Spaces:
Runtime error
Runtime error
carlfeynman
commited on
Commit
β’
8e35bc7
1
Parent(s):
056ab4f
resblock added
Browse files- mlp_classifier.pkl +0 -0
- mnist_classifier.ipynb +117 -71
- mnist_classifier.py +61 -23
mlp_classifier.pkl
CHANGED
Binary files a/mlp_classifier.pkl and b/mlp_classifier.pkl differ
|
|
mnist_classifier.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -23,7 +23,7 @@
|
|
23 |
},
|
24 |
{
|
25 |
"cell_type": "code",
|
26 |
-
"execution_count":
|
27 |
"metadata": {},
|
28 |
"outputs": [
|
29 |
{
|
@@ -31,7 +31,7 @@
|
|
31 |
"output_type": "stream",
|
32 |
"text": [
|
33 |
"Found cached dataset mnist (/Users/arun/.cache/huggingface/datasets/mnist/mnist/1.0.0/9d494b7f466d6931c64fb39d58bb1249a4d85c9eb9865d9bc20960b999e2a332)\n",
|
34 |
-
"100%|ββββββββββ| 2/2 [00:00<00:00,
|
35 |
]
|
36 |
}
|
37 |
],
|
@@ -43,7 +43,7 @@
|
|
43 |
},
|
44 |
{
|
45 |
"cell_type": "code",
|
46 |
-
"execution_count":
|
47 |
"metadata": {},
|
48 |
"outputs": [
|
49 |
{
|
@@ -70,7 +70,7 @@
|
|
70 |
},
|
71 |
{
|
72 |
"cell_type": "code",
|
73 |
-
"execution_count":
|
74 |
"metadata": {},
|
75 |
"outputs": [
|
76 |
{
|
@@ -79,7 +79,7 @@
|
|
79 |
"(torch.Size([1024, 1, 28, 28]), torch.Size([1024]))"
|
80 |
]
|
81 |
},
|
82 |
-
"execution_count":
|
83 |
"metadata": {},
|
84 |
"output_type": "execute_result"
|
85 |
}
|
@@ -89,7 +89,7 @@
|
|
89 |
"class DataLoaders:\n",
|
90 |
" def __init__(self, train_ds, valid_ds, bs, collate_fn, **kwargs):\n",
|
91 |
" self.train = DataLoader(train_ds, batch_size=bs, shuffle=True, collate_fn=collate_fn, **kwargs)\n",
|
92 |
-
" self.valid = DataLoader(
|
93 |
"\n",
|
94 |
"def collate_fn(b):\n",
|
95 |
" collate = default_collate(b)\n",
|
@@ -102,7 +102,7 @@
|
|
102 |
},
|
103 |
{
|
104 |
"cell_type": "code",
|
105 |
-
"execution_count":
|
106 |
"metadata": {},
|
107 |
"outputs": [],
|
108 |
"source": [
|
@@ -117,7 +117,7 @@
|
|
117 |
},
|
118 |
{
|
119 |
"cell_type": "code",
|
120 |
-
"execution_count":
|
121 |
"metadata": {},
|
122 |
"outputs": [],
|
123 |
"source": [
|
@@ -135,23 +135,23 @@
|
|
135 |
},
|
136 |
{
|
137 |
"cell_type": "code",
|
138 |
-
"execution_count":
|
139 |
"metadata": {},
|
140 |
"outputs": [
|
141 |
{
|
142 |
"name": "stdout",
|
143 |
"output_type": "stream",
|
144 |
"text": [
|
145 |
-
"train, epoch:1, loss: 0.
|
146 |
-
"eval, epoch:1, loss: 0.
|
147 |
-
"train, epoch:2, loss: 0.
|
148 |
-
"eval, epoch:2, loss: 0.
|
149 |
-
"train, epoch:3, loss: 0.
|
150 |
-
"eval, epoch:3, loss: 0.
|
151 |
-
"train, epoch:4, loss: 0.
|
152 |
-
"eval, epoch:4, loss: 0.
|
153 |
-
"train, epoch:5, loss: 0.
|
154 |
-
"eval, epoch:5, loss: 0.
