Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- sound_of_water/audio_pitch/README.md +1 -0
- sound_of_water/audio_pitch/__pycache__/model.cpython-39.pyc +0 -0
- sound_of_water/audio_pitch/model.py +438 -0
- sound_of_water/cosupervision/README.md +2 -0
- sound_of_water/data/__pycache__/audio_loader.cpython-39.pyc +0 -0
- sound_of_water/data/__pycache__/audio_transforms.cpython-39.pyc +0 -0
- sound_of_water/data/__pycache__/csv_loader.cpython-39.pyc +0 -0
- sound_of_water/data/audio_loader.py +646 -0
- sound_of_water/data/audio_transforms.py +183 -0
- sound_of_water/data/csv_loader.py +137 -0
- sound_of_water/data/video_loader.py +0 -0
- sound_of_water/data/video_transforms.py +0 -0
- sound_of_water/video_height/README.md +1 -0
sound_of_water/audio_pitch/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
In this folder, we will store the code to train and evaluate models for pitch detection from audio.
|
sound_of_water/audio_pitch/__pycache__/model.cpython-39.pyc
ADDED
Binary file (10.8 kB). View file
|
|
sound_of_water/audio_pitch/model.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Defines the audio model for pitch estimation."""
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import einops
|
5 |
+
|
6 |
+
import math
|
7 |
+
import numpy as np
|
8 |
+
import einops
|
9 |
+
import pytorch_lightning as pl
|
10 |
+
|
11 |
+
import shared.utils as su
|
12 |
+
|
13 |
+
|
14 |
+
class TimeEncodingDiscreteSinusoidal(nn.Module):
|
15 |
+
def __init__(self, d, v=10000, rate=49, scale_factor=0.01):
|
16 |
+
"""
|
17 |
+
Args:
|
18 |
+
d (int): Dimension
|
19 |
+
rate (int): discretisation rate (frames per second)
|
20 |
+
this means that each [1/49.] of a second will be
|
21 |
+
encoded with a unique vector
|
22 |
+
"""
|
23 |
+
super().__init__()
|
24 |
+
self.d = d
|
25 |
+
self.rate = rate
|
26 |
+
self.v = v
|
27 |
+
self.scale_factor = scale_factor
|
28 |
+
|
29 |
+
def forward(self, t):
|
30 |
+
"""
|
31 |
+
Takes in timestamps t (seconds) and outputs vectors that represent these.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
t (torch.tensor): time stamps in seconds, [B, N]
|
35 |
+
"""
|
36 |
+
B, N = t.shape
|
37 |
+
|
38 |
+
# Discretise time
|
39 |
+
i = (t * self.rate).to(int)
|
40 |
+
|
41 |
+
pe = torch.zeros(B, N, self.d).to(t.device)
|
42 |
+
div_term = torch.exp(
|
43 |
+
(torch.arange(0, self.d, 2, dtype=torch.float) * -(math.log(self.v) / self.d))
|
44 |
+
)
|
45 |
+
div_term = div_term.to(t.device)
|
46 |
+
pe[:, :, 0::2] = torch.sin(i[:, :, None].float() * div_term)
|
47 |
+
pe[:, :, 1::2] = torch.cos(i[:, :, None].float() * div_term)
|
48 |
+
|
49 |
+
pe = pe * self.scale_factor
|
50 |
+
|
51 |
+
return pe
|
52 |
+
|
53 |
+
|
54 |
+
class Wav2Vec2WithTimeEncoding(nn.Module):
|
55 |
+
def __init__(
|
56 |
+
self, model_name="facebook/wav2vec2-base-960h", use_time=True,
|
57 |
+
d=512, v=10000, rate=49, scale_factor=0.01, layer_norm=False,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
su.log.print_update(
|
62 |
+
f" [:::] Loading backbone Wav2Vec 2.0 ",
|
63 |
+
pos="left",
|
64 |
+
fillchar=".",
|
65 |
+
color="cyan",
|
66 |
+
)
|
67 |
+
|
68 |
+
# Load pre-trained Wav2Vec 2.0 model
|
69 |
+
from transformers import Wav2Vec2Model
|
70 |
+
self.net = Wav2Vec2Model.from_pretrained(model_name)
|
71 |
+
|
72 |
+
self.d = d
|
73 |
+
self.v = v
|
74 |
+
self.rate = rate
|
75 |
+
self.sr = 16000
|
76 |
+
self.use_time = use_time
|
77 |
+
|
78 |
+
if self.use_time:
|
79 |
+
self.time_encoding = TimeEncodingDiscreteSinusoidal(
|
80 |
+
d=d, v=v, rate=rate, scale_factor=scale_factor,
|
81 |
+
)
|
82 |
+
else:
|
83 |
+
print(" [:::] Not using time encoding.")
|
84 |
+
self.time_encoding = None
|
85 |
+
|
86 |
+
# Have a layer norm for the time encoding
|
87 |
+
if layer_norm:
|
88 |
+
self.layer_norm = nn.LayerNorm(d)
|
89 |
+
else:
|
90 |
+
self.layer_norm = nn.Identity()
|
91 |
+
|
92 |
+
def forward(self, x, t):
|
93 |
+
"""
|
94 |
+
Args:
|
95 |
+
x (torch.tensor): audio input, [B, NC, C, NS],
|
96 |
+
NC: n.o. clips, NS: n.o. samples
|
97 |
+
t (torch.tensor): time stamps in seconds, [B, NC, 2],
|
98 |
+
start and end times for each clip
|
99 |
+
"""
|
100 |
+
B, T, C, NS = x.shape
|
101 |
+
assert C == 1, "Require a single-channel input."
|
102 |
+
assert t.shape[1] == T, \
|
103 |
+
"Number of timestamps should match number of clips."
|
104 |
+
assert t.shape[0] == B, \
|
105 |
+
"Batch size should match."
|
106 |
+
assert t.shape[2] == 2, \
|
107 |
+
"Timestamps should have start and end times."
