Spaces:
Runtime error
Runtime error
File size: 12,478 Bytes
913d3e3 fee1f8d 913d3e3 e53cddc 35c104c 913d3e3 fee1f8d 913d3e3 fee1f8d 9530fad e169248 fee1f8d 913d3e3 fee1f8d 913d3e3 e53cddc 913d3e3 cbe8e78 913d3e3 05e4671 913d3e3 e169248 913d3e3 cbe8e78 913d3e3 fee1f8d 6ee182d 913d3e3 cbe8e78 913d3e3 cbe8e78 913d3e3 6ee182d 913d3e3 fee1f8d 913d3e3 6ee182d 913d3e3 05e4671 913d3e3 05e4671 913d3e3 05e4671 913d3e3 05e4671 913d3e3 05e4671 913d3e3 05e4671 913d3e3 05e4671 913d3e3 05e4671 913d3e3 9530fad 913d3e3 e53cddc 913d3e3 fee1f8d 913d3e3 fee1f8d 913d3e3 05e4671 cbe8e78 913d3e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import gradio as gr
import os
import argparse
from easydict import EasyDict as edict
import yaml
import os.path as osp
import random
import numpy.random as npr
import sys
# sys.path.append('./code')
sys.path.append('/home/user/app/code')
# set up diffvg
# os.system('git clone https://github.com/BachiLi/diffvg.git')
os.system('git submodule update --init')
os.chdir('diffvg')
os.system('git submodule update --init --recursive')
os.system('python setup.py install --user')
sys.path.append("/home/user/.local/lib/python3.8/site-packages/diffvg-0.0.1-py3.8-linux-x86_64.egg")
os.chdir('/home/user/app')
import torch
from diffusers import StableDiffusionPipeline
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model = None
model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device)
from typing import Mapping
from tqdm import tqdm
import torch
from torch.optim.lr_scheduler import LambdaLR
import pydiffvg
import save_svg
from losses import SDSLoss, ToneLoss, ConformalLoss
from utils import (
edict_2_dict,
update,
check_and_create_dir,
get_data_augs,
save_image,
preprocess,
learning_rate_decay,
combine_word)
import warnings
TITLE="""<h1 style="font-size: 42px;" align="center">Word-To-Image: Morphing Arabic Text to a Visual Representation</h1>"""
DESCRIPTION="""This demo builds on the [Word-As-Image for Semantic Typography](https://wordasimage.github.io/Word-As-Image-Page/) work to support Arabic fonts and morphing whole words into semantic concepts. It is part of an ongoing project with the [ARBML](https://arbml.github.io/website/) community."""
# DESCRIPTION += '\n<p>This demo is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"> Creative Commons Attribution-ShareAlike 4.0 International License</a>.</p>'
# DESCRIPTION += """<br>For faster inference without waiting in queue, you can [![]()]()"""
DESCRIPTION += '\n<p>For faster inference without waiting in queue, you can <a href="https://colab.research.google.com/drive/1wobOAsnLpkIzaRxG5yac8NcV7iCrlycP"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></p>'
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
DESCRIPTION = DESCRIPTION.replace("</p>", " ")
DESCRIPTION += f'or duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
else:
DESCRIPTION = DESCRIPTION.replace("either", "")
DESCRIPTION += "<img src='https://raw.githubusercontent.com/BKHMSI/Word-As-Image-Ar/main/collage.gif' alt='Example of Outputs'/>"
warnings.filterwarnings("ignore")
pydiffvg.set_print_timing(False)
gamma = 1.0
def set_config(semantic_concept, word, prompt, font_name, num_steps):
cfg_d = edict()
cfg_d.config = "code/config/base.yaml"
cfg_d.experiment = "demo"
with open(cfg_d.config, 'r') as f:
cfg_full = yaml.load(f, Loader=yaml.FullLoader)
cfg_key = cfg_d.experiment
cfgs = [cfg_d]
while cfg_key:
cfgs.append(cfg_full[cfg_key])
cfg_key = cfgs[-1].get('parent_config', 'baseline')
cfg = edict()
