Spaces:
Build error
Build error
camparchimedes
commited on
Commit
•
592f7e1
1
Parent(s):
f691af5
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,67 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import warnings
|
3 |
+
import torch
|
4 |
+
from transformers import WhisperTokenizer, WhisperForConditionalGeneration, WhisperProcessor
|
5 |
+
import soundfile as sf
|
6 |
|
7 |
+
warnings.filterwarnings("ignore")
|
|
|
8 |
|
9 |
+
# Load tokenizer and model
|
10 |
+
tokenizer = WhisperTokenizer.from_pretrained("NbAiLabBeta/nb-whisper-medium")
|
11 |
+
model = WhisperForConditionalGeneration.from_pretrained("NbAiLabBeta/nb-whisper-medium")
|
12 |
+
processor = WhisperProcessor.from_pretrained("NbAiLabBeta/nb-whisper-medium")
|
13 |
+
|
14 |
+
# Set up the device
|
15 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
16 |
+
torch_dtype = torch.float32
|
17 |
+
|
18 |
+
# Initialize pipeline
|
19 |
+
#asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=device, torch_dtype=torch_dtype)
|
20 |
+
|
21 |
+
#def transcribe_audio(audio_file):
|
22 |
+
#with torch.no_grad():
|
23 |
+
#output = asr(audio_file, chunk_length_s=28, generate_kwargs={"num_beams": 5, "task": "transcribe", "language": "no"})
|
24 |
+
#return output["text"]
|
25 |
+
|
26 |
+
def transcribe_audio(audio_file):
|
27 |
+
audio_input, _ = sf.read(audio_file)
|
28 |
+
inputs = processor(audio_input, sampling_rate=16000, return_tensors="pt")
|
29 |
+
inputs = inputs.to(device)
|
30 |
+
with torch.no_grad():
|
31 |
+
output = model.generate(
|
32 |
+
inputs.input_features,
|
33 |
+
max_length=448,
|
34 |
+
chunk_length_s=28,
|
35 |
+
num_beams=5,
|
36 |
+
task="transcribe",
|
37 |
+
language="no"
|
38 |
+
)
|
39 |
+
transcription = processor.batch_decode(output, skip_special_tokens=True)[0]
|
40 |
+
return transcription
|
41 |
+
#print(transcription)
|
42 |
+
|
43 |
+
# HTML for banner image
|
44 |
+
banner_html = """
|
45 |
+
<div style="text-align: center;">
|
46 |
+
<img src="https://huggingface.co/spaces/camparchimedes/work_harder/raw/main/Olas%20AudioSwitch%20Shop.png" alt="Banner" width="87%; height:auto;">
|
47 |
+
</div>
|
48 |
+
"""
|
49 |
+
|
50 |
+
# Create Gradio interface
|
51 |
+
iface = gr.Blocks()
|
52 |
+
|
53 |
+
with iface:
|
54 |
+
gr.HTML(banner_html)
|
55 |
+
gr.Interface(
|
56 |
+
fn=transcribe_audio,
|
57 |
+
inputs=gr.Audio(type="filepath"),
|
58 |
+
outputs="text",
|
59 |
+
title="Audio Transcription App",
|
60 |
+
description="Upload an audio file to get the transcription",
|
61 |
+
theme="default",
|
62 |
+
layout="vertical",
|
63 |
+
live=False
|
64 |
+
)
|
65 |
+
|
66 |
+
# Launch the interface
|
67 |
+
iface.launch(share=True, debug=True)
|