|
108 |
+
|
109 |
+
# # Compute number of frames
|
110 |
+
# NF = int((NS / self.sr) * self.rate)
|
111 |
+
|
112 |
+
# Process inputs
|
113 |
+
x = einops.rearrange(x, "B T 1 NS -> (B T) NS")
|
114 |
+
t = einops.rearrange(t, "B T L -> (B T) L")
|
115 |
+
|
116 |
+
# This forward is based on Huggingface's implementation of Wave2Vec2
|
117 |
+
# https://github.com/huggingface/transformers/blob/main/src/
|
118 |
+
# transformers/models/wav2vec2/modeling_wav2vec2.py
|
119 |
+
|
120 |
+
# Encode through the CNN
|
121 |
+
extract_features = self.net.feature_extractor(x)
|
122 |
+
extract_features = extract_features.transpose(1, 2)
|
123 |
+
|
124 |
+
if self.use_time:
|
125 |
+
# Process timestamps: get timestamps for each frame
|
126 |
+
# within each clip (fps=49)
|
127 |
+
NF = extract_features.shape[1]
|
128 |
+
t_dense = []
|
129 |
+
for i in range(B):
|
130 |
+
start, end = t[i]
|
131 |
+
t_dense.append(torch.linspace(start, end, NF))
|
132 |
+
t_dense = torch.stack(t_dense).to(extract_features.device)
|
133 |
+
|
134 |
+
# Add time encoding to the features
|
135 |
+
t_dense_enc = self.time_encoding(t_dense)
|
136 |
+
|
137 |
+
# Normalise time encoding to have the same scale as the features
|
138 |
+
extract_features = extract_features + t_dense_enc
|
139 |
+
else:
|
140 |
+
pass
|
141 |
+
|
142 |
+
# Apply layer norm
|
143 |
+
extract_features = self.layer_norm(extract_features)
|
144 |
+
|
145 |
+
# Project into the feature space
|
146 |
+
hidden_states, extract_features = self.net.feature_projection(
|
147 |
+
extract_features
|
148 |
+
)
|
149 |
+
|
150 |
+
# Pass through the transformer encoder
|
151 |
+
encoder_outputs = self.net.encoder(
|
152 |
+
hidden_states,
|
153 |
+
attention_mask=None,
|
154 |
+
output_attentions=False,
|
155 |
+
output_hidden_states=False,
|
156 |
+
return_dict=True,
|
157 |
+
)
|
158 |
+
z = encoder_outputs[0]
|
159 |
+
|
160 |
+
# z = self.backbone(x).last_hidden_state
|
161 |
+
z = einops.rearrange(z, "(B T) F D -> B T F D", B=B, T=T)
|
162 |
+
|
163 |
+
return z
|
164 |
+
|
165 |
+
|
166 |
+
def recursive_attr(module, attr):
|
167 |
+
if "." in attr:
|
168 |
+
m, a = attr.split(".", 1)
|
169 |
+
return recursive_attr(getattr(module, m), a)
|
170 |
+
return getattr(module, attr)
|
171 |
+
|
172 |
+
|
173 |
+
class WavelengthWithTime(pl.LightningModule):
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
backbone,
|
177 |
+
feat_dim=768,
|
178 |
+
axial=True,
|
179 |
+
axial_bins=512,
|
180 |
+
radial=True,
|
181 |
+
radial_bins=512,
|
182 |
+
freeze_backbone=True,
|
183 |
+
train_backbone_modules=[10, 11],
|
184 |
+
prediction_head_hidden=[],
|
185 |
+
act="softmax",
|
186 |
+
criterion="kl_div",
|
187 |
+
cfg_opt=dict(name="Adam", args=dict(lr=1e-4)),
|
188 |
+
):
|
189 |
+
super().__init__()
|
190 |
+
su.log.print_update(
|
191 |
+
" [:::] Loading model WavelengthWithTime ",
|
192 |
+
color="cyan",
|
193 |
+
pos="left",
|
194 |
+
fillchar=".",
|
195 |
+
)
|
196 |
+
|
197 |
+
# By default, freeze the entire backbone
|
198 |
+
if freeze_backbone:
|
199 |
+
self.freeze(backbone)
|
200 |
+
|
201 |
+
# Unfreeze specific modules
|
202 |
+
train_backbone_modules = [
|
203 |
+
backbone.net.encoder.layers[int(m)] for m in train_backbone_modules
|
204 |
+
]
|
205 |
+
for module in train_backbone_modules:
|
206 |
+
self.unfreeze(module)
|
207 |
+
|
208 |
+
# Make the layer norm in backbone trainable
|
209 |
+
print("[>>>] Unfreezing layer norm in backbone")
|
210 |
+
for param in backbone.layer_norm.parameters():
|
211 |
+
param.requires_grad = True
|
212 |
+
su.misc.num_trainable_params(backbone)
|
213 |
+
|
214 |
+
self.backbone = backbone
|
215 |
+
self.feat_dim = feat_dim
|
216 |
+
|
217 |
+
# Add some intermediate layers before prediction heads
|
218 |
+
if len(prediction_head_hidden) > 0:
|
219 |
+
layers = []
|
220 |
+
in_dim = feat_dim
|
221 |
+
for out_dim in prediction_head_hidden:
|
222 |
+
layers.append(nn.Linear(in_dim, out_dim))
|
223 |
+
layers.append(nn.ReLU())
|
224 |
+
in_dim = out_dim
|
225 |
+
self.intermediate_layers = nn.Sequential(*layers)
|
226 |
+
else:
|
227 |
+
self.intermediate_layers = torch.nn.Identity()
|
228 |
+
out_dim = feat_dim
|
229 |
+
su.misc.num_trainable_params(self.intermediate_layers)
|
230 |
+
|
231 |
+
assert axial or radial, \
|
232 |
+
"At least one of axial or radial heads must be enabled."
|
233 |
+
|
234 |
+
# Define axial head
|
235 |
+
self.axial_head = None
|
236 |
+
if axial:
|
237 |
+
self.axial_head = nn.Linear(out_dim, axial_bins)
|
238 |
+
su.misc.num_trainable_params(self.axial_head)
|
239 |
+
|
240 |
+
# Define radial head
|
241 |
+
self.radial_head = None
|
242 |
+
if radial:
|
243 |
+
self.radial_head = nn.Linear(out_dim, radial_bins)
|
244 |
+
su.misc.num_trainable_params(self.radial_head)
|
245 |
+
|
246 |
+
self.act = torch.nn.Softmax(dim=-1) if act == "softmax" else torch.nn.Identity()
|
247 |
+
|
248 |
+
# Set criterion
|
249 |
+
self.define_criterion(criterion)
|
250 |
+
|
251 |
+
# Define optimization config
|
252 |
+
self.cfg_opt = cfg_opt
|
253 |
+
|
254 |
+
# Save hyperparameters
|
255 |
+
self.save_hyperparameters(ignore=["backbone"])
|
256 |
+
|
257 |
+
def freeze_backbone(self):
|
258 |
+
for param in self.backbone.parameters():
|
259 |
+
param.requires_grad = False
|
260 |
+
|
261 |
+
def define_criterion(self, criterion):
|
262 |
+
if criterion == "kl_div":
|
263 |
+
self.criterion = nn.KLDivLoss()
|
264 |
+
elif criterion == "ce":
|
265 |
+
self.criterion = nn.CrossEntropyLoss()
|
266 |
+
else:
|
267 |
+
raise NotImplementedError(f"Criterion {criterion} not implemented.")
|
268 |
+
|
269 |
+
def freeze(self, net):
|
270 |
+
for p in net.parameters():
|
271 |
+
p.requires_grad = False
|
272 |
+
|
273 |
+
def unfreeze(self, module):
|
274 |
+
module_name = type(module).__name__
|
275 |
+
print(f"[>>>] Unfreezing {module_name}")
|
276 |
+
for p in module.parameters():
|
277 |
+
p.requires_grad = True
|
278 |
+
|
279 |
+
def forward(self, x, t):
|
280 |
+
"""
|
281 |
+
Args:
|
282 |
+
x (torch.Tensor): [B, T, C, NS], T: n.o. clips
|
283 |
+
t (torch.Tensor): [B, T, 2], clip start and end times
|
284 |
+
"""
|
285 |
+
B, T, C, NS = x.shape
|
286 |
+
z = self.backbone.forward(x, t)
|
287 |
+
|
288 |
+
# assert C == 1, "Require a single-channel input."
|
289 |
+
# x = einops.rearrange(x, "B T 1 NS -> (B T) NS")
|
290 |
+
|
291 |
+
# z = self.backbone(x).last_hidden_state
|
292 |
+
# z = einops.rearrange(z, "(B T) F D -> B T F D", B=B, D=self.feat_dim)
|
293 |
+
|
294 |
+
# Intermediate layers
|
295 |
+
h = self.intermediate_layers(z)
|
296 |
+
|
297 |
+
# Prediction heads
|
298 |
+
y_pred = dict()
|
299 |
+
if self.axial_head is not None:
|
300 |
+
axial = self.act(self.axial_head(h))
|
301 |
+
y_pred["axial"] = axial
|
302 |
+
if self.radial_head is not None:
|
303 |
+
radial = self.act(self.radial_head(h))
|
304 |
+
y_pred["radial"] = radial
|
305 |
+
return y_pred
|
306 |
+
|
307 |
+
def compute_loss(self, y_pred: dict, y_true: dict):
|
308 |
+
loss = dict()
|
309 |
+
total_loss = 0.
|
310 |
+
for key in y_pred:
|
311 |
+
yt = y_true[key]
|
312 |
+
yt = einops.rearrange(yt, "b t d f -> b t f d")
|
313 |
+
yp = y_pred[key]
|
314 |
+
if isinstance(self.criterion, nn.KLDivLoss):
|
315 |
+
# Need to pass log to the loss function if it is KLDivLoss
|
316 |
+
yp = yp.log()
|
317 |
+
loss[key] = self.criterion(yp, yt)
|
318 |
+
elif isinstance(self.criterion, nn.CrossEntropyLoss):
|
319 |
+
yp = einops.rearrange(yp, "b t f d -> (b t f) d")
|
320 |
+
yt = einops.rearrange(yt, "b t f d -> (b t f) d")
|
321 |
+
loss[key] = self.criterion(yp, yt)
|
322 |
+
else:
|
323 |
+
raise NotImplementedError(f"Criterion {self.criterion} not implemented.")
