bird gallery now live
Browse files- __pycache__/app.cpython-311.pyc +0 -0
- app.py +68 -115
- fetch_img.py +6 -3
- noimg.png +0 -0
- requirements.txt +1 -0
- styling.py +139 -0
__pycache__/app.cpython-311.pyc
CHANGED
Binary files a/__pycache__/app.cpython-311.pyc and b/__pycache__/app.cpython-311.pyc differ
|
|
app.py
CHANGED
@@ -5,15 +5,20 @@ import os
|
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
from typing import Iterable
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
from gradio.themes.base import Base
|
11 |
from gradio.themes.utils import colors, fonts, sizes
|
12 |
import requests
|
13 |
import torch
|
|
|
14 |
import librosa
|
15 |
import torch.nn.functional as F
|
16 |
|
|
|
|
|
|
|
17 |
# Import the necessary functions from the voj package
|
18 |
from audio_class_predictor import predict_class
|
19 |
from bird_ast_model import birdast_preprocess, birdast_inference
|
@@ -106,16 +111,6 @@ def run_inference_with_model(audio_clip, sr, model_name):
|
|
106 |
|
107 |
return results
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
def load_markdown_from_url(url):
|
112 |
-
response = requests.get(url)
|
113 |
-
response.raise_for_status()
|
114 |
-
return response.text
|
115 |
-
|
116 |
-
markdown_url = 'https://github.com/AmroAbdrabo/amroa/raw/main/img/desc.md'
|
117 |
-
markdown_content = load_markdown_from_url(markdown_url)
|
118 |
-
|
119 |
def predict(audio, start, end, model_name="BirdAST_Seq"):
|
120 |
|
121 |
raw_sr, audio_array = audio
|
@@ -156,103 +151,13 @@ def predict(audio, start, end, model_name="BirdAST_Seq"):
|
|
156 |
# run inference with model
|
157 |
print(f"Running inference with model: {model_name}")
|
158 |
species_class = run_inference_with_model(audio_array, DEFUALT_SR, model_name)
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
DESCRIPTION = markdown_content
|
166 |
-
|
167 |
-
css = """
|
168 |
-
#gradio-animation {
|
169 |
-
font-size: 2em;
|
170 |
-
font-weight: bold;
|
171 |
-
text-align: center;
|
172 |
-
margin-bottom: 20px;
|
173 |
-
}
|
174 |
-
|
175 |
-
.logo-container img {
|
176 |
-
width: 14%; /* Adjust width as necessary */
|
177 |
-
display: block;
|
178 |
-
margin: auto;
|
179 |
-
}
|
180 |
-
|
181 |
-
.number-input {
|
182 |
-
height: 100%;
|
183 |
-
padding-bottom: 60px; /* Adust the value as needed for more or less space */
|
184 |
-
}
|
185 |
-
.full-height {
|
186 |
-
height: 100%;
|
187 |
-
}
|
188 |
-
.column-container {
|
189 |
-
height: 100%;
|
190 |
-
}
|
191 |
-
"""
|
192 |
-
|
193 |
|
194 |
|
195 |
-
class Seafoam(Base):
|
196 |
-
def __init__(
|
197 |
-
self,
|
198 |
-
*,
|
199 |
-
primary_hue: colors.Color | str = colors.emerald,
|
200 |
-
secondary_hue: colors.Color | str = colors.blue,
|
201 |
-
neutral_hue: colors.Color | str = colors.gray,
|
202 |
-
spacing_size: sizes.Size | str = sizes.spacing_md,
|
203 |
-
radius_size: sizes.Size | str = sizes.radius_md,
|
204 |
-
text_size: sizes.Size | str = sizes.text_lg,
|
205 |
-
font: fonts.Font
|
206 |
-
| str
|
207 |
-
| Iterable[fonts.Font | str] = (
|
208 |
-
fonts.GoogleFont("Quicksand"),
|
209 |
-
"ui-sans-serif",
|
210 |
-
"sans-serif",
|
211 |
-
),
|
212 |
-
font_mono: fonts.Font
|
213 |
-
| str
|
214 |
-
| Iterable[fonts.Font | str] = (
|
215 |
-
fonts.GoogleFont("IBM Plex Mono"),
|
216 |
-
"ui-monospace",
|
217 |
-
"monospace",
|
218 |
-
),
|
219 |
-
):
|
220 |
-
super().__init__(
|
221 |
-
primary_hue=primary_hue,
|
222 |
-
secondary_hue=secondary_hue,
|
223 |
-
neutral_hue=neutral_hue,
|
224 |
-
spacing_size=spacing_size,
|
225 |
-
radius_size=radius_size,
|
226 |
-
text_size=text_size,
|
227 |
-
font=font,
|