|
155 |
]
|
156 |
}
|
157 |
],
|
@@ -184,7 +184,7 @@
|
|
184 |
},
|
185 |
{
|
186 |
"cell_type": "code",
|
187 |
-
"execution_count":
|
188 |
"metadata": {
|
189 |
"tags": [
|
190 |
"exclude"
|
@@ -192,42 +192,97 @@
|
|
192 |
},
|
193 |
"outputs": [],
|
194 |
"source": [
|
195 |
-
"with open('./mlp_classifier.pkl', 'wb') as model_file:\n",
|
196 |
-
"
|
197 |
]
|
198 |
},
|
199 |
{
|
200 |
"cell_type": "code",
|
201 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
"metadata": {},
|
203 |
"outputs": [],
|
204 |
"source": [
|
205 |
"def cnn_classifier():\n",
|
206 |
-
" ks,stride = 3,2\n",
|
207 |
" return nn.Sequential(\n",
|
208 |
-
"
|
209 |
-
" nn.BatchNorm2d(
|
210 |
-
" nn.
|
211 |
-
"
|
212 |
-
" nn.BatchNorm2d(
|
213 |
-
"
|
214 |
-
" nn.Conv2d(16, 32, kernel_size=ks, stride=stride, padding=ks//2),\n",
|
215 |
-
" nn.BatchNorm2d(32),\n",
|
216 |
-
" nn.ReLU(),\n",
|
217 |
-
" nn.Conv2d(32, 64, kernel_size=ks, stride=stride, padding=ks//2),\n",
|
218 |
-
" nn.BatchNorm2d(64),\n",
|
219 |
-
" nn.ReLU(),\n",
|
220 |
-
" nn.Conv2d(64, 64, kernel_size=ks, stride=stride, padding=ks//2),\n",
|
221 |
-
" nn.BatchNorm2d(64),\n",
|
222 |
-
" nn.ReLU(),\n",
|
223 |
-
" nn.Conv2d(64, 10, kernel_size=ks, stride=stride, padding=ks//2),\n",
|
224 |
" nn.Flatten(),\n",
|
225 |
-
" )"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
]
|
227 |
},
|
228 |
{
|
229 |
"cell_type": "code",
|
230 |
-
"execution_count":
|
231 |
"metadata": {},
|
232 |
"outputs": [],
|
233 |
"source": [
|
@@ -238,23 +293,23 @@
|
|
238 |
},
|
239 |
{
|
240 |
"cell_type": "code",
|
241 |
-
"execution_count":
|
242 |
"metadata": {},
|
243 |
"outputs": [
|
244 |
{
|
245 |
"name": "stdout",
|
246 |
"output_type": "stream",
|
247 |
"text": [
|
248 |
-
"train, epoch:1, loss: 0.
|
249 |
-
"eval, epoch:1, loss: 0.
|
250 |
-
"train, epoch:2, loss: 0.
|
251 |
-
"eval, epoch:2, loss: 0.
|
252 |
-
"train, epoch:3, loss: 0.
|
253 |
-
"eval, epoch:3, loss: 0.
|
254 |
-
"train, epoch:4, loss: 0.
|
255 |
-
"eval, epoch:4, loss: 0.
|
256 |
-
"train, epoch:5, loss: 0.
|
257 |
-
"eval, epoch:5, loss: 0.