|
324 |
+
# For now, using hardcoded loss weights of 1/K where K is number of losses
|
325 |
+
total_loss += loss[key] / len(y_pred)
|
326 |
+
loss["total"] = total_loss
|
327 |
+
return loss
|
328 |
+
|
329 |
+
# Fill in the rest of the class definition here
|
330 |
+
def step(self, batch, mode, log=True):
|
331 |
+
x = batch["audio_clips"]
|
332 |
+
t = batch["clips"]
|
333 |
+
y_true = {**batch["targets"], **batch["metadata"]}
|
334 |
+
y_pred = self.forward(x, t)
|
335 |
+
losses = self.compute_loss(y_pred, y_true)
|
336 |
+
loss = losses["total"]
|
337 |
+
|
338 |
+
if log:
|
339 |
+
self.log(f"batch/{mode}/loss_net", loss, prog_bar=True, sync_dist=True)
|
340 |
+
|
341 |
+
return loss
|
342 |
+
|
343 |
+
def training_step(self, batch, batch_idx):
|
344 |
+
return self.step(batch, "train")
|
345 |
+
|
346 |
+
def validation_step(self, batch, batch_idx):
|
347 |
+
return self.step(batch, "valid")
|
348 |
+
|
349 |
+
def configure_optimizers(self):
|
350 |
+
function = getattr(torch.optim, self.cfg_opt["name"])
|
351 |
+
optimizer = function(self.parameters(), **self.cfg_opt["args"])
|
352 |
+
return optimizer
|
353 |
+
|
354 |
+
|
355 |
+
if __name__ == "__main__":
|
356 |
+
import os
|
357 |
+
|
358 |
+
# Test backbone
|
359 |
+
backbone = Wav2Vec2WithTimeEncoding()
|
360 |
+
su.misc.num_params(backbone)
|
361 |
+
|
362 |
+
# Test on a real audio clip
|
363 |
+
path = "./media_assets/pouring_water_in_a_glass.wav"
|
364 |
+
import torchaudio
|
365 |
+
waveform, sr = torchaudio.load(path)
|
366 |
+
waveform = torchaudio.functional.resample(waveform, sr, 16000)
|
367 |
+
sr = 16000
|
368 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
369 |
+
|
370 |
+
# Forward pass an entire audio
|
371 |
+
from transformers import Wav2Vec2Processor
|
372 |
+
model_name = "facebook/wav2vec2-base-960h"
|
373 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
374 |
+
|
375 |
+
s, e = 8, 22
|
376 |
+
x = processor(
|
377 |
+
waveform[:, int(s*sr):int(e*sr)], sampling_rate=16000, return_tensors="pt",
|
378 |
+
).input_values.unsqueeze(0)
|
379 |
+
duration = waveform.shape[-1] / sr
|
380 |
+
t = torch.tensor([[s, e]]).unsqueeze(0)
|
381 |
+
z = backbone(x, t)
|
382 |
+
|
383 |
+
# Let's look at the tsne
|
384 |
+
z_flat = einops.rearrange(z, "B T F D -> (B T F) D")
|
385 |
+
import matplotlib.pyplot as plt
|
386 |
+
# Add serif
|
387 |
+
plt.rcParams["font.family"] = "serif"
|
388 |
+
|
389 |
+
su.visualize.show_temporal_tsne(z_flat.detach().numpy(), show=False)
|
390 |
+
plt.savefig("./media_assets/tsne.png")
|
391 |
+
plt.close()
|
392 |
+
|
393 |
+
|
394 |
+
# Test model
|
395 |
+
cfg_model = {
|
396 |
+
"name": "WavelengthWithTime",
|
397 |
+
"args": {
|
398 |
+
"axial": True,
|
399 |
+
"axial_bins": 64,
|
400 |
+
"radial": True,
|
401 |
+
"radial_bins": 64,
|
402 |
+
"freeze_backbone": True,
|
403 |
+
"train_backbone_modules": [6, 7, 8, 9, 10, 11],
|
404 |
+
"act": "softmax",
|
405 |
+
"criterion": "kl_div",
|
406 |
+
}
|
407 |
+
}
|
408 |
+
model = eval(cfg_model["name"])(backbone=backbone, **cfg_model["args"])
|
409 |
+
su.misc.num_trainable_params(model)
|
410 |
+
|
411 |
+
# Load pre-trained checkpoint
|
412 |
+
ckpt_dir = "/work/piyush/pretrained_checkpoints/SoundOfWater"
|
413 |
+
ckpt_path = os.path.join(
|
414 |
+
ckpt_dir,
|
415 |
+
"dsr9mf13_ep100_step12423_real_finetuned_with_cosupervision.pth",
|
416 |
+
)
|
417 |
+
assert os.path.exists(ckpt_path), \
|
418 |
+
f"Checkpoint not found at {ckpt_path}."
|
419 |
+
print("Loading checkpoint from: ", ckpt_path)
|
420 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
421 |
+
msg = model.load_state_dict(ckpt)
|
422 |
+
print(msg)
|
423 |
+
|
424 |
+
# Check forward pass
|
425 |
+
x_random = torch.randn(2, 1, 1, 16000)
|
426 |
+
t_random = torch.tensor([[[0, 1]], [[2, 3]]])
|
427 |
+
y_pred = model(x_random, t_random)
|
428 |
+
print("Input: ", x_random.shape)
|
429 |
+
for key in y_pred:
|
430 |
+
print(key, y_pred[key].shape)
|
431 |
+
|
432 |
+
|
433 |
+
# Plot features with the trained backbone and save as tsne_trained.png
|
434 |
+
z = model.backbone(x, t)
|
435 |
+
z_flat = einops.rearrange(z, "B T F D -> (B T F) D")
|
436 |
+
su.visualize.show_temporal_tsne(z_flat.detach().numpy(), show=False)
|
437 |
+
plt.savefig("./media_assets/tsne_trained.png")
|
438 |
+
plt.close()
|
sound_of_water/cosupervision/README.md
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
In this folder, we store code for co-supervising audio pitch detection network from
|
2 |
+
visual height detection network.
|
sound_of_water/data/__pycache__/audio_loader.cpython-39.pyc
ADDED
Binary file (12.8 kB). View file
|
|
sound_of_water/data/__pycache__/audio_transforms.cpython-39.pyc
ADDED
Binary file (5.45 kB). View file
|
|
sound_of_water/data/__pycache__/csv_loader.cpython-39.pyc
ADDED
Binary file (3.32 kB). View file
|
|
sound_of_water/data/audio_loader.py
ADDED
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""Audio loading utils."""
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
+
import decord
|
8 |
+
import librosa
|
9 |
+
import einops
|
10 |
+
import PIL
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
# Add serif font
|
13 |
+
plt.rcParams['font.family'] = 'serif'
|
14 |
+
from PIL import Image, ImageOps
|
15 |
+
import librosa.display
|
16 |
+
|
17 |
+
import shared.utils as su
|
18 |
+
|
19 |
+
|
20 |
+
def read_info(path):
|
21 |
+
"""
|
22 |
+
Reads the info of the given audio file.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
path (str): path to the audio file
|
26 |
+
"""
|
27 |
+
import ffmpeg
|
28 |
+
probe = ffmpeg.probe(path)
|
29 |
+
audio_info = next(
|
30 |
+
(s for s in probe['streams'] if s['codec_type'] == 'audio'),
|
31 |
+
None,
|
32 |
+
)
|
33 |
+
video_info = next(
|
34 |
+
(s for s in probe['streams'] if s['codec_type'] == 'video'),
|
35 |
+
None,
|
36 |
+
)
|
37 |
+
return dict(video=video_info, audio=audio_info)
|
38 |
+
|
39 |
+
|
40 |
+
def load_audio_clips(
|
41 |
+
audio_path,
|
42 |
+
clips,
|
43 |
+
sr,
|
44 |
+
clip_len,
|
45 |
+
backend='decord',
|
46 |
+
load_entire=False,
|
47 |
+
cut_to_clip_len=True,
|
48 |
+
):
|
49 |
+
"""
|
50 |
+
Loads audio clips from the given audio file.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
audio_path (str): path to the audio file
|
54 |
+
clips (np.ndarray): sized [T, 2], where T is the number of clips
|
55 |
+
and each row is a pair of start and end times of the clip
|
56 |
+
sr (int): sample rate
|
57 |
+
clip_len (float): length of the audio clip in seconds
|
58 |
+
backend (str): backend to use for loading audio clips
|
59 |
+
load_entire (bool): whether to load the entire audio file
|
60 |
+
cut_to_clip_len (bool): whether to cut the audio clip to clip_len
|
61 |
+
"""
|
62 |
+
|
63 |
+
if backend == 'torchaudio':
|
64 |
+
audio_info = read_info(audio_path)["audio"]
|
65 |
+
true_sr = int(audio_info["sample_rate"])
|
66 |
+
true_nf = audio_info["duration_ts"]
|
67 |
+
audio_duration = true_nf / true_sr
|
68 |
+
# metadata = torchaudio.info(audio_path)
|
69 |
+
# true_sr = metadata.sample_rate
|
70 |
+
# true_nf = metadata.num_frames
|
71 |
+
elif backend == "decord":
|
72 |
+
# duration = librosa.get_duration(filename=audio_path)
|
73 |
+
ar = decord.AudioReader(audio_path, sample_rate=sr, mono=True)
