Spaces:
biodivx
/
Sleeping

File size: 11,731 Bytes
dddb9f9
 
 
d967830
dddb9f9
 
8c4ff63
817fa65
dddb9f9
8c4ff63
 
 
7fb1c65
dddb9f9
817fa65
dddb9f9
d967830
 
817fa65
 
 
dddb9f9
 
 
 
d967830
dddb9f9
d967830
dddb9f9
 
 
 
 
e593cad
d967830
e593cad
faad4ba
dddb9f9
 
d967830
 
dddb9f9
 
 
 
 
 
 
 
 
 
d967830
dddb9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d967830
6ded705
dddb9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faad4ba
dddb9f9
 
 
 
 
 
 
 
 
faad4ba
dddb9f9
 
 
 
 
 
 
 
 
6ded705
dddb9f9
faad4ba
dddb9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a5975
dddb9f9
 
 
 
 
 
 
 
 
 
d967830
dddb9f9
 
 
 
 
 
 
 
 
 
 
817fa65
 
 
 
 
8c4ff63
 
36dbf7a
35f2fe5
 
 
 
37989dd
36dbf7a
37989dd
36dbf7a
37989dd
36dbf7a
 
35f2fe5
 
 
 
36dbf7a
dddb9f9
 
35379ab
dddb9f9
 
 
e593cad
 
 
 
dddb9f9
 
 
 
35379ab
 
dddb9f9
 
 
35379ab
dddb9f9
 
 
 
 
 
 
e593cad
dddb9f9
35379ab
dddb9f9
 
35379ab
 
 
dddb9f9
 
817fa65
 
 
 
 
 
 
 
503f310
 
 
817fa65
 
503f310
 
 
 
 
 
817fa65
 
 
 
 
 
 
 
 
 
 
 
 
36dbf7a
8c4ff63
36dbf7a
 
d967830
dddb9f9
 
37989dd
dddb9f9
35379ab
 
 
dddb9f9
d967830
 
 
abede12
d967830
 
 
817fa65
 
 
 
 
 
 
 
 
 
 
 
 
d967830
817fa65
 
e593cad
 
 
 
 
 
 
 
d967830
36dbf7a
 
314bbef
36dbf7a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import warnings
warnings.filterwarnings("ignore")

import os
import numpy as np
import pandas as pd
from typing import Iterable
from styling import js, seafoam, css, DESCRIPTION

import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import requests
import torch
import shutil
import librosa
import torch.nn.functional as F

# Image gallery 
from fetch_img import download_images, scientific_to_species_code

# Import the necessary functions from the voj package
from audio_class_predictor import predict_class
from bird_ast_model import birdast_preprocess, birdast_inference
from bird_ast_seq_model import birdast_seq_preprocess, birdast_seq_inference

from utils import plot_wave, plot_mel, download_model, bandpass_filter

# Define the default parameters
ASSET_DIR = "./assets"
DEFUALT_SR = 16_000
DEFUALT_HIGH_CUT = 8_000
DEFUALT_LOW_CUT = 1_000
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

print(f"Use Device: {DEVICE}")

if not os.path.exists(ASSET_DIR):
    os.makedirs(ASSET_DIR)


# define the assets for the models
birdast_assets = {
    "model_weights": [
        f"https://huggingface.co/shiyi-li/BirdAST/resolve/main/BirdAST_Baseline_GroupKFold_fold_{i}.pth"
        for i in range(5)
    ],
    "label_mapping": "https://huggingface.co/shiyi-li/BirdAST/resolve/main/BirdAST_Baseline_GroupKFold_label_map.csv",
    "preprocess_fn": birdast_preprocess,
    "inference_fn": birdast_inference,
}

birdast_seq_assets = {
    "model_weights": [
        f"https://huggingface.co/shiyi-li/BirdAST_Seq/resolve/main/BirdAST_SeqPool_GroupKFold_fold_{i}.pth"
        for i in range(5)
    ],
    "label_mapping": "https://huggingface.co/shiyi-li/BirdAST_Seq/resolve/main/BirdAST_SeqPool_GroupKFold_label_map.csv",
    "preprocess_fn": birdast_seq_preprocess,
    "inference_fn": birdast_seq_inference,
}

# maintain a dictionary of assets
ASSET_DICT = {
    "BirdAST": birdast_assets,
    "BirdAST_Seq": birdast_seq_assets,
}


def run_inference_with_model(audio_clip, sr, model_name):
    
    # download the model assets
    assets = ASSET_DICT[model_name]
    model_weights_url = assets["model_weights"]
    label_map_url = assets["label_mapping"]
    preprocess_fn = assets["preprocess_fn"]
    inference_fn = assets["inference_fn"]
    