|
258 |
]
|
259 |
}
|
260 |
],
|
@@ -266,7 +321,6 @@
|
|
266 |
"epochs = 5\n",
|
267 |
"opt = optim.AdamW(model.parameters(), lr=lr)\n",
|
268 |
"sched = optim.lr_scheduler.OneCycleLR(opt, max_lr, total_steps=len(dls.train), epochs=epochs)\n",
|
269 |
-
"\n",
|
270 |
"for epoch in range(epochs):\n",
|
271 |
" for train in (True, False):\n",
|
272 |
" accuracy = 0\n",
|
@@ -283,13 +337,12 @@
|
|
283 |
" if train:\n",
|
284 |
" sched.step()\n",
|
285 |
" accuracy /= len(dl)\n",
|
286 |
-
" print(f\"{'train' if train else 'eval'}, epoch:{epoch+1}, loss: {loss.item():.4f}, accuracy: {accuracy:.4f}\")
|
287 |
-
" "
|
288 |
]
|
289 |
},
|
290 |
{
|
291 |
"cell_type": "code",
|
292 |
-
"execution_count":
|
293 |
"metadata": {
|
294 |
"tags": [
|
295 |
"exclude"
|
@@ -297,8 +350,8 @@
|
|
297 |
},
|
298 |
"outputs": [],
|
299 |
"source": [
|
300 |
-
"with open('./cnn_classifier.pkl', 'wb') as model_file:\n",
|
301 |
-
"
|
302 |
]
|
303 |
},
|
304 |
{
|
@@ -314,7 +367,7 @@
|
|
314 |
},
|
315 |
{
|
316 |
"cell_type": "code",
|
317 |
-
"execution_count":
|
318 |
"metadata": {
|
319 |
"tags": [
|
320 |
"exclude"
|
@@ -325,22 +378,15 @@
|
|
325 |
"name": "stdout",
|
326 |
"output_type": "stream",
|
327 |
"text": [
|
328 |
-
"[NbConvertApp] Converting notebook mnist_classifier.ipynb to script\n"
|
|
|
329 |
]
|
330 |
}
|
331 |
],
|
332 |
"source": [
|
333 |
-
"!jupyter nbconvert --to script --TagRemovePreprocessor.remove_cell_tags=\"exclude\" --TemplateExporter.exclude_input_prompt=True mnist_classifier.ipynb\n"
|
334 |
-
"\n"
|
335 |
]
|
336 |
},
|
337 |
-
{
|
338 |
-
"cell_type": "code",
|
339 |
-
"execution_count": null,
|
340 |
-
"metadata": {},
|
341 |
-
"outputs": [],
|
342 |
-
"source": []
|
343 |
-
},
|
344 |
{
|
345 |
"cell_type": "code",
|
346 |
"execution_count": null,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 60,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
23 |
},
|
24 |
{
|
25 |
"cell_type": "code",
|
26 |
+
"execution_count": 61,
|
27 |
"metadata": {},
|
28 |
"outputs": [
|
29 |
{
|
|
|
31 |
"output_type": "stream",
|
32 |
"text": [
|
33 |
"Found cached dataset mnist (/Users/arun/.cache/huggingface/datasets/mnist/mnist/1.0.0/9d494b7f466d6931c64fb39d58bb1249a4d85c9eb9865d9bc20960b999e2a332)\n",
|
34 |
+
"100%|ββββββββββ| 2/2 [00:00<00:00, 71.77it/s]\n"
|
35 |
]
|
36 |
}
|
37 |
],
|
|
|
43 |
},
|
44 |
{
|
45 |
"cell_type": "code",
|
46 |
+
"execution_count": 62,
|
47 |
"metadata": {},
|
48 |
"outputs": [
|
49 |
{
|
|
|
70 |
},
|
71 |
{
|
72 |
"cell_type": "code",
|
73 |
+
"execution_count": 87,
|
74 |
"metadata": {},
|
75 |
"outputs": [
|
76 |
{
|
|
|
79 |
"(torch.Size([1024, 1, 28, 28]), torch.Size([1024]))"
|
80 |
]
|
81 |
},
|
82 |
+
"execution_count": 87,
|
83 |
"metadata": {},
|
84 |
"output_type": "execute_result"
|
85 |
}
|
|
|
89 |
"class DataLoaders:\n",
|
90 |
" def __init__(self, train_ds, valid_ds, bs, collate_fn, **kwargs):\n",