|
74 |
+
# Mono=False gives NaNs in inputs.
|
75 |
+
# This (https://gist.github.com/nateraw/fcc2bdb9c8738224957c8617c3360445) might
|
76 |
+
# be a related issue. Ignoring for now. Need to use torchaudio for now.
|
77 |
+
true_nf = ar.shape[1]
|
78 |
+
audio_duration = ar.shape[1] / sr
|
79 |
+
else:
|
80 |
+
raise ValueError(f"Unknown backend: {backend}")
|
81 |
+
|
82 |
+
if load_entire:
|
83 |
+
# Load the entire audio as a single clip and return
|
84 |
+
|
85 |
+
if backend == 'torchaudio':
|
86 |
+
y, _ = torchaudio.load(audio_path)
|
87 |
+
if y.shape[0] > 1:
|
88 |
+
# Convert to a single channel
|
89 |
+
y = y.mean(dim=0, keepdim=True)
|
90 |
+
resampler = torchaudio.transforms.Resample(true_sr, sr)
|
91 |
+
y = resampler(y)
|
92 |
+
audio = y
|
93 |
+
elif backend == "decord":
|
94 |
+
audio = ar.get_batch(np.arange(true_nf)).asnumpy()
|
95 |
+
audio = torch.from_numpy(audio)
|
96 |
+
|
97 |
+
return [audio]
|
98 |
+
|
99 |
+
else:
|
100 |
+
# Clip the clips to avoid going out of bounds
|
101 |
+
clips = np.clip(clips, 0, audio_duration)
|
102 |
+
|
103 |
+
audio_clips = []
|
104 |
+
for st, et in clips:
|
105 |
+
|
106 |
+
if backend == 'torchaudio':
|
107 |
+
|
108 |
+
# Load audio within the given time range
|
109 |
+
sf = max(int(true_sr * st), 0)
|
110 |
+
ef = min(int(true_sr * et), true_nf)
|
111 |
+
nf = ef - sf
|
112 |
+
y, _ = torchaudio.load(audio_path, frame_offset=sf, num_frames=nf)
|
113 |
+
|
114 |
+
# Stereo to mono
|
115 |
+
if y.shape[0] > 1:
|
116 |
+
# Convert to a single channel
|
117 |
+
y = y.mean(dim=0, keepdim=True)
|
118 |
+
|
119 |
+
# Resample to the given sample rate
|
120 |
+
resampler = torchaudio.transforms.Resample(true_sr, sr)
|
121 |
+
y = resampler(y)
|
122 |
+
|
123 |
+
audio = y
|
124 |
+
|
125 |
+
elif backend == "decord":
|
126 |
+
|
127 |
+
# Load audio within the given time range
|
128 |
+
sf = max(int(st * sr), 0)
|
129 |
+
ef = min(int(et * sr), true_nf)
|
130 |
+
audio = ar.get_batch(np.arange(sf, ef)).asnumpy()
|
131 |
+
audio = torch.from_numpy(audio)
|
132 |
+
|
133 |
+
# No need to convert to mono since we are using mono=True
|
134 |
+
# No need to resample since we are using sample_rate=sr
|
135 |
+
|
136 |
+
else:
|
137 |
+
raise ValueError(f"Unknown backend: {backend}")
|
138 |
+
|
139 |
+
# Pad the clip to clip_len
|
140 |
+
nf_reqd = int(clip_len * sr)
|
141 |
+
nf_curr = audio.shape[1]
|
142 |
+
npad_side = max(0, nf_reqd - nf_curr)
|
143 |
+
if nf_curr < nf_reqd:
|
144 |
+
audio = torch.nn.functional.pad(audio, (0, npad_side))
|
145 |
+
elif (nf_curr > nf_reqd) and cut_to_clip_len:
|
146 |
+
audio = audio[:, :nf_reqd]
|
147 |
+
|
148 |
+
audio_clips.append(audio)
|
149 |
+
return audio_clips
|
150 |
+
|
151 |
+
|
152 |
+
def show_audio_clips_waveform(
|
153 |
+
audio_clips, clips, title=None, show=True, figsize=(10, 2),
|
154 |
+
):
|
155 |
+
"""
|
156 |
+
Visualizes the given audio clips.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
audio_clips (list): list of audio clips
|
160 |
+
sr (int): sample rate
|
161 |
+
title (str): title of the plot
|
162 |
+
show (bool): whether to show the clips
|
163 |
+
figsize (tuple): figure size
|
164 |
+
"""
|
165 |
+
clip_centers = (clips[:, 0] + clips[:, 1]) / 2
|
166 |
+
clip_durations = clips[:, 1] - clips[:, 0]
|
167 |
+
|
168 |
+
fig, ax = plt.subplots(1, len(audio_clips), figsize=figsize)
|
169 |
+
if len(audio_clips) == 1:
|
170 |
+
ax = [ax]
|
171 |
+
for i, audio in enumerate(audio_clips):
|
172 |
+
timestamps = np.linspace(
|
173 |
+
clip_centers[i] - clip_durations[i],
|
174 |
+
clip_centers[i] + clip_durations[i],
|
175 |
+
audio.shape[-1],
|
176 |
+
)
|
177 |
+
ax[i].plot(timestamps, audio.squeeze().numpy(), alpha=0.5)
|
178 |
+
ax[i].set_title(f'$t=$ {clip_centers[i]:.2f}')
|
179 |
+
ax[i].grid(alpha=0.4)
|
180 |
+
plt.tight_layout()
|
181 |
+
if show:
|
182 |
+
plt.show()
|
183 |
+
else:
|
184 |
+
plt.savefig('audio_clips_waveform.png')