for options in reversed(cfgs):
update(cfg, options)
del cfgs
cfg.semantic_concept = semantic_concept
cfg.word = word
cfg.optimized_letter = word
cfg.font = font_name
cfg.seed = 0
cfg.num_iter = num_steps
cfg.batch_size = 1
if ' ' in cfg.word:
raise gr.Error(f'should be only one word')
cfg.caption = prompt
cfg.log_dir = f"output/{cfg.experiment}_{cfg.word}"
if cfg.optimized_letter in cfg.word:
cfg.optimized_letter = cfg.optimized_letter
else:
raise gr.Error(f'letter should be in word')
cfg.letter = f"{cfg.font}_{cfg.optimized_letter}_scaled"
cfg.target = f"code/data/init/{cfg.letter}"
# set experiment dir
signature = f"{cfg.letter}_concept_{cfg.semantic_concept}_seed_{cfg.seed}"
cfg.experiment_dir = \
osp.join(cfg.log_dir, cfg.font, signature)
configfile = osp.join(cfg.experiment_dir, 'config.yaml')
# create experiment dir and save config
check_and_create_dir(configfile)
with open(osp.join(configfile), 'w') as f:
yaml.dump(edict_2_dict(cfg), f)
if cfg.seed is not None:
random.seed(cfg.seed)
npr.seed(cfg.seed)
torch.manual_seed(cfg.seed)
torch.backends.cudnn.benchmark = False
else:
assert False
return cfg
def init_shapes(svg_path, trainable: Mapping[str, bool]):
svg = f'{svg_path}.svg'
canvas_width, canvas_height, shapes_init, shape_groups_init = pydiffvg.svg_to_scene(svg)
parameters = edict()
# path points
if trainable.point:
parameters.point = []
for path in shapes_init:
path.points.requires_grad = True
parameters.point.append(path.points)
return shapes_init, shape_groups_init, parameters
def run_main_ex(word, semantic_concept, num_steps):
prompt = f"a {semantic_concept}. minimal flat 2d vector. lineal color. trending on artstation"
font_name = "ArefRuqaa"
return list(next(run_main_app(semantic_concept, word, prompt, font_name, num_steps, 0)))
def run_main_app(semantic_concept, word, prompt, font_name, num_steps, example=0):
cfg = set_config(semantic_concept, word, prompt, font_name, num_steps)
pydiffvg.set_use_gpu(torch.cuda.is_available())
print("preprocessing")
preprocess(cfg.font, cfg.word, cfg.optimized_letter, cfg.level_of_cc)
filename_init = os.path.join("code/data/init/", f"{cfg.font}_{cfg.word}_scaled.svg").replace(" ", "_")
if not example:
yield gr.update(value=filename_init,visible=True),gr.update(visible=True, label=f'iters: 0 / {cfg.num_iter}'),gr.update(visible=False)
sds_loss = SDSLoss(cfg, device, model)
h, w = cfg.render_size, cfg.render_size
data_augs = get_data_augs(cfg.cut_size)
render = pydiffvg.RenderFunction.apply
# initialize shape
print('initializing shape')
shapes, shape_groups, parameters = init_shapes(svg_path=cfg.target, trainable=cfg.trainable)
scene_args = pydiffvg.RenderFunction.serialize_scene(w, h, shapes, shape_groups)
img_init = render(w, h, 2, 2, 0, None, *scene_args)
img_init = img_init[:, :, 3:4] * img_init[:, :, :3] + \
torch.ones(img_init.shape[0], img_init.shape[1], 3, device=device) * (1 - img_init[:, :, 3:4])
img_init = img_init[:, :, :3]
tone_loss = ToneLoss(cfg)
tone_loss.set_image_init(img_init)
num_iter = cfg.num_iter
pg = [{'params': parameters["point"], 'lr': cfg.lr_base["point"]}]
optim = torch.optim.Adam(pg, betas=(0.9, 0.9), eps=1e-6)
conformal_loss = ConformalLoss(parameters, device, cfg.optimized_letter, shape_groups)
lr_lambda = lambda step: learning_rate_decay(step, cfg.lr.lr_init, cfg.lr.lr_final, num_iter,
lr_delay_steps=cfg.lr.lr_delay_steps,
lr_delay_mult=cfg.lr.lr_delay_mult) / cfg.lr.lr_init
scheduler = LambdaLR(optim, lr_lambda=lr_lambda, last_epoch=-1) # lr.base * lrlambda_f