|
91 |
" self.train = DataLoader(train_ds, batch_size=bs, shuffle=True, collate_fn=collate_fn, **kwargs)\n",
|
92 |
+
" self.valid = DataLoader(valid_ds, batch_size=bs*2, shuffle=False, collate_fn=collate_fn, **kwargs)\n",
|
93 |
"\n",
|
94 |
"def collate_fn(b):\n",
|
95 |
" collate = default_collate(b)\n",
|
|
|
102 |
},
|
103 |
{
|
104 |
"cell_type": "code",
|
105 |
+
"execution_count": 77,
|
106 |
"metadata": {},
|
107 |
"outputs": [],
|
108 |
"source": [
|
|
|
117 |
},
|
118 |
{
|
119 |
"cell_type": "code",
|
120 |
+
"execution_count": 78,
|
121 |
"metadata": {},
|
122 |
"outputs": [],
|
123 |
"source": [
|
|
|
135 |
},
|
136 |
{
|
137 |
"cell_type": "code",
|
138 |
+
"execution_count": 79,
|
139 |
"metadata": {},
|
140 |
"outputs": [
|
141 |
{
|
142 |
"name": "stdout",
|
143 |
"output_type": "stream",
|
144 |
"text": [
|
145 |
+
"train, epoch:1, loss: 0.3142, accuracy: 0.7951\n",
|
146 |
+
"eval, epoch:1, loss: 0.2298, accuracy: 0.9048\n",
|
147 |
+
"train, epoch:2, loss: 0.2198, accuracy: 0.9204\n",
|
148 |
+
"eval, epoch:2, loss: 0.1663, accuracy: 0.9350\n",
|
149 |
+
"train, epoch:3, loss: 0.1776, accuracy: 0.9420\n",
|
150 |
+
"eval, epoch:3, loss: 0.1267, accuracy: 0.9493\n",
|
151 |
+
"train, epoch:4, loss: 0.1328, accuracy: 0.9568\n",
|
152 |
+
"eval, epoch:4, loss: 0.0959, accuracy: 0.9598\n",
|
153 |
+
"train, epoch:5, loss: 0.1038, accuracy: 0.9637\n",
|
154 |
+
"eval, epoch:5, loss: 0.0913, accuracy: 0.9643\n"
|
155 |
]
|
156 |
}
|
157 |
],
|
|
|
184 |
},
|
185 |
{
|
186 |
"cell_type": "code",
|
187 |
+
"execution_count": 81,
|
188 |
"metadata": {
|
189 |
"tags": [
|
190 |
"exclude"
|
|
|
192 |
},
|
193 |
"outputs": [],
|
194 |
"source": [
|
195 |
+
"# with open('./mlp_classifier.pkl', 'wb') as model_file:\n",
|
196 |
+
"# pickle.dump(model, model_file)"
|
197 |
]
|
198 |
},
|
199 |
{
|
200 |
"cell_type": "code",
|
201 |
+
"execution_count": 82,
|
202 |
+
"metadata": {},
|
203 |
+
"outputs": [],
|
204 |
+
"source": [
|
205 |
+
"# def _conv_block(ni, nf, stride, act=act_gr, norm=None, ks=3):\n",
|
206 |
+
"# return nn.Sequential(conv(ni, nf, stride=1, act=act, norm=norm, ks=ks),\n",
|
207 |
+
"# conv(nf, nf, stride=stride, act=None, norm=norm, ks=ks))\n",
|
208 |
+
"\n",
|
209 |
+
"# class ResBlock(nn.Module):\n",
|
210 |
+
"# def __init__(self, ni, nf, stride=1, ks=3, act=act_gr, norm=None):\n",
|
211 |
+
"# super().__init__()\n",
|
212 |
+
"# self.convs = _conv_block(ni, nf, stride, act=act, ks=ks, norm=norm)\n",
|
213 |
+
"# self.idconv = fc.noop if ni==nf else conv(ni, nf, ks=1, stride=1, act=None)\n",
|
214 |
+
"# self.pool = fc.noop if stride==1 else nn.AvgPool2d(2, ceil_mode=True)\n",
|
215 |
+
"# self.act = act()\n",
|
216 |
+
"\n",
|
217 |
+
"# def forward(self, x): return self.act(self.convs(x) + self.idconv(self.pool(x)))"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": 83,
|
223 |
+
"metadata": {},