|
185 |
+
|
186 |
+
|
187 |
+
# TODO: preprocess audio clips (e.g., wav-to-spectrogram, etc.)
|
188 |
+
# Note that this is different from transforms applied as augmentation
|
189 |
+
# during training. This is more like a preprocessing step that is applied
|
190 |
+
# to the entire audio before sampling the clips.
|
191 |
+
import torchaudio.functional as TAF
|
192 |
+
import torchaudio.transforms as TAT
|
193 |
+
|
194 |
+
|
195 |
+
def load_audio(path, sr=16000, **kwargs):
|
196 |
+
y, true_sr = torchaudio.load(path, **kwargs)
|
197 |
+
y = y.mean(dim=0, keepdim=True)
|
198 |
+
resampler = torchaudio.transforms.Resample(true_sr, sr)
|
199 |
+
y = resampler(y)
|
200 |
+
return y, sr
|
201 |
+
|
202 |
+
|
203 |
+
def load_audio_librosa(path, sr=16000, **kwargs):
|
204 |
+
y, true_sr = librosa.load(path, sr=sr, **kwargs)
|
205 |
+
y = torch.from_numpy(y).unsqueeze(0)
|
206 |
+
return y, sr
|
207 |
+
|
208 |
+
|
209 |
+
def librosa_harmonic_spectrogram_db(
|
210 |
+
y, sr=16000, n_fft=512, hop_length=256, margin=16., n_mels=64,
|
211 |
+
):
|
212 |
+
if isinstance(y, torch.Tensor):
|
213 |
+
y = y.numpy()
|
214 |
+
if len(y.shape) == 2:
|
215 |
+
y = y.mean(axis=0)
|
216 |
+
# center=True outputs 1 more frame than center=False
|
217 |
+
# Currently, using just center=False
|
218 |
+
D = librosa.stft(y, n_fft=n_fft, hop_length=hop_length, center=False)
|
219 |
+
DH, DP = librosa.decompose.hpss(D, margin=margin)
|
220 |
+
amplitude_h = np.sqrt(2) * np.abs(DH)
|
221 |
+
if n_mels is None:
|
222 |
+
# Usual dB spectrogram
|
223 |
+
SH = librosa.amplitude_to_db(amplitude_h, ref=np.max)
|
224 |
+
else:
|
225 |
+
# Mel-scaled dB spectrogram
|
226 |
+
S = librosa.amplitude_to_db(amplitude_h)
|
227 |
+
SH = librosa.feature.melspectrogram(S=S, n_mels=n_mels, sr=sr)
|
228 |
+
return SH
|
229 |
+
|
230 |
+
|
231 |
+
def show_logmelspectrogram(
|
232 |
+
S,
|
233 |
+
sr,
|
234 |
+
n_fft=512,
|
235 |
+
hop_length=256,
|
236 |
+
figsize=(10, 3),
|
237 |
+
ax=None,
|
238 |
+
show=True,
|
239 |
+
title="LogMelSpectrogram",
|
240 |
+
xlabel="Time (s)",
|
241 |
+
ylabel="Mel bins (Hz)",
|
242 |
+
return_as_image=False,
|
243 |
+
):
|
244 |
+
if ax is None:
|
245 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
246 |
+
librosa.display.specshow(
|
247 |
+
S,
|
248 |
+
sr=sr,
|
249 |
+
hop_length=hop_length,
|
250 |
+
n_fft=n_fft,
|
251 |
+
y_axis='mel',
|
252 |
+
x_axis='time',
|
253 |
+
ax=ax,
|
254 |
+
auto_aspect=True,
|
255 |
+
)
|
256 |
+
ax.set_title(title)
|
257 |
+
ax.set_xlabel(xlabel)
|
258 |
+
ax.set_ylabel(ylabel)
|
259 |
+
|
260 |
+
if return_as_image:
|
261 |
+
fig.canvas.draw()
|
262 |
+
image = PIL.Image.frombytes(
|
263 |
+
'RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb(),
|
264 |
+
)
|
265 |
+
plt.close(fig)
|
266 |
+
return image
|
267 |
+
|
268 |
+
if show:
|
269 |
+
plt.show()
|
270 |
+
|
271 |
+
|
272 |
+
def show_logspectrogram(
|
273 |
+
S, sr, n_fft=512, hop_length=256, figsize=(10, 3), ax=None, show=True,
|
274 |
+
):
|
275 |
+
if ax is None:
|
276 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
277 |
+
librosa.display.specshow(
|
278 |
+
S,
|
279 |
+
sr=sr,
|
280 |
+
hop_length=hop_length,
|
281 |
+
n_fft=n_fft,
|
282 |
+
y_axis='linear',
|
283 |
+
x_axis='time',
|
284 |
+
ax=ax,
|
285 |
+
)
|
286 |
+
ax.set_title("LogSpectrogram")
|
287 |
+
if show:
|
288 |
+
plt.show()
|
289 |
+
|
290 |
+
|
291 |
+
def audio_clips_wav_to_spec(
|
292 |
+
audio_clips, n_fft=512, hop_length=256, margin=16., n_mels=None,
|
293 |
+
):
|
294 |
+
"""
|
295 |
+
Converts the given audio clips to spectrograms.
|
296 |
+
|
297 |
+
Args:
|
298 |
+
audio_clips (list): list of audio clips
|
299 |
+
n_fft (int): number of FFT points
|
300 |
+
hop_length (int): hop length
|
301 |
+
margin (float): margin for harmonic-percussive source separation
|
302 |
+
n_mels (int): number of mel bands (optional, if None, then dB spectrogram is returned)
|
303 |
+
"""
|
304 |
+
audio_specs = []
|
305 |
+
for audio in audio_clips:
|
306 |
+
spec = librosa_harmonic_spectrogram_db(
|
307 |
+
audio,
|
308 |
+
n_fft=n_fft,
|
309 |
+
hop_length=hop_length,
|
310 |
+
margin=margin,
|
311 |
+
n_mels=n_mels,
|
312 |
+
)
|
313 |
+
spec = torch.from_numpy(spec).unsqueeze(0)
|
314 |
+
audio_specs.append(spec)
|
315 |
+
return audio_specs
|
316 |
+
|
317 |
+
|
318 |
+
def show_audio_clips_spec(
|
319 |
+
audio_specs,
|
320 |
+
clips,
|
321 |
+
sr,
|
322 |
+
n_fft=512,
|
323 |
+
hop_length=256,
|
324 |
+
margin=16.,
|
325 |
+
cmap='magma',
|
326 |
+
n_mels=None,
|
327 |
+
show=True,
|
328 |
+
):
|
329 |
+
"""
|
330 |
+
Visualizes the given audio clips.
|
331 |
+
|
332 |
+
Args:
|
333 |
+
audio_specs (list): list of audio spectrograms
|
334 |
+
clips (np.ndarray): sized [T, 2], where T is the number of clips
|
335 |
+
and each row is a pair of start and end times of the clip
|
336 |
+
show (bool): whether to show the clips
|
337 |
+
"""
|
338 |
+
clip_centers = (clips[:, 0] + clips[:, 1]) / 2
|
339 |
+
clip_durations = clips[:, 1] - clips[:, 0]
|
340 |
+
|
341 |
+
fig, ax = plt.subplots(1, len(audio_specs), figsize=(10, 4))
|
342 |
+
if len(audio_specs) == 1:
|
343 |
+
ax = [ax]
|
344 |
+
for i, spec in enumerate(audio_specs):
|
345 |
+
clip_start = clips[i][0]
|
346 |
+
# ax[i].imshow(spec, aspect='auto', origin='lower')
|
347 |
+
if isinstance(spec, torch.Tensor):
|
348 |
+
spec = spec.numpy()
|
349 |
+
if len(spec.shape) == 3:
|
350 |
+
spec = spec[0]
|
351 |
+
args = dict(
|
352 |
+
data=spec,
|
353 |
+
sr=sr,
|
354 |
+
n_fft=n_fft,
|
355 |
+
hop_length=hop_length,
|
356 |
+
ax=ax[i],
|
357 |
+
x_axis="time",
|
358 |
+
cmap=cmap,
|
359 |
+
)
|
360 |
+
if n_mels is None:
|
361 |
+
args.update(dict(y_axis="linear"))
|
362 |
+
else:
|
363 |
+
args.update(dict(y_axis="mel"))
|
364 |
+
librosa.display.specshow(**args)
|
365 |
+
# Get xticks and replace them by xticks + clip_start
|
366 |
+
xticks = ax[i].get_xticks()
|
367 |
+
xticks = xticks + clip_start
|
368 |
+
ax[i].set_xticklabels([f'{x:.1f}' for x in xticks])
|
369 |
+
ax[i].set_title(f'$t=$ {clip_centers[i]:.2f}')
|
370 |
+
plt.tight_layout()
|
371 |
+
if show:
|
372 |
+
plt.show()
|
373 |
+
else:
|
374 |
+
plt.savefig('audio_clips_spec.png')
|
375 |
+
|
376 |
+
|
377 |
+
def basic_pipeline_audio_clips(
|
378 |
+
audio_clips,
|
379 |
+
spec_args=None,
|
380 |
+
audio_transform=None,
|
381 |
+
stack=True,
|
382 |
+
):
|
383 |
+
|
384 |
+
wave_transform = audio_transform.get('wave', None)
|
385 |
+
spec_transform = audio_transform.get('spec', None)
|
386 |
+
|
387 |
+
# Apply transforms to raw waveforms
|
388 |
+
if wave_transform is not None:
|
389 |
+
audio_clips = wave_transform(audio_clips)
|
390 |
+
|
391 |
+
if spec_args is not None:
|
392 |
+
# Convert waveforms to spectrograms
|
393 |
+
audio_clips = audio_clips_wav_to_spec(audio_clips, **spec_args)
|
394 |
+
|
395 |
+
# Apply transforms to spectrograms
|
396 |
+
if spec_transform is not None:
|
397 |
+
audio_clips = spec_transform(audio_clips)
|
398 |
+
|
399 |
+
if stack:
|
400 |
+
audio_clips = torch.stack(audio_clips)
|
401 |
+
|
402 |
+
return audio_clips
|
403 |
+
|
404 |
+
|
405 |
+
def load_and_process_audio(
|
406 |
+
audio_path,
|
407 |
+
clips,
|
408 |
+
cut_to_clip_len=True,
|
409 |
+
load_entire=False,
|
410 |
+
audio_transform=None,
|
411 |
+
aload_args=dict(),
|
412 |
+
apipe_args=dict(),
|
413 |
+
):
|
414 |
+
"""Loads and preprocess audio."""
