Spaces:
Runtime error
Runtime error
Badr AlKhamissi
commited on
Commit
·
35c104c
1
Parent(s):
e8f6bdd
fp32 instead of fp16
Browse files- app.py +1 -1
- code/losses.py +11 -20
app.py
CHANGED
@@ -30,7 +30,7 @@ from diffusers import StableDiffusionPipeline
|
|
30 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
31 |
|
32 |
model = None
|
33 |
-
model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5"
|
34 |
|
35 |
from typing import Mapping
|
36 |
from tqdm import tqdm
|
|
|
30 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
31 |
|
32 |
model = None
|
33 |
+
model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device)
|
34 |
|
35 |
from typing import Mapping
|
36 |
from tqdm import tqdm
|
code/losses.py
CHANGED
@@ -21,8 +21,8 @@ class SDSLoss(nn.Module):
|
|
21 |
self.pipe = model
|
22 |
self.pipe = self.pipe.to(self.device)
|
23 |
|
24 |
-
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(self.device)
|
25 |
-
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
26 |
|
27 |
# default scheduler: PNDMScheduler(beta_start=0.00085, beta_end=0.012,
|
28 |
# beta_schedule="scaled_linear", num_train_timesteps=1000)
|
@@ -35,24 +35,15 @@ class SDSLoss(nn.Module):
|
|
35 |
def embed_text(self):
|
36 |
# tokenizer and embed text
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
uncond_embeddings = self.pipe.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
48 |
-
else:
|
49 |
-
print(f"> Reading Image {self.cfg.caption}")
|
50 |
-
with torch.no_grad():
|
51 |
-
image = Image.open(self.cfg.caption)
|
52 |
-
inputs = self.clip_processor(images=image, return_tensors="pt").to(self.device)
|
53 |
-
img_emb = self.clip_model.get_image_features(**inputs)
|
54 |
-
text_embeddings = img_emb
|
55 |
-
uncond_embeddings = img_emb
|
56 |
|
57 |
self.text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
58 |
self.text_embeddings = self.text_embeddings.repeat_interleave(self.cfg.batch_size, 0)
|
|
|
21 |
self.pipe = model
|
22 |
self.pipe = self.pipe.to(self.device)
|
23 |
|
24 |
+
# self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(self.device)
|
25 |
+
# self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
26 |
|
27 |
# default scheduler: PNDMScheduler(beta_start=0.00085, beta_end=0.012,
|
28 |
# beta_schedule="scaled_linear", num_train_timesteps=1000)
|
|
|
35 |
def embed_text(self):
|
36 |
# tokenizer and embed text
|
37 |
|
38 |
+
text_input = self.pipe.tokenizer(self.cfg.caption, padding="max_length",
|
39 |
+
max_length=self.pipe.tokenizer.model_max_length,
|
40 |
+
truncation=True, return_tensors="pt")
|
41 |
+
uncond_input = self.pipe.tokenizer([""], padding="max_length",
|
42 |
+
max_length=text_input.input_ids.shape[-1],
|
43 |
+
return_tensors="pt")
|
44 |
+
with torch.no_grad():
|
45 |
+
text_embeddings = self.pipe.text_encoder(text_input.input_ids.to(self.device))[0]
|
46 |
+
uncond_embeddings = self.pipe.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
self.text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
49 |
self.text_embeddings = self.text_embeddings.repeat_interleave(self.cfg.batch_size, 0)
|