|
224 |
+
"outputs": [],
|
225 |
+
"source": [
|
226 |
+
"def conv(ni, nf, ks=3, s=2, act=nn.ReLU, norm=None):\n",
|
227 |
+
" layers = [nn.Conv2d(ni, nf, kernel_size=ks, stride=s, padding=ks//2)]\n",
|
228 |
+
" if norm:\n",
|
229 |
+
" layers.append(norm)\n",
|
230 |
+
" if act:\n",
|
231 |
+
" layers.append(act())\n",
|
232 |
+
" return nn.Sequential(*layers)\n",
|
233 |
+
"\n",
|
234 |
+
"def _conv_block(ni, nf, ks=3, s=2, act=nn.ReLU, norm=None):\n",
|
235 |
+
" return nn.Sequential(\n",
|
236 |
+
" conv(ni, nf, ks=ks, s=1, norm=norm, act=act),\n",
|
237 |
+
" conv(nf, nf, ks=ks, s=s, norm=norm, act=act),\n",
|
238 |
+
" )\n",
|
239 |
+
"\n",
|
240 |
+
"class ResBlock(nn.Module):\n",
|
241 |
+
" def __init__(self, ni, nf, s=2, ks=3, act=nn.ReLU, norm=None):\n",
|
242 |
+
" super().__init__()\n",
|
243 |
+
" self.convs = _conv_block(ni, nf, s=s, ks=ks, act=act, norm=norm)\n",
|
244 |
+
" self.idconv = fc.noop if ni==nf else conv(ni, nf, ks=1, s=1, act=None)\n",
|
245 |
+
" self.pool = fc.noop if s==1 else nn.AvgPool2d(2, ceil_mode=True)\n",
|
246 |
+
" self.act = act()\n",
|
247 |
+
" \n",
|
248 |
+
" def forward(self, x):\n",
|
249 |
+
" return self.act(self.convs(x) + self.idconv(self.pool(x)))"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"execution_count": 92,
|
255 |
"metadata": {},
|
256 |
"outputs": [],
|
257 |
"source": [
|
258 |
"def cnn_classifier():\n",
|
|
|
259 |
" return nn.Sequential(\n",
|
260 |
+
" ResBlock(1, 8, norm=nn.BatchNorm2d(8)),\n",
|
261 |
+
" ResBlock(8, 16, norm=nn.BatchNorm2d(16)),\n",
|
262 |
+
" ResBlock(16, 32, norm=nn.BatchNorm2d(32)),\n",
|
263 |
+
" ResBlock(32, 64, norm=nn.BatchNorm2d(64)),\n",
|
264 |
+
" ResBlock(64, 64, norm=nn.BatchNorm2d(64)),\n",
|
265 |
+
" conv(64, 10, act=False),\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
" nn.Flatten(),\n",
|
267 |
+
" )\n",
|
268 |
+
"\n",
|
269 |
+
"\n",
|
270 |
+
"# def cnn_classifier():\n",
|
271 |
+
"# return nn.Sequential(\n",
|
272 |
+
"# ResBlock(1, 16, norm=nn.BatchNorm2d(16)),\n",
|
273 |
+
"# ResBlock(16, 32, norm=nn.BatchNorm2d(32)),\n",
|
274 |
+
"# ResBlock(32, 64, norm=nn.BatchNorm2d(64)),\n",
|
275 |
+
"# ResBlock(64, 128, norm=nn.BatchNorm2d(128)),\n",
|
276 |
+
"# ResBlock(128, 256, norm=nn.BatchNorm2d(256)),\n",
|
277 |
+
"# ResBlock(256, 256, norm=nn.BatchNorm2d(256)),\n",
|
278 |
+
"# conv(256, 10, act=False),\n",
|
279 |
+
"# nn.Flatten(),\n",
|
280 |
+
"# )"
|
281 |
]
|
282 |
},
|
283 |
{
|
284 |
"cell_type": "code",
|
285 |
+
"execution_count": 93,
|
286 |
"metadata": {},
|
287 |
"outputs": [],
|
288 |
"source": [
|
|
|
293 |
},
|
294 |
{
|
295 |
"cell_type": "code",
|
296 |
+
"execution_count": 94,
|
297 |
"metadata": {},
|
298 |
"outputs": [
|
299 |
{
|
300 |
"name": "stdout",
|
301 |
"output_type": "stream",
|
302 |
"text": [
|
303 |
+
"train, epoch:1, loss: 0.0827, accuracy: 0.9102\n",
|
304 |
+