228 |
-
font_mono=font_mono,
|
229 |
-
)
|
230 |
-
|
231 |
-
|
232 |
-
seafoam = Seafoam()
|
233 |
-
|
234 |
-
|
235 |
-
js = """
|
236 |
-
function createGradioAnimation() {
|
237 |
-
var container = document.getElementById('gradio-animation');
|
238 |
-
var text = 'Voice of Jungle';
|
239 |
-
for (var i = 0; i < text.length; i++) {
|
240 |
-
(function(i){
|
241 |
-
setTimeout(function(){
|
242 |
-
var letter = document.createElement('span');
|
243 |
-
letter.style.opacity = '0';
|
244 |
-
letter.style.transition = 'opacity 0.5s';
|
245 |
-
letter.innerText = text[i];
|
246 |
-
container.appendChild(letter);
|
247 |
-
setTimeout(function() {
|
248 |
-
letter.style.opacity = '1';
|
249 |
-
}, 50);
|
250 |
-
}, i * 250);
|
251 |
-
})(i);
|
252 |
-
}
|
253 |
-
}
|
254 |
-
"""
|
255 |
-
|
256 |
REFERENCES = """
|
257 |
# Appendix
|
258 |
|
@@ -307,6 +212,49 @@ def handle_model_selection(model_name, download_status):
|
|
307 |
return download_status
|
308 |
|
309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
with gr.Blocks(theme = seafoam, css = css, js = js) as demo:
|
311 |
|
312 |
gr.Markdown('<div class="logo-container"><img src="https://i.ibb.co/vcG9kr0/vojlogo.jpg" width="50px" alt="vojlogo"></div>')
|
@@ -317,7 +265,6 @@ with gr.Blocks(theme = seafoam, css = css, js = js) as demo:
|
|
317 |
model_names = ['BirdAST', 'BirdAST_Seq'] #, 'EfficientNet']
|
318 |
model_dropdown = gr.Dropdown(label="Choose a model", choices=model_names)
|
319 |
download_status = gr.Textbox(label="Model Status", lines=3, value='', interactive=False) # Non-interactive textbox for status
|
320 |
-
|
321 |
model_dropdown.change(handle_model_selection, inputs=[model_dropdown, download_status], outputs=download_status)
|
322 |
|
323 |
|
@@ -328,14 +275,22 @@ with gr.Blocks(theme = seafoam, css = css, js = js) as demo:
|
|
328 |
with gr.Column():
|
329 |
audio_input = gr.Audio(label="Input Audio", elem_classes="full-height")
|
330 |
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
|
|
|
|
339 |
gr.Examples(
|
340 |
examples=[
|
341 |
["XC226833-Chestnut-belted_20Chat-Tyrant_20A_2010989.mp3", 0, 10],
|
@@ -344,8 +299,6 @@ with gr.Blocks(theme = seafoam, css = css, js = js) as demo:
|
|
344 |
],
|
345 |
inputs=[audio_input, start_time_input, end_time_input]
|
346 |
)
|
347 |
-
|
348 |
-
gr.Button("Predict").click(predict, [audio_input, start_time_input, end_time_input, model_dropdown], [raw_class_output, species_output, waveform_output, spectrogram_output])
|
349 |
|
350 |
gr.Markdown(REFERENCES)
|
351 |
|
|
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
from typing import Iterable
|
8 |
+
from styling import js, seafoam, css, DESCRIPTION
|
9 |
|
10 |
import gradio as gr
|
11 |
from gradio.themes.base import Base
|
12 |
from gradio.themes.utils import colors, fonts, sizes
|
13 |
import requests
|
14 |
import torch
|
15 |
+
import shutil
|
16 |
import librosa
|
17 |
import torch.nn.functional as F
|
18 |
|
19 |
+
# Image gallery
|
20 |
+
from fetch_img import download_images, scientific_to_species_code
|
21 |
+
|
22 |
# Import the necessary functions from the voj package
|
23 |
from audio_class_predictor import predict_class
|
24 |
from bird_ast_model import birdast_preprocess, birdast_inference
|
|
|
111 |
|
112 |
return results
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
def predict(audio, start, end, model_name="BirdAST_Seq"):
|
115 |
|
116 |
raw_sr, audio_array = audio
|
|
|
151 |
# run inference with model
|
152 |
print(f"Running inference with model: {model_name}")
|
153 |
species_class = run_inference_with_model(audio_array, DEFUALT_SR, model_name)