|
415 |
+
|
416 |
+
# [C1] Load video clips: List[torch.Tensor]
|
417 |
+
audio_clips = load_audio_clips(
|
418 |
+
audio_path=audio_path,
|
419 |
+
clips=clips,
|
420 |
+
load_entire=load_entire,
|
421 |
+
cut_to_clip_len=cut_to_clip_len,
|
422 |
+
**aload_args,
|
423 |
+
)
|
424 |
+
|
425 |
+
# [C2] Pipeline: [Preprocessing -> Transform]
|
426 |
+
audio_clips = basic_pipeline_audio_clips(
|
427 |
+
audio_clips=audio_clips,
|
428 |
+
audio_transform=audio_transform,
|
429 |
+
**apipe_args,
|
430 |
+
)
|
431 |
+
|
432 |
+
return audio_clips
|
433 |
+
|
434 |
+
|
435 |
+
def crop_height(image, height):
|
436 |
+
"""Crops image from the top and bottom to the desired height."""
|
437 |
+
width, curr_height = image.size
|
438 |
+
if curr_height < height:
|
439 |
+
raise ValueError(f"Height of the image is less than {height}")
|
440 |
+
top = (curr_height - height) // 2
|
441 |
+
bottom = top + height
|
442 |
+
return image.crop((0, top, width, bottom))
|
443 |
+
|
444 |
+
|
445 |
+
def pad_to_height(image, height):
|
446 |
+
"""Pads image with black strips at the top and bottom."""
|
447 |
+
width, curr_height = image.size
|
448 |
+
if curr_height > height:
|
449 |
+
raise ValueError(f"Height of the image is already greater than {height}")
|
450 |
+
top = (height - curr_height) // 2
|
451 |
+
bottom = height - curr_height - top
|
452 |
+
return ImageOps.expand(image, (0, top, 0, bottom), fill="black")
|
453 |
+
|
454 |
+
|
455 |
+
def crop_width(image, width):
|
456 |
+
"""Crops image from the left and right to the desired width."""
|
457 |
+
curr_width, height = image.size
|
458 |
+
if curr_width < width:
|
459 |
+
raise ValueError(f"Width of the image is less than {width}")
|
460 |
+
left = (curr_width - width) // 2
|
461 |
+
right = left + width
|
462 |
+
return image.crop((left, 0, right, height))
|
463 |
+
|
464 |
+
|
465 |
+
def crop_or_pad_height(image, height):
|
466 |
+
"""Crops or pads image to the desired height."""
|
467 |
+
width, curr_height = image.size
|
468 |
+
if curr_height < height:
|
469 |
+
return pad_to_height(image, height)
|
470 |
+
elif curr_height > height:
|
471 |
+
return crop_height(image, height)
|
472 |
+
return image
|
473 |
+
|
474 |
+
|
475 |
+
def crop_or_pad_width(image, width):
|
476 |
+
"""Crops or pads image to the desired width."""
|
477 |
+
curr_width, height = image.size
|
478 |
+
if curr_width < width:
|
479 |
+
return pad_to_width(image, width)
|
480 |
+
elif curr_width > width:
|
481 |
+
return crop_width(image, width)
|
482 |
+
return image
|
483 |
+
|
484 |
+
|
485 |
+
def pad_to_width(image, width):
|
486 |
+
"""Pads image with black strips at the left and right."""
|
487 |
+
curr_width, height = image.size
|
488 |
+
if curr_width > width:
|
489 |
+
raise ValueError(f"Width of the image is already greater than {width}")
|
490 |
+
left = (width - curr_width) // 2
|
491 |
+
right = width - curr_width - left
|
492 |
+
return ImageOps.expand(image, (left, 0, right, 0), fill="black")
|
493 |
+
|
494 |
+
|
495 |
+
def crop_or_pad_to_size(image, size=(270, 480)):
|
496 |
+
"""Crops or pads image to the desired size."""
|
497 |
+
image = crop_or_pad_height(image, size[1])
|
498 |
+
image = crop_or_pad_width(image, size[0])
|
499 |
+
return image
|
500 |
+
|
501 |
+
|
502 |
+
if __name__ == "__main__":
|
503 |
+
import decord
|
504 |
+
import sound_of_water.data.audio_transforms as at
|
505 |
+
|
506 |
+
# Testing on a sample file
|
507 |
+
file_path = "media_assets/ayNzH0uygFw_9.0_21.0.mp4"
|
508 |
+
assert os.path.exists(file_path), f"File not found: {file_path}"
|
509 |
+
|
510 |
+
|
511 |
+
# Define audio transforms
|
512 |
+
cfg_transform = {
|
513 |
+
"audio": {
|
514 |
+
"wave": [
|
515 |
+
{
|
516 |
+
"name": "AddNoise",
|
517 |
+
"args": {
|
518 |
+
"noise_level": 0.001
|
519 |
+
},
|
520 |
+
"augmentation": True,
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"name": "ChangeVolume",
|
524 |
+
"args": {
|
525 |
+
"volume_factor": [0.8, 1.2]
|
526 |
+
},
|
527 |
+
"augmentation": True,
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"name": "Wav2Vec2WaveformProcessor",
|
531 |
+
"args": {
|
532 |
+
"model_name": "facebook/wav2vec2-base-960h",
|
533 |
+
"sr": 16000
|
534 |
+
}
|
535 |
+
}
|
536 |
+
],
|
537 |
+
"spec": None,
|
538 |
+
}
|
539 |
+
}
|
540 |
+
audio_transform = at.define_audio_transforms(
|
541 |
+
cfg_transform, augment=False,
|
542 |
+
)
|
543 |
+
|
544 |
+
# Define audio load arguments
|
545 |
+
aload_args = {
|
546 |
+
"sr": 16000,
|
547 |
+
"clip_len": None,
|
548 |
+
"backend": "decord",
|
549 |
+
}
|
550 |
+
|
551 |
+
# Define audio pipeline arguments
|
552 |
+
apipe_args = {
|
553 |
+
"spec_args": None,
|
554 |
+
"stack": True,
|
555 |
+
}
|
556 |
+
|
557 |
+
# Run the pipeline (this is used to pass to the model)
|
558 |
+
audio = load_and_process_audio(
|
559 |
+
audio_path=file_path,
|
560 |
+
clips=None,
|
561 |
+
load_entire=True,
|
562 |
+
cut_to_clip_len=False,
|
563 |
+
audio_transform=audio_transform,
|
564 |
+
aload_args=aload_args,
|
565 |
+
apipe_args=apipe_args,
|
566 |
+
)[0]
|
567 |
+
|
568 |
+
|
569 |
+
# This will be used to visualise
|
570 |
+
visualise_args = {
|
571 |
+
"sr": 16000,
|
572 |
+
"n_fft": 400,
|
573 |
+
"hop_length": 320,
|
574 |
+
"n_mels": 64,
|
575 |
+
"margin": 16.,
|
576 |
+
"C": 340 * 100.,
|
577 |
+
"audio_output_fps": 49.,
|
578 |
+
}
|
579 |
+
y = load_audio_clips(
|
580 |
+
audio_path=file_path,
|
581 |
+
clips=None,
|
582 |
+
load_entire=True,
|
583 |
+
cut_to_clip_len=False,
|
584 |
+
**aload_args,
|
585 |
+
)[0]
|
586 |
+
S = librosa_harmonic_spectrogram_db(
|
587 |
+
y,
|
588 |
+
sr=visualise_args["sr"],
|
589 |
+
n_fft=visualise_args["n_fft"],
|
590 |
+
hop_length=visualise_args["hop_length"],
|
591 |
+
n_mels=visualise_args['n_mels'],
|
592 |
+
)
|
593 |
+
|
594 |
+
# Load video frame
|
595 |
+
vr = decord.VideoReader(file_path, num_threads=1)
|
596 |
+
frame = PIL.Image.fromarray(vr[0].asnumpy())
|
597 |
+
"""
|
598 |
+
# Cut to desired width
|
599 |
+
new_width, new_height = 270, 480
|
600 |
+
width, height = frame.size
|
601 |
+
if width > new_width:
|
602 |
+
# Crop the width
|
603 |
+
left = (width - new_width) // 2
|
604 |
+
right = left + new_width
|
605 |
+
frame = frame.crop((left, 0, right, height))
|
606 |
+
else:
|
607 |
+
# Resize along width to have the desired width
|
608 |
+
frame = su.visualize.resize_width(frame, new_width)
|
609 |
+
assert frame.size[0] == new_width, \
|
610 |
+
f"Width mismatch: {frame.size[0]} != {new_width}"
|
611 |
+
|
612 |
+
# Now pad/crop to desired height
|
613 |
+
if height > new_height:
|
614 |
+
# Crop the height
|
615 |
+
top = (height - new_height) // 2
|
616 |
+
bottom = top + new_height
|
617 |
+
frame = frame.crop((0, top, new_width, bottom))
|
618 |
+
else:
|
619 |
+
# Pad the height
|
620 |
+
frame = pad_to_height(frame, new_height)
|
621 |
+
assert frame.size[1] == new_height, \
|
622 |
+
f"Height mismatch: {frame.size[1]} != {new_height}"
|
623 |
+
"""
|
624 |
+
frame = crop_or_pad_to_size(frame)
|
625 |
+
# frame.save("1.png")
|
626 |
+
|
627 |
+
# Visualise
|
628 |
+
fig, axes = plt.subplots(
|
629 |
+
1, 2, figsize=(13, 4), width_ratios=[0.25, 0.75],
|
630 |
+
)
|
631 |
+
ax = axes[0]
|
632 |
+
ax.imshow(frame, aspect="auto")
|
633 |
+
ax.set_title("Example frame")
|
634 |
+
ax.set_xticks([])
|
635 |
+
ax.set_yticks([])
|
636 |
+
ax = axes[1]
|
637 |
+
show_logmelspectrogram(
|
638 |
+
S=S,
|
639 |
+
ax=ax,
|
640 |
+
show=False,
|
641 |
+
sr=visualise_args["sr"],
|
642 |
+
n_fft=visualise_args["n_fft"],
|
643 |
+
hop_length=visualise_args["hop_length"],
|
644 |
+
)
|
645 |
+
plt.savefig("./media_assets/audio_visualisation.png", bbox_inches="tight")
|
646 |
+
plt.close()
|
sound_of_water/data/audio_transforms.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Audio transforms."""