"eval, epoch:1, loss: 0.0448, accuracy: 0.9817\n",
|
305 |
+
"train, epoch:2, loss: 0.0382, accuracy: 0.9835\n",
|
306 |
+
"eval, epoch:2, loss: 0.0353, accuracy: 0.9863\n",
|
307 |
+
"train, epoch:3, loss: 0.0499, accuracy: 0.9856\n",
|
308 |
+
"eval, epoch:3, loss: 0.0300, accuracy: 0.9867\n",
|
309 |
+
"train, epoch:4, loss: 0.0361, accuracy: 0.9869\n",
|
310 |
+
"eval, epoch:4, loss: 0.0203, accuracy: 0.9877\n",
|
311 |
+
"train, epoch:5, loss: 0.0427, accuracy: 0.9846\n",
|
312 |
+
"eval, epoch:5, loss: 0.0250, accuracy: 0.9866\n"
|
313 |
]
|
314 |
}
|
315 |
],
|
|
|
321 |
"epochs = 5\n",
|
322 |
"opt = optim.AdamW(model.parameters(), lr=lr)\n",
|
323 |
"sched = optim.lr_scheduler.OneCycleLR(opt, max_lr, total_steps=len(dls.train), epochs=epochs)\n",
|
|
|
324 |
"for epoch in range(epochs):\n",
|
325 |
" for train in (True, False):\n",
|
326 |
" accuracy = 0\n",
|
|
|
337 |
" if train:\n",
|
338 |
" sched.step()\n",
|
339 |
" accuracy /= len(dl)\n",
|
340 |
+
" print(f\"{'train' if train else 'eval'}, epoch:{epoch+1}, loss: {loss.item():.4f}, accuracy: {accuracy:.4f}\")"
|
|
|
341 |
]
|
342 |
},
|
343 |
{
|
344 |
"cell_type": "code",
|
345 |
+
"execution_count": 95,
|
346 |
"metadata": {
|
347 |
"tags": [
|
348 |
"exclude"
|
|
|
350 |
},
|
351 |
"outputs": [],
|
352 |
"source": [
|
353 |
+
"# with open('./cnn_classifier.pkl', 'wb') as model_file:\n",
|
354 |
+
"# pickle.dump(model, model_file)"
|
355 |
]
|
356 |
},
|
357 |
{
|
|
|
367 |
},
|
368 |
{
|
369 |
"cell_type": "code",
|
370 |
+
"execution_count": 96,
|
371 |
"metadata": {
|
372 |
"tags": [
|
373 |
"exclude"
|
|
|
378 |
"name": "stdout",
|
379 |
"output_type": "stream",
|
380 |
"text": [
|
381 |
+
"[NbConvertApp] Converting notebook mnist_classifier.ipynb to script\n",
|
382 |
+
"[NbConvertApp] Writing 5934 bytes to mnist_classifier.py\n"
|
383 |
]
|
384 |
}
|
385 |
],
|
386 |
"source": [
|
387 |
+
"!jupyter nbconvert --to script --TagRemovePreprocessor.remove_cell_tags=\"exclude\" --TemplateExporter.exclude_input_prompt=True mnist_classifier.ipynb\n"
|
|
|
388 |
]
|
389 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
{
|
391 |
"cell_type": "code",
|
392 |
"execution_count": null,
|
mnist_classifier.py
CHANGED
@@ -33,7 +33,7 @@ bs = 1024
|
|
33 |
class DataLoaders:
|
34 |
def __init__(self, train_ds, valid_ds, bs, collate_fn, **kwargs):
|
35 |
self.train = DataLoader(train_ds, batch_size=bs, shuffle=True, collate_fn=collate_fn, **kwargs)
|
36 |
-
self.valid = DataLoader(
|
37 |
|
38 |
def collate_fn(b):
|
39 |
collate = default_collate(b)
|
@@ -91,29 +91,72 @@ for epoch in range(epochs):
|
|
91 |
print(f"{'train' if train else 'eval'}, epoch:{epoch+1}, loss: {loss.item():.4f}, accuracy: {accuracy:.4f}")
|
92 |
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
def cnn_classifier():
|
95 |
-
ks,stride = 3,2
|
96 |
return nn.Sequential(
|
97 |
-
|
98 |
-
nn.BatchNorm2d(
|
99 |
-
nn.