    # download the model weights
    model_weights = []
    for model_weight in model_weights_url:
        weight_file = os.path.join(ASSET_DIR, model_weight.split("/")[-1])
        if not os.path.exists(weight_file):
            download_model(model_weight, weight_file)
        model_weights.append(weight_file)
    
    # download the label mapping
    label_map_csv = os.path.join(ASSET_DIR, label_map_url.split("/")[-1])
    if not os.path.exists(label_map_csv):
        download_model(label_map_url, label_map_csv)
    
    # load the label mapping
    label_mapping = pd.read_csv(label_map_csv)
    species_id_to_name = {row["species_id"]: row["scientific_name"] for _, row in label_mapping.iterrows()}
    
    # preprocess the audio clip
    spectrogram = preprocess_fn(audio_clip, sr=sr)
    
    # run inference
    predictions = inference_fn(model_weights, spectrogram, device=DEVICE)

    # aggregate the results
    final_predicts = predictions.mean(axis=0)
    topk_values, topk_indices = torch.topk(torch.from_numpy(final_predicts), 10)
    
    results = []
    for idx, scores in zip(topk_indices, topk_values):
        species_name = species_id_to_name[idx.item()]
        probability = scores.item() * 100
        results.append([species_name, probability])

    return results

def predict(audio, start, end, model_name="BirdAST_Seq"):
    
    raw_sr, audio_array = audio
    
    if audio_array.ndim > 1:
        audio_array = audio_array.mean(axis=1) # convert to mono
    
    print(f"Audio shape raw: {audio_array.shape}, sr: {raw_sr}")
    
    # sainty checks
    len_audio = audio_array.shape[0] / raw_sr
    if start >= end:
        raise gr.Error(f"`start` ({start}) must be smaller than end ({end}s)")
    
    if audio_array.shape[0] < start * raw_sr:
        raise gr.Error(f"`start` ({start}) must be smaller than audio duration ({len_audio:.0f}s)")
    
    if audio_array.shape[0] < end * raw_sr:
        end = audio_array.shape[0] / (1.0*raw_sr)
    
    audio_array = np.array(audio_array, dtype=np.float32) / 32768.0
    audio_array = audio_array[int(start*raw_sr) : int(end*raw_sr)]
    
    if raw_sr != DEFUALT_SR:
        # run bandpass filter & resample
        audio_array = bandpass_filter(audio_array, DEFUALT_LOW_CUT, DEFUALT_HIGH_CUT, raw_sr)
        audio_array = librosa.resample(audio_array, orig_sr=raw_sr, target_sr=DEFUALT_SR)
        print(f"Resampled Audio shape: {audio_array.shape}")
        
        audio_array = audio_array.astype(np.float32)

    # predict audio class 
    audio_class = predict_class(audio_array)
    
    fig_spectrogram = plot_mel(DEFUALT_SR, audio_array)
    fig_waveform = plot_wave(DEFUALT_SR, audio_array)
    
    # run inference with model
    print(f"Running inference with model: {model_name}")
    species_class = run_inference_with_model(audio_array, DEFUALT_SR, model_name)
    print("Species is ", species_class[0][0].strip().replace("_", " "))
    images = prepare_images(species_class[0][0].strip().replace("_", " "))
    if len(images) == 0:
        images.append(("noimg.png", "No image"))
    return audio_class, species_class, fig_waveform, fig_spectrogram, images


REFERENCES = """
# Appendix

We have applied the AudioMAE model to pre-classify the 23000+ unlabelled audio clips collected from the Greater Manaus region in the Amazon rainforest. The results of the audio type classification can be found in the following [link](https://drive.google.com/file/d/1uOT88LDnBD-Z3YcFz1e9XjvW2ugCo6EI/view?usp=drive_link). We hope that the pre-classification results can help researchers better exploring the vast collection of audio recordings and facilitate the study of biodiversity in the Amazon rainforest.

# References

[1] Torkington, S. (2023, February 7). 50% of the global economy is under threat from biodiversity loss. World Economic Forum. Retrieved from https://www.weforum.org/agenda/2023/02/biodiversity-nature-loss-cop15/. 

[2] Huang, P.-Y., Xu, H., Li, J., Baevski, A., Auli, M., Galuba, W., Metze, F., & Feichtenhofer, C. (2022). Masked Autoencoders that Listen. In NeurIPS.