|
154 |
+
print("Species is ", species_class[0][0].strip().replace("_", " "))
|
155 |
+
images = prepare_images(species_class[0][0].strip().replace("_", " "))
|
156 |
+
if len(images) == 0:
|
157 |
+
images.append(("noimg.png", "No image"))
|
158 |
+
return audio_class, species_class, fig_waveform, fig_spectrogram, images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
REFERENCES = """
|
162 |
# Appendix
|
163 |
|
|
|
212 |
return download_status
|
213 |
|
214 |
|
215 |
+
# Image generation
|
216 |
+
def prepare_images(scientific_name: str):
|
217 |
+
# Get species code
|
218 |
+
scode = scientific_to_species_code(scientific_name)
|
219 |
+
if not scode:
|
220 |
+
return []
|
221 |
+
|
222 |
+
# Clear folder assets' images
|
223 |
+
for filename in os.listdir(ASSET_DIR):
|
224 |
+
# Construct full file path
|
225 |
+
file_path = os.path.join(ASSET_DIR, filename)
|
226 |
+
# Check if the file is a .jpg, .jpeg, or .png
|
227 |
+
if file_path.lower().endswith(('.jpg', '.jpeg', '.png')):
|
228 |
+
# If yes, delete the file
|
229 |
+
os.remove(file_path)
|
230 |
+
print(f"Deleted: {file_path}")
|
231 |
+
|
232 |
+
# Save images to assets
|
233 |
+
download_images(f"https://ebird.org/species/{scode}")
|
234 |
+
|
235 |
+
# Return array of local image paths
|
236 |
+
nsplit = scientific_name.split(" ")
|
237 |
+
abbreviate_name = nsplit[0][0] + "." + " " + nsplit[1]
|
238 |
+
images = []
|
239 |
+
for img_file in os.listdir("./assets"):
|
240 |
+
if img_file.lower().endswith(('.png', '.jpg', '.jpeg')):
|
241 |
+
images.append((os.path.join("./assets", img_file), abbreviate_name))
|
242 |
+
|
243 |
+
return images
|
244 |
+
|
245 |
+
|
246 |
+
sp_and_cl = """<div align="center">
|
247 |
+
<b> <h2> Class and Species Prediction </h2> </b>
|
248 |
+
</div>"""
|
249 |
+
|
250 |
+
sig_prop = """<div align="center">
|
251 |
+
<b> <h2> Signal Visualization </h2> </b>
|
252 |
+
</div>"""
|
253 |
+
|
254 |
+
imgs = """<div align="center">
|
255 |
+
<b> <h2> Bird Gallery </h2> </b>
|
256 |
+
</div>"""
|
257 |
+
|
258 |
with gr.Blocks(theme = seafoam, css = css, js = js) as demo:
|
259 |
|
260 |
gr.Markdown('<div class="logo-container"><img src="https://i.ibb.co/vcG9kr0/vojlogo.jpg" width="50px" alt="vojlogo"></div>')
|
|
|
265 |
model_names = ['BirdAST', 'BirdAST_Seq'] #, 'EfficientNet']
|
266 |
model_dropdown = gr.Dropdown(label="Choose a model", choices=model_names)
|
267 |
download_status = gr.Textbox(label="Model Status", lines=3, value='', interactive=False) # Non-interactive textbox for status
|
|
|
268 |
model_dropdown.change(handle_model_selection, inputs=[model_dropdown, download_status], outputs=download_status)
|
269 |
|
270 |
|
|
|
275 |
with gr.Column():
|
276 |
audio_input = gr.Audio(label="Input Audio", elem_classes="full-height")
|
277 |
|
278 |
+
gr.Markdown(sp_and_cl)
|
279 |
+
with gr.Column():
|
280 |
+
with gr.Row():
|
281 |
+
raw_class_output = gr.Dataframe(headers=["Class", "Score [%]"], row_count=10, label="Class Prediction")
|
282 |
+
species_output = gr.Dataframe(headers=["Class", "Score [%]"], row_count=10, label="Species Prediction")
|
283 |
+
|
284 |
+
gr.Markdown(sig_prop)
|
285 |
+
with gr.Column():
|
286 |
+
with gr.Row():
|
287 |
+
waveform_output = gr.Plot(label="Waveform")
|
288 |
+
spectrogram_output = gr.Plot(label="Spectrogram")
|
289 |
+
gr.Markdown(imgs)
|
290 |
+
gallery = gallery = gr.Gallery(label="Species Images", show_label=False, elem_id="gallery",columns=[3], rows=[1], object_fit="contain", height="auto")
|
291 |
|
292 |
+
gr.Button("Predict").click(predict, [audio_input, start_time_input, end_time_input, model_dropdown], [raw_class_output, species_output, waveform_output, spectrogram_output, gallery])