|
100 |
-
|
101 |
-
nn.BatchNorm2d(
|
102 |
-
|
103 |
-
nn.Conv2d(16, 32, kernel_size=ks, stride=stride, padding=ks//2),
|
104 |
-
nn.BatchNorm2d(32),
|
105 |
-
nn.ReLU(),
|
106 |
-
nn.Conv2d(32, 64, kernel_size=ks, stride=stride, padding=ks//2),
|
107 |
-
nn.BatchNorm2d(64),
|
108 |
-
nn.ReLU(),
|
109 |
-
nn.Conv2d(64, 64, kernel_size=ks, stride=stride, padding=ks//2),
|
110 |
-
nn.BatchNorm2d(64),
|
111 |
-
nn.ReLU(),
|
112 |
-
nn.Conv2d(64, 10, kernel_size=ks, stride=stride, padding=ks//2),
|
113 |
nn.Flatten(),
|
114 |
)
|
115 |
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
def kaiming_init(m):
|
118 |
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
119 |
nn.init.kaiming_normal_(m.weight)
|
@@ -126,7 +169,6 @@ max_lr = 0.3
|
|
126 |
epochs = 5
|
127 |
opt = optim.AdamW(model.parameters(), lr=lr)
|
128 |
sched = optim.lr_scheduler.OneCycleLR(opt, max_lr, total_steps=len(dls.train), epochs=epochs)
|
129 |
-
|
130 |
for epoch in range(epochs):
|
131 |
for train in (True, False):
|
132 |
accuracy = 0
|
@@ -144,10 +186,6 @@ for epoch in range(epochs):
|
|
144 |
sched.step()
|
145 |
accuracy /= len(dl)
|
146 |
print(f"{'train' if train else 'eval'}, epoch:{epoch+1}, loss: {loss.item():.4f}, accuracy: {accuracy:.4f}")
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
|
152 |
|
153 |
|
|
|
33 |
class DataLoaders:
|
34 |
def __init__(self, train_ds, valid_ds, bs, collate_fn, **kwargs):
|
35 |
self.train = DataLoader(train_ds, batch_size=bs, shuffle=True, collate_fn=collate_fn, **kwargs)
|
36 |
+
self.valid = DataLoader(valid_ds, batch_size=bs*2, shuffle=False, collate_fn=collate_fn, **kwargs)
|
37 |
|
38 |
def collate_fn(b):
|
39 |
collate = default_collate(b)
|
|
|
91 |
print(f"{'train' if train else 'eval'}, epoch:{epoch+1}, loss: {loss.item():.4f}, accuracy: {accuracy:.4f}")
|
92 |
|
93 |
|
94 |
+
# def _conv_block(ni, nf, stride, act=act_gr, norm=None, ks=3):
|
95 |
+
# return nn.Sequential(conv(ni, nf, stride=1, act=act, norm=norm, ks=ks),
|
96 |
+
# conv(nf, nf, stride=stride, act=None, norm=norm, ks=ks))
|
97 |
+
|
98 |
+
# class ResBlock(nn.Module):
|
99 |
+
# def __init__(self, ni, nf, stride=1, ks=3, act=act_gr, norm=None):
|
100 |
+
# super().__init__()
|
101 |
+
# self.convs = _conv_block(ni, nf, stride, act=act, ks=ks, norm=norm)
|
102 |
+
# self.idconv = fc.noop if ni==nf else conv(ni, nf, ks=1, stride=1, act=None)
|
103 |
+
# self.pool = fc.noop if stride==1 else nn.AvgPool2d(2, ceil_mode=True)
|
104 |
+
# self.act = act()
|
105 |
+
|
106 |
+
# def forward(self, x): return self.act(self.convs(x) + self.idconv(self.pool(x)))
|
107 |
+
|
108 |
+
|