[3] https://www.kaggle.com/code/dima806/bird-species-by-sound-detection

# Acknowledgements

We would like to thank all organizers, mentors and participants of the AI+Environment EcoHackathon 2024 event for their unwavering support and collaboration. We extend our gratitude to ETH BiodivX, GainForest and ETH AI Center for providing data, facilities and resources that enabled us to analyse the rich data in different ways. Our special thanks to David Dao, Sarah Tariq, Alessandro Amodio for always being there to help us! πŸ™πŸ™πŸ™
"""

# Function to handle model selection
def handle_model_selection(model_name, download_status):
    # Inform user that download is starting
    # gr.Info(f"Downloading model weights for {model_name}...")
    print(f"Downloading model weights for {model_name}...")
    
    if model_name is None:
        model_name = "BirdAST"
        
    assets = ASSET_DICT[model_name]
    model_weights_url = assets["model_weights"]
    download_flag = True
    try:
        total_files = len(model_weights_url)
        for idx, model_weight in enumerate(model_weights_url):
            weight_file = os.path.join(ASSET_DIR, model_weight.split("/")[-1])
            print(weight_file)
            if not os.path.exists(weight_file):
                download_status = f"Downloading {idx + 1} of {total_files}"
                download_model(model_weight, weight_file)
            
            if not os.path.exists(weight_file):
                download_flag = False
                break
            
        if download_flag:
            download_status =  f"Model <{model_name}> is ready! πŸŽ‰πŸŽ‰πŸŽ‰\nUsing Device: {DEVICE.upper()}"
        else:
            download_status = f"An error occurred while downloading model weights."
            
    except Exception as e:
        download_status = f"An error occurred while downloading model weights."
        
    return download_status


# Image generation
def prepare_images(scientific_name: str):
    # Get species code
    scode = scientific_to_species_code(scientific_name)
    if not scode:
        return []
    
    # Save images to assets
    urls = download_images(f"https://ebird.org/species/{scode}")
    
    # Return array of remote image urls labelled
    nsplit = scientific_name.split(" ")
    abbreviate_name = nsplit[0][0] + "." + " " + nsplit[1] 
    
    # If empty, do not iterate
    if not urls:
        return []
    
    return [(url, abbreviate_name) for url in urls]

sp_and_cl = """<div align="center">
<b> <h2> Class and Species Prediction </h2> </b>
</div>"""

sig_prop = """<div align="center">
<b> <h2> Signal Visualization </h2> </b>
</div>"""

imgs = """<div align="center">
<b> <h2> Bird Gallery </h2> </b>
</div>"""

with gr.Blocks(theme = seafoam, css = css, js = js) as demo:
    
    gr.Markdown('<div class="logo-container"><img src="https://i.ibb.co/vcG9kr0/vojlogo.jpg" width="50px" alt="vojlogo"></div>')
    gr.Markdown('<div id="gradio-animation"></div>')
    gr.Markdown(DESCRIPTION)
    
    # add dropdown for model selection
    model_names = ['BirdAST', 'BirdAST_Seq'] #, 'EfficientNet']
    model_dropdown = gr.Dropdown(label="Choose a model", choices=model_names)
    download_status = gr.Textbox(label="Model Status", lines=3, value='', interactive=False) # Non-interactive textbox for status
    model_dropdown.change(handle_model_selection, inputs=[model_dropdown, download_status], outputs=download_status)

    
    with gr.Row():
        with gr.Column(elem_classes="column-container"):
            start_time_input = gr.Number(label="Start Time", value=0, elem_classes="number-input full-height")
            end_time_input = gr.Number(label="End Time", value=10, elem_classes="number-input full-height")
        with gr.Column():
            audio_input = gr.Audio(label="Input Audio", elem_classes="full-height")
  
    gr.Markdown(sp_and_cl)
    with gr.Column():
        with gr.Row():
            raw_class_output = gr.Dataframe(headers=["Class", "Score [%]"], row_count=10, label="Class Prediction")
            species_output = gr.Dataframe(headers=["Class", "Score [%]"], row_count=10, label="Species Prediction")
            
    gr.Markdown(sig_prop)
    with gr.Column():
        with gr.Row():
            waveform_output = gr.Plot(label="Waveform")
            spectrogram_output = gr.Plot(label="Spectrogram")
        gr.Markdown(imgs)
        gallery = gallery = gr.Gallery(label="Species Images", show_label=False, elem_id="gallery",columns=[3], rows=[1], object_fit="contain", height="auto")
    
    gr.Button("Predict").click(predict, [audio_input, start_time_input, end_time_input, model_dropdown], [raw_class_output, species_output, waveform_output, spectrogram_output, gallery])

    gr.Examples(
        examples=[
            ["XC226833-Chestnut-belted_20Chat-Tyrant_20A_2010989.mp3", 0, 10],
            ["XC812290-Many-striped-Canastero_Teaben_Pe_1jul2022_FSchmitt_1.mp3", 0, 10],
            ["XC763511-Synallaxis-maronica_Bagua-grande_MixPre-1746.mp3", 0, 10]
        ],
        inputs=[audio_input, start_time_input, end_time_input]
    )

    gr.Markdown(REFERENCES)

demo.launch(share = True)

## logo: <img src="https://i.ibb.co/vcG9kr0/vojlogo.jpg" alt="vojlogo" border="0">
## cactus: <img src="https://i.ibb.co/3sW2mJN/spur.jpg" alt="spur" border="0">