File size: 5,161 Bytes
c5f65a4
701e2d4
 
c5f65a4
 
701e2d4
c5f65a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""Audio transforms."""
# import torchaudio
# import torchvision
from torchvision.transforms import Compose, ToTensor
import torchaudio.transforms as T
# import imgaug.augmenters as iaa
import numpy as np
import torch


class AddNoise(object):
    """Add noise to the waveform."""
    def __init__(self, noise_level=0.1):
        self.noise_level = noise_level

    def __call__(self, waveform):
        noise = torch.randn_like(waveform)
        return waveform + self.noise_level * noise

    def __repr__(self):
        return self.__class__.__name__ + f"(noise_level={self.noise_level})"


class ChangeVolume(object):
    """Change the volume of the waveform."""
    def __init__(self, volume_factor=[0.6, 1.2]):
        self.volume_factor = volume_factor

    def __call__(self, waveform):
        return waveform * np.random.uniform(*self.volume_factor)

    def __repr__(self):
        return self.__class__.__name__ + f"(volume_factor={self.volume_factor})"


def configure_transforms(cfg):
    """
    Given a transform config (List[dict]), return a Compose object that
    applies the transforms in order.
    """
    transform = []
    for a in cfg:
        transform.append(eval(a["name"])(**a["args"]))
    return Compose(transform)


class AudioClipsTransform:
    def __init__(self, audio_transform):
        """Applies image transform to each frame of each video clip."""
        self.audio_transform = audio_transform

    def __call__(self, audio_clips):
        """
        Args:
            audio_clips (list): list of audio clips, each tensor [1, M]
                where M is number of samples in each clip
        """
        transformed_audio_clips = [self.audio_transform(x) for x in audio_clips]
        # transformed_audio_clips = []
        # for clip in audio_clips:
        #     transformed_clip = [self.audio_transform(x) for x in clip]
        #     transformed_audio_clips.append(transformed_clip)
        return transformed_audio_clips

    def __repr__(self):
        return self.audio_transform.__repr__()
    

class NumpyToTensor:
    def __call__(self, x):
        return torch.from_numpy(x).float()
    def __repr__(self):
        return self.__class__.__name__ + "()"


# TODO: Might have to introduce normalisation
# to have a consistent pipeline.


class Wav2Vec2WaveformProcessor:
    def __init__(self, model_name="facebook/wav2vec2-base-960h", sr=16000):
        from transformers import Wav2Vec2Processor
        self.processor = Wav2Vec2Processor.from_pretrained(model_name)
        self.sr = sr
    
    def __call__(self, x):
        x = self.processor(
            x, sampling_rate=self.sr, return_tensors="pt",
        ).input_values
        return x


def define_audio_transforms(cfg_transform, augment=False):

    wave_transforms = cfg_transform["audio"]["wave"]
    wave_transforms_new = []

    # Only pick augmentations if augment=True
    for t in wave_transforms:
        if "augmentation" not in t:
            wave_transforms_new.append(t)
        else:
            if augment and t["augmentation"]:
                wave_transforms_new.append(t)
    # print(wave_transforms_new)
    wave_transform = configure_transforms(wave_transforms_new)
    wave_transform = AudioClipsTransform(wave_transform)

    # wave_transform = configure_transforms(
    #     cfg_transform["audio"]["wave"],
    # )
    # wave_transform = AudioClipsTransform(wave_transform)
    # spec_transform = configure_transforms(
    #     cfg_transform["audio"]["spec"],
    # )
    # spec_transform = AudioClipsTransform(spec_transform)

    audio_transform = dict(
        wave=wave_transform,
        # spec=spec_transform,
    )
    return audio_transform


if __name__ == "__main__":
    # Testing it out

    # Raw waveform transform
    cfg = [
        {
            "name": "AddNoise",
            "args": {"noise_level": 0.1},
        },
        {
            "name": "ChangeVolume",
            "args": {"volume_factor": [0.6, 1.2]},
        },
    ]
    transform = configure_transforms(cfg)

    x = torch.randn([1, 16000])
    z = transform(x)
    print(x.shape, z.shape)

    import matplotlib.pyplot as plt
    fig, ax = plt.subplots(2, 1, figsize=(8, 4))
    ax[0].plot(x[0].numpy())
    ax[1].plot(z[0].numpy())
    plt.savefig("waveform_transform.png")

    # Wav2Vec2 transform
    cfg = [
        {
            "name": "Wav2Vec2WaveformProcessor",
            "args": {"model_name": "facebook/wav2vec2-base-960h", "sr": 16000},
        },
    ]
    transform = configure_transforms(cfg)
    x = torch.randn([4, 16000])
    z = transform(x)
    print(x.shape, z.shape)


    # Spectrogram transform
    cfg = [
        {
            "name": "T.FrequencyMasking",
            "args": {"freq_mask_param": 8},
        },
        {
            "name": "T.TimeMasking",
            "args": {"time_mask_param": 16},
        },
    ]
    transform = configure_transforms(cfg)
    x = torch.randn([1, 64, 251])
    z = transform(x)
    print(x.shape, z.shape)

    fig, ax = plt.subplots(2, 1, figsize=(8, 4))
    ax[0].imshow(x[0].numpy())
    ax[1].imshow(z[0].numpy())
    plt.savefig("spectrogram_transform.png")