109 |
+
def conv(ni, nf, ks=3, s=2, act=nn.ReLU, norm=None):
|
110 |
+
layers = [nn.Conv2d(ni, nf, kernel_size=ks, stride=s, padding=ks//2)]
|
111 |
+
if norm:
|
112 |
+
layers.append(norm)
|
113 |
+
if act:
|
114 |
+
layers.append(act())
|
115 |
+
return nn.Sequential(*layers)
|
116 |
+
|
117 |
+
def _conv_block(ni, nf, ks=3, s=2, act=nn.ReLU, norm=None):
|
118 |
+
return nn.Sequential(
|
119 |
+
conv(ni, nf, ks=ks, s=1, norm=norm, act=act),
|
120 |
+
conv(nf, nf, ks=ks, s=s, norm=norm, act=act),
|
121 |
+
)
|
122 |
+
|
123 |
+
class ResBlock(nn.Module):
|
124 |
+
def __init__(self, ni, nf, s=2, ks=3, act=nn.ReLU, norm=None):
|
125 |
+
super().__init__()
|
126 |
+
self.convs = _conv_block(ni, nf, s=s, ks=ks, act=act, norm=norm)
|
127 |
+
self.idconv = fc.noop if ni==nf else conv(ni, nf, ks=1, s=1, act=None)
|
128 |
+
self.pool = fc.noop if s==1 else nn.AvgPool2d(2, ceil_mode=True)
|
129 |
+
self.act = act()
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
return self.act(self.convs(x) + self.idconv(self.pool(x)))
|
133 |
+
|
134 |
+
|
135 |
def cnn_classifier():
|
|
|
136 |
return nn.Sequential(
|
137 |
+
ResBlock(1, 8, norm=nn.BatchNorm2d(8)),
|
138 |
+
ResBlock(8, 16, norm=nn.BatchNorm2d(16)),
|
139 |
+
ResBlock(16, 32, norm=nn.BatchNorm2d(32)),
|
140 |
+
ResBlock(32, 64, norm=nn.BatchNorm2d(64)),
|
141 |
+
ResBlock(64, 64, norm=nn.BatchNorm2d(64)),
|
142 |
+
conv(64, 10, act=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
nn.Flatten(),
|
144 |
)
|
145 |
|
146 |
|
147 |
+
# def cnn_classifier():
|
148 |
+
# return nn.Sequential(
|
149 |
+
# ResBlock(1, 16, norm=nn.BatchNorm2d(16)),
|
150 |
+
# ResBlock(16, 32, norm=nn.BatchNorm2d(32)),
|
151 |
+
# ResBlock(32, 64, norm=nn.BatchNorm2d(64)),
|
152 |
+
# ResBlock(64, 128, norm=nn.BatchNorm2d(128)),
|
153 |
+
# ResBlock(128, 256, norm=nn.BatchNorm2d(256)),
|
154 |
+
# ResBlock(256, 256, norm=nn.BatchNorm2d(256)),
|
155 |
+
# conv(256, 10, act=False),
|
156 |
+
# nn.Flatten(),
|
157 |
+
# )
|
158 |
+
|
159 |
+
|
160 |
def kaiming_init(m):
|
161 |
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
162 |
nn.init.kaiming_normal_(m.weight)
|
|
|
169 |
epochs = 5
|
170 |
opt = optim.AdamW(model.parameters(), lr=lr)
|
171 |
sched = optim.lr_scheduler.OneCycleLR(opt, max_lr, total_steps=len(dls.train), epochs=epochs)
|
|
|
172 |
for epoch in range(epochs):
|
173 |
for train in (True, False):
|
174 |
accuracy = 0
|
|
|
186 |
sched.step()
|
187 |
accuracy /= len(dl)
|
188 |
print(f"{'train' if train else 'eval'}, epoch:{epoch+1}, loss: {loss.item():.4f}, accuracy: {accuracy:.4f}")
|
|
|
|
|
|
|
|
|
189 |
|
190 |
|
191 |
|