",
"for epoch in range(epochs):\n",
" for train in (True, False):\n",
" accuracy = 0\n",
" dl = dls.train if train else dls.valid\n",
" for xb,yb in dl:\n",
" preds = model(xb)\n",
" loss = F.cross_entropy(preds, yb)\n",
" if train:\n",
" loss.backward()\n",
" opt.step()\n",
" opt.zero_grad()\n",
" with torch.no_grad():\n",
" accuracy += (preds.argmax(1).detach().cpu() == yb).float().mean()\n",
" if train:\n",
" sched.step()\n",
" accuracy /= len(dl)\n",
" print(f\"{'train' if train else 'eval'}, epoch:{epoch+1}, loss: {loss.item():.4f}, accuracy: {accuracy:.4f}\")"
]
},
{
"cell_type": "code",
"execution_count": 196,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [],
"source": [
"torch.save(model.state_dict(), 'classifier.pth')"
]
},
{
"cell_type": "code",
"execution_count": 197,
"metadata": {},
"outputs": [],
"source": [
"loaded_model = cnn_classifier()\n",
"loaded_model.load_state_dict(torch.load('classifier.pth'))\n",
"loaded_model.eval();"
]
},
{
"cell_type": "code",
"execution_count": 206,
"metadata": {},
"outputs": [],
"source": [
"def predict(img):\n",
" with torch.no_grad():\n",
" img = img[None,]\n",
" pred = loaded_model(img)[0]\n",
" pred_probs = F.softmax(pred, dim=0)\n",
" pred = [{\"digit\": i, \"prob\": f'{prob*100:.2f}%', 'logits': pred[i]} for i, prob in enumerate(pred_probs)]\n",
" pred = sorted(pred, key=lambda ele: ele['digit'], reverse=False)\n",
" return pred"
]
},
{
"cell_type": "code",
"execution_count": 204,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor(5)\n"
]
},
{
"data": {
"text/plain": [
"[{'digit': 0, 'prob': '21.42%', 'logits': tensor(0.0559)},\n",
" {'digit': 8, 'prob': '19.44%', 'logits': tensor(-0.0408)},\n",
" {'digit': 4, 'prob': '18.08%', 'logits': tensor(-0.1135)},\n",
" {'digit': 9, 'prob': '16.41%', 'logits': tensor(-0.2104)},\n",
" {'digit': 6, 'prob': '12.23%', 'logits': tensor(-0.5049)},\n",
" {'digit': 1, 'prob': '6.87%', 'logits': tensor(-1.0806)},\n",
" {'digit': 7, 'prob': '2.33%', 'logits': tensor(-2.1633)},\n",
" {'digit': 5, 'prob': '1.19%', 'logits': tensor(-2.8386)},\n",
" {'digit': 2, 'prob': '1.06%', 'logits': tensor(-2.9527)},\n",
" {'digit': 3, 'prob': '0.97%', 'logits': tensor(-3.0359)}]"
]
},
"execution_count": 204,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"img = xb[0].reshape(1, 28, 28)\n",
"print(yb[0])\n",
"predict(img)"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": [
"exclude"
]
},
"source": [
"#### commit to .py file for deployment"
]
},
{
"cell_type": "code",
"execution_count": 205,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook mnist_classifier.ipynb to script\n",
"[NbConvertApp] Writing 2904 bytes to mnist_classifier.py\n"
]
}
],
"source": [
"!jupyter nbconvert --to script --TagRemovePreprocessor.remove_cell_tags=\"exclude\" --TemplateExporter.exclude_input_prompt=True mnist_classifier.ipynb\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "python_main",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|