File size: 1,886 Bytes
8cb8264
592f7e1
 
 
 
afe3d6c
 
8cb8264
592f7e1
8cb8264
f9cd637
592f7e1
 
 
 
f9cd637
 
592f7e1
f9cd637
 
5c56ed6
592f7e1
afe3d6c
592f7e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e4096f
592f7e1
 
 
f9cd637
592f7e1
 
 
 
5e4096f
 
 
 
 
 
592f7e1
 
afe3d6c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr
import warnings
import torch
from transformers import WhisperTokenizer, WhisperForConditionalGeneration, WhisperProcessor
import soundfile as sf
from huggingface_hub import spaces


warnings.filterwarnings("ignore")

# Load tokenizer + model
tokenizer = WhisperTokenizer.from_pretrained("NbAiLabBeta/nb-whisper-medium")
model = WhisperForConditionalGeneration.from_pretrained("NbAiLabBeta/nb-whisper-medium")
processor = WhisperProcessor.from_pretrained("NbAiLabBeta/nb-whisper-medium")

# set up device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch_dtype = torch.float32

# move model to device
model.to(device)

@spaces.GPU
def transcribe_audio(audio_file):
    audio_input, _ = sf.read(audio_file)
    inputs = processor(audio_input, sampling_rate=16000, return_tensors="pt")
    inputs = inputs.to(device)
    with torch.no_grad():
        output = model.generate(
            inputs.input_features,
            max_length=448,
            num_beams=5,
            task="transcribe",
            language="no"
        )
    transcription = processor.batch_decode(output, skip_special_tokens=True)[0]
    return transcription

# HTML for banner image
banner_html = """
<div style="text-align: center;">
    <img src="https://huggingface.co/spaces/camparchimedes/ola_s-audioshop/raw/main/Olas%20AudioSwitch%20Shop.png" alt="Banner" width="87%; height:auto;">
</div>
"""

# Gradio interface
iface = gr.Blocks()

with iface:
    gr.HTML(banner_html)
    gr.Markdown("# Audio Transcription App\nUpload an audio file to get the transcription")
    audio_input = gr.Audio(type="filepath")
    transcription_output = gr.Textbox()
    transcribe_button = gr.Button("Transcribe")

    transcribe_button.click(fn=transcribe_audio, inputs=audio_input, outputs=transcription_output)

# Launch the interface
iface.launch(share=True, debug=True)