print("start training")
# training loop
t_range = tqdm(range(num_iter))
for step in t_range:
optim.zero_grad()
# render image
scene_args = pydiffvg.RenderFunction.serialize_scene(w, h, shapes, shape_groups)
img = render(w, h, 2, 2, step, None, *scene_args)
# compose image with white background
img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=device) * (
1 - img[:, :, 3:4])
img = img[:, :, :3]
filename = os.path.join(
cfg.experiment_dir, "video-svg", f"iter{step:04d}.svg")
check_and_create_dir(filename)
save_svg.save_svg(filename, w, h, shapes, shape_groups)
if not example:
yield gr.update(visible=True),gr.update(value=filename, label=f'iters: {step} / {num_iter}', visible=True),gr.update(visible=False)
x = img.unsqueeze(0).permute(0, 3, 1, 2) # HWC -> NCHW
x = x.repeat(cfg.batch_size, 1, 1, 1)
x_aug = data_augs.forward(x)
# compute diffusion loss per pixel
loss = sds_loss(x_aug)
tone_loss_res = tone_loss(x, step)
loss = loss + tone_loss_res
loss_angles = conformal_loss()
loss_angles = cfg.loss.conformal.angeles_w * loss_angles
loss = loss + loss_angles
loss.backward()
optim.step()
scheduler.step()
filename = os.path.join(
cfg.experiment_dir, "output-svg", "output.svg")
check_and_create_dir(filename)
save_svg.save_svg(
filename, w, h, shapes, shape_groups)
combine_word(cfg.word, cfg.optimized_letter, cfg.font, cfg.experiment_dir, device)
image = os.path.join(cfg.experiment_dir,f"{cfg.font}_{cfg.word}_{cfg.optimized_letter}.svg")
yield gr.update(value=filename_init,visible=True),gr.update(visible=True),gr.update(value=image,visible=True)
def change_prompt(concept, prompt_suffix):
if concept == "":
concept = "{concept}"
return f"a {concept}. {prompt_suffix}"
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
word = gr.Text(
label='Text',
max_lines=1,
placeholder=
'Enter text. For example: حصان'
)
semantic_concept = gr.Text(
label='Concept',
max_lines=1,
placeholder=
'Enter a semantic concept that you want your text to morph into (in English). For example: horse'
)
prompt_suffix = gr.Text(
label='Prompt Suffix',
max_lines=1,
value="minimal flat 2d vector. lineal color. trending on artstation"
)
prompt = gr.Text(
label='Prompt',
max_lines=1,
value="a {concept}. minimal flat 2d vector. lineal color. trending on artstation."
)
semantic_concept.change(change_prompt, [semantic_concept, prompt_suffix], prompt)
prompt_suffix.change(change_prompt, [semantic_concept, prompt_suffix], prompt)
num_steps = gr.Slider(label='Optimization Iterations',
minimum=0,
maximum=500,
step=10,
value=500)
font_name = gr.Text(value=None,visible=False,label="Font Name")
def on_select(evt: gr.SelectData):
return evt.value
font_name.value = "ArefRuqaa"
run = gr.Button('Generate')
with gr.Column():
result0 = gr.Image(type="filepath", label="Initial Word").style(height=170)
result1 = gr.Image(type="filepath", label="Optimization Process").style(height=300)
result2 = gr.Image(type="filepath", label="Final Result",visible=False).style(height=100)
with gr.Row():
# examples
examples = [
["قطة", "Cat", 500],
["كلب", "Dog", 500],
["حصان", "Horse", 500],
["أخطبوط", "Octopus", 500],
]
demo.queue(max_size=10, concurrency_count=2)
gr.Examples(examples=examples,
inputs=[
word,
semantic_concept,
num_steps
],
outputs=[
result0,
result1,
result2
],
fn=run_main_ex,
cache_examples=False)
# inputs
inputs = [
semantic_concept,
word,
prompt,
font_name,
num_steps
]
outputs = [
result0,
result1,
result2
]
run.click(fn=run_main_app, inputs=inputs, outputs=outputs, queue=True)
demo.launch(share=False) |