|
2 |
+
import torchaudio
|
3 |
+
import torchvision
|
4 |
+
from torchvision.transforms import Compose, ToTensor
|
5 |
+
import torchaudio.transforms as T
|
6 |
+
import imgaug.augmenters as iaa
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
class AddNoise(object):
|
12 |
+
"""Add noise to the waveform."""
|
13 |
+
def __init__(self, noise_level=0.1):
|
14 |
+
self.noise_level = noise_level
|
15 |
+
|
16 |
+
def __call__(self, waveform):
|
17 |
+
noise = torch.randn_like(waveform)
|
18 |
+
return waveform + self.noise_level * noise
|
19 |
+
|
20 |
+
def __repr__(self):
|
21 |
+
return self.__class__.__name__ + f"(noise_level={self.noise_level})"
|
22 |
+
|
23 |
+
|
24 |
+
class ChangeVolume(object):
|
25 |
+
"""Change the volume of the waveform."""
|
26 |
+
def __init__(self, volume_factor=[0.6, 1.2]):
|
27 |
+
self.volume_factor = volume_factor
|
28 |
+
|
29 |
+
def __call__(self, waveform):
|
30 |
+
return waveform * np.random.uniform(*self.volume_factor)
|
31 |
+
|
32 |
+
def __repr__(self):
|
33 |
+
return self.__class__.__name__ + f"(volume_factor={self.volume_factor})"
|
34 |
+
|
35 |
+
|
36 |
+
def configure_transforms(cfg):
|
37 |
+
"""
|
38 |
+
Given a transform config (List[dict]), return a Compose object that
|
39 |
+
applies the transforms in order.
|
40 |
+
"""
|
41 |
+
transform = []
|
42 |
+
for a in cfg:
|
43 |
+
transform.append(eval(a["name"])(**a["args"]))
|
44 |
+
return Compose(transform)
|
45 |
+
|
46 |
+
|
47 |
+
class AudioClipsTransform:
|
48 |
+
def __init__(self, audio_transform):
|
49 |
+
"""Applies image transform to each frame of each video clip."""
|
50 |
+
self.audio_transform = audio_transform
|
51 |
+
|
52 |
+
def __call__(self, audio_clips):
|
53 |
+
"""
|
54 |
+
Args:
|
55 |
+
audio_clips (list): list of audio clips, each tensor [1, M]
|
56 |
+
where M is number of samples in each clip
|
57 |
+
"""
|
58 |
+
transformed_audio_clips = [self.audio_transform(x) for x in audio_clips]
|
59 |
+
# transformed_audio_clips = []
|
60 |
+
# for clip in audio_clips:
|
61 |
+
# transformed_clip = [self.audio_transform(x) for x in clip]
|
62 |
+
# transformed_audio_clips.append(transformed_clip)
|
63 |
+
return transformed_audio_clips
|
64 |
+
|
65 |
+
def __repr__(self):
|
66 |
+
return self.audio_transform.__repr__()
|
67 |
+
|
68 |
+
|
69 |
+
class NumpyToTensor:
|
70 |
+
def __call__(self, x):
|
71 |
+
return torch.from_numpy(x).float()
|
72 |
+
def __repr__(self):
|
73 |
+
return self.__class__.__name__ + "()"
|
74 |
+
|
75 |
+
|
76 |
+
# TODO: Might have to introduce normalisation
|
77 |
+
# to have a consistent pipeline.
|
78 |
+
|
79 |
+
|
80 |
+
class Wav2Vec2WaveformProcessor:
|
81 |
+
def __init__(self, model_name="facebook/wav2vec2-base-960h", sr=16000):
|
82 |
+
from transformers import Wav2Vec2Processor
|
83 |
+
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
84 |
+
self.sr = sr
|
85 |
+
|
86 |
+
def __call__(self, x):
|
87 |
+
x = self.processor(
|
88 |
+
x, sampling_rate=self.sr, return_tensors="pt",
|
89 |
+
).input_values
|
90 |
+
return x
|
91 |
+
|
92 |
+
|
93 |
+
def define_audio_transforms(cfg_transform, augment=False):
|
94 |
+
|
95 |
+
wave_transforms = cfg_transform["audio"]["wave"]
|
96 |
+
wave_transforms_new = []
|
97 |
+
|
98 |
+
# Only pick augmentations if augment=True
|
99 |
+
for t in wave_transforms:
|
100 |
+
if "augmentation" not in t:
|
101 |
+
wave_transforms_new.append(t)
|
102 |
+
else:
|
103 |
+
if augment and t["augmentation"]:
|
104 |
+
wave_transforms_new.append(t)
|
105 |
+
# print(wave_transforms_new)
|
106 |
+
wave_transform = configure_transforms(wave_transforms_new)
|
107 |
+
wave_transform = AudioClipsTransform(wave_transform)
|
108 |
+
|
109 |
+
# wave_transform = configure_transforms(
|
110 |
+
# cfg_transform["audio"]["wave"],
|
111 |
+
# )
|
112 |
+
# wave_transform = AudioClipsTransform(wave_transform)
|
113 |
+
# spec_transform = configure_transforms(
|
114 |
+
# cfg_transform["audio"]["spec"],
|
115 |
+
# )
|
116 |
+
# spec_transform = AudioClipsTransform(spec_transform)
|
117 |
+
|
118 |
+
audio_transform = dict(
|
119 |
+
wave=wave_transform,
|
120 |
+
# spec=spec_transform,
|
121 |
+
)
|
122 |
+
return audio_transform
|
123 |
+
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
# Testing it out
|
127 |
+
|
128 |
+
# Raw waveform transform
|
129 |
+
cfg = [
|
130 |
+
{
|
131 |
+
"name": "AddNoise",
|
132 |
+
"args": {"noise_level": 0.1},
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"name": "ChangeVolume",
|
136 |
+
"args": {"volume_factor": [0.6, 1.2]},
|
137 |
+
},
|
138 |
+
]
|
139 |
+
transform = configure_transforms(cfg)
|
140 |
+
|
141 |
+
x = torch.randn([1, 16000])
|
142 |
+
z = transform(x)
|
143 |
+
print(x.shape, z.shape)
|
144 |
+
|
145 |
+
import matplotlib.pyplot as plt
|
146 |
+
fig, ax = plt.subplots(2, 1, figsize=(8, 4))
|
147 |
+
ax[0].plot(x[0].numpy())
|
148 |
+
ax[1].plot(z[0].numpy())
|
149 |
+
plt.savefig("waveform_transform.png")
|
150 |
+
|
151 |
+
# Wav2Vec2 transform
|
152 |
+
cfg = [
|
153 |
+
{
|
154 |
+
"name": "Wav2Vec2WaveformProcessor",
|
155 |
+
"args": {"model_name": "facebook/wav2vec2-base-960h", "sr": 16000},
|
156 |
+
},
|
157 |
+
]
|
158 |
+
transform = configure_transforms(cfg)
|
159 |
+
x = torch.randn([4, 16000])
|
160 |
+
z = transform(x)
|
161 |
+
print(x.shape, z.shape)
|
162 |
+
|
163 |
+
|
164 |
+
# Spectrogram transform
|
165 |
+
cfg = [
|
166 |
+
{
|
167 |
+
"name": "T.FrequencyMasking",
|
168 |
+
"args": {"freq_mask_param": 8},
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"name": "T.TimeMasking",
|
172 |
+
"args": {"time_mask_param": 16},
|
173 |
+
},
|
174 |
+
]
|
175 |
+
transform = configure_transforms(cfg)
|
176 |
+
x = torch.randn([1, 64, 251])
|
177 |
+
z = transform(x)
|
178 |
+
print(x.shape, z.shape)
|
179 |
+
|
180 |
+
fig, ax = plt.subplots(2, 1, figsize=(8, 4))
|
181 |
+
ax[0].imshow(x[0].numpy())
|
182 |
+
ax[1].imshow(z[0].numpy())
|
183 |
+
plt.savefig("spectrogram_transform.png")
|
sound_of_water/data/csv_loader.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utils to load CSV file of audio datasets."""
|
2 |
+
import os
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import shared.utils as su
|
6 |
+
|
7 |
+
|
8 |
+
def configure_paths_sound_of_water(
|
9 |
+
data_root="/work/piyush/from_nfs2/datasets/SoundOfWater",
|
10 |
+
):
|
11 |
+
paths = {
|
12 |
+
"data_dir": data_root,
|
13 |
+
"video_clip_dir": os.path.join(data_root, "videos"),
|
14 |
+
"audio_clip_dir": os.path.join(data_root, "videos"),
|
15 |
+
"annot_dir": os.path.join(data_root, "annotations"),
|
16 |
+
"split_dir": os.path.join(data_root, "splits"),
|
17 |
+
}
|
18 |
+
return paths
|
19 |
+
|
20 |
+
|
21 |
+
def load_csv_sound_of_water(
|
22 |
+
paths: dict,
|
23 |
+
csv_filters=dict(),
|
24 |
+
csv_name="localisation.csv",
|
25 |
+
ds_name="SoundOfWater",
|
26 |
+
split=None,
|
27 |
+
check_first_frame_annots=True,
|
28 |
+
):
|
29 |
+
"""Loads CSV containing metadata of the dataset."""
|
30 |
+
|
31 |
+
su.log.print_update(
|
32 |
+
f" [:::] Loading {ds_name}.",
|
33 |
+
pos="left",
|
34 |
+
fillchar=".",
|
35 |
+
)
|
36 |
+
|
37 |
+
# Configure paths
|
38 |
+
video_clip_dir = paths["video_clip_dir"]
|
39 |
+
audio_clip_dir = paths["audio_clip_dir"]
|
40 |
+
|
41 |
+
# Load main CSV
|
42 |
+
path = os.path.join(
|
43 |
+
paths["annot_dir"], csv_name,
|
44 |
+
)
|
45 |
+
assert os.path.exists(path), \
|
46 |
+
f"CSV file not found at {path}."
|
47 |
+
print(" [:::] CSV path:", path)
|
48 |
+
df = pd.read_csv(path)
|
49 |
+
|
50 |
+
# Load side information: containers
|
51 |
+
container_path = os.path.join(
|
52 |
+
paths['annot_dir'], "containers.yaml",
|
53 |
+
)
|
54 |
+
assert os.path.exists(container_path)
|
55 |
+
containers = su.io.load_yml(container_path)
|
56 |
+
|
57 |
+
# Update CSV with container information (optional)
|
58 |
+
update_with_container_info = True
|
59 |
+
if update_with_container_info:
|
60 |
+
rows = []
|
61 |
+
for row in df.iterrows():
|
62 |
+
row = row[1].to_dict()
|
63 |
+
row.update(containers[row["container_id"]])
|
64 |
+
rows.append(row)
|
65 |
+
df = pd.DataFrame(rows)
|
66 |
+
print(" [:::] Shape of CSV: ", df.shape)
|
67 |
+
|
68 |
+
# 1. Update item_id
|
69 |
+
df["item_id"] = df.apply(
|
70 |
+
lambda d: f"{d['video_id']}_{d['start_time']:.1f}_{d['end_time']:.1f}",
|
71 |
+
axis=1,
|
72 |
+
)
|
73 |
+
|
74 |
+
# 2. Update video_clip_path
|
75 |
+
# df["video_path"] = df["video_id"].apply(
|
76 |
+
# lambda d: os.path.join(
|
77 |
+
# video_dir, f"{d}.mp4"
|
78 |
+
# )
|
79 |
+
# )
|
80 |
+
df["video_clip_path"] = df["item_id"].apply(
|
81 |
+
lambda d: os.path.join(
|
82 |
+
video_clip_dir, f"{d}.mp4"
|
83 |
+
)
|
84 |
+
)
|
85 |
+
df = df[df["video_clip_path"].apply(os.path.exists)]
|
86 |
+
print(" [:::] Shape of CSV with available video: ", df.shape)
|
87 |
+
|
88 |
+
# 3. Update audio_clip_path
|
89 |
+
# df["audio_path"] = df["video_id"].apply(
|
90 |
+
# lambda d: os.path.join(
|
91 |
+
# audio_dir, f"{d}.mp4"
|
92 |
+
# )
|
93 |
+
# )
|
94 |
+
df["audio_clip_path"] = df["item_id"].apply(
|
95 |
+
lambda d: os.path.join(
|
96 |
+
audio_clip_dir, f"{d}.mp4"
|
97 |
+
)
|
98 |
+
)
|
99 |
+
df = df[df["audio_clip_path"].apply(os.path.exists)]
|
100 |
+
print(" [:::] Shape of CSV with available audio: ", df.shape)
|
101 |
+
|
102 |
+
# Add first frame annotation paths
|
103 |
+
if check_first_frame_annots:
|
104 |
+
frame_annot_dir = os.path.join(paths["annot_dir"], "container_bboxes")
|
105 |
+
df["box_path"] = df["video_id"].apply(
|
106 |
+
lambda d: os.path.join(frame_annot_dir, f"{d}_box.npy"),
|
107 |
+
)
|
108 |
+
df["mask_path"] = df["video_id"].apply(
|
109 |
+
lambda d: os.path.join(frame_annot_dir, f"{d}_mask.npy"),
|
110 |
+
)
|
111 |
+
df = df[df["box_path"].apply(os.path.exists)]
|
112 |
+
df = df[df["mask_path"].apply(os.path.exists)]
|
113 |
+
print(" [:::] Shape of CSV with first frame annotations: ", df.shape)
|
114 |
+
|
115 |
+
# Add split filter
|
116 |
+
if split is not None and ("item_id" not in csv_filters):
|
117 |
+
assert "split_dir" in paths
|
118 |
+
split_path = os.path.join(paths["split_dir"], f"{split}")
|
119 |
+
assert os.path.exists(split_path), \
|
120 |
+
f"Split file not found at {split_path}."
|
121 |
+
item_ids = su.io.load_txt(split_path)
|
122 |
+
print(" [:::] Number of item_ids in split:", len(item_ids))
|
123 |
+
csv_filters["item_id"] = item_ids
|
124 |
+
|
125 |
+
# Apply filter to the CSV
|
126 |
+
if len(csv_filters) > 0:
|
127 |
+
df = su.pd_utils.apply_filters(df, csv_filters)
|
128 |
+
print(" [:::] Shape of CSV after filtering: ", df.shape)
|
129 |
+
|
130 |
+
return df
|
131 |
+
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
paths = configure_paths_sound_of_water()
|
135 |
+
df = load_csv_sound_of_water(paths)
|
136 |
+
row = df.iloc[0].to_dict()
|
137 |
+
su.log.json_print(row)
|
sound_of_water/data/video_loader.py
ADDED
File without changes
|
sound_of_water/data/video_transforms.py
ADDED
File without changes
|
sound_of_water/video_height/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
In this folder, we will store the code to train and evaluate models for liquid height detection from video.
|