|
293 |
+
|
294 |
gr.Examples(
|
295 |
examples=[
|
296 |
["XC226833-Chestnut-belted_20Chat-Tyrant_20A_2010989.mp3", 0, 10],
|
|
|
299 |
],
|
300 |
inputs=[audio_input, start_time_input, end_time_input]
|
301 |
)
|
|
|
|
|
302 |
|
303 |
gr.Markdown(REFERENCES)
|
304 |
|
fetch_img.py
CHANGED
@@ -22,8 +22,11 @@ bird_df = pd.read_csv("ebird_taxonomy_v2023.csv")
|
|
22 |
|
23 |
|
24 |
def scientific_to_species_code(scientific_name: str):
|
25 |
-
scode = bird_df
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
# Gets taxonomical info on bird. (Is not actually used)
|
29 |
def get_bird_info(species_code : str):
|
@@ -33,7 +36,7 @@ def get_bird_info(species_code : str):
|
|
33 |
data = response.content
|
34 |
return data
|
35 |
|
36 |
-
def download_images(url, folder_path='assets'):
|
37 |
# Create a folder to save images if it doesn't exist
|
38 |
if not os.path.exists(folder_path):
|
39 |
os.makedirs(folder_path)
|
|
|
22 |
|
23 |
|
24 |
def scientific_to_species_code(scientific_name: str):
|
25 |
+
scode = bird_df[bird_df['SCI_NAME'].str.contains(scientific_name, na=False)]['SPECIES_CODE']
|
26 |
+
if not scode.array:
|
27 |
+
return []
|
28 |
+
else:
|
29 |
+
return scode.array[0]
|
30 |
|
31 |
# Gets taxonomical info on bird. (Is not actually used)
|
32 |
def get_bird_info(species_code : str):
|
|
|
36 |
data = response.content
|
37 |
return data
|
38 |
|
39 |
+
def download_images(url, folder_path='./assets'):
|
40 |
# Create a folder to save images if it doesn't exist
|
41 |
if not os.path.exists(folder_path):
|
42 |
os.makedirs(folder_path)
|
noimg.png
ADDED
requirements.txt
CHANGED
@@ -6,6 +6,7 @@ requests
|
|
6 |
timm
|
7 |
pandas
|
8 |
torch
|
|
|
9 |
librosa
|
10 |
noisereduce
|
11 |
torchaudio
|
|
|
6 |
timm
|
7 |
pandas
|
8 |
torch
|
9 |
+
shutil
|
10 |
librosa
|
11 |
noisereduce
|
12 |
torchaudio
|
styling.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
warnings.filterwarnings("ignore")
|
3 |
+
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
from typing import Iterable
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
from gradio.themes.base import Base
|
11 |
+
from gradio.themes.utils import colors, fonts, sizes
|
12 |
+
import requests
|
13 |
+
import torch
|
14 |
+
import shutil
|
15 |
+
import librosa
|
16 |
+
import torch.nn.functional as F
|
17 |
+
|
18 |
+
# Image gallery
|
19 |
+
from fetch_img import download_images, scientific_to_species_code
|
20 |
+
|
21 |
+
# Import the necessary functions from the voj package
|
22 |
+
from audio_class_predictor import predict_class
|
23 |
+
from bird_ast_model import birdast_preprocess, birdast_inference
|
24 |
+
from bird_ast_seq_model import birdast_seq_preprocess, birdast_seq_inference
|
25 |
+
|
26 |
+
from utils import plot_wave, plot_mel, download_model, bandpass_filter
|
27 |
+
|
28 |
+
|
29 |
+
def load_markdown_from_url(url):
|
30 |
+
response = requests.get(url)
|
31 |
+
response.raise_for_status()
|
32 |
+
return response.text
|
33 |
+
|
34 |
+
|
35 |
+
markdown_url = 'https://github.com/AmroAbdrabo/amroa/raw/main/img/desc.md'
|
36 |
+
markdown_content = load_markdown_from_url(markdown_url)
|
37 |
+
|
38 |
+
DESCRIPTION = markdown_content
|
39 |
+
|
40 |
+
# CSS properties for the logo and inputs
|
41 |
+
css = """
|
42 |
+
#gradio-animation {
|
43 |
+
font-size: 2em;
|
44 |
+
font-weight: bold;
|
45 |
+
text-align: center;
|
46 |
+
margin-bottom: 20px;
|
47 |
+
}
|
48 |
+
#gallery {
|
49 |
+
align: center;
|
50 |
+
margin: auto;
|
51 |
+
}
|
52 |
+
.gr-gallery-item img {
|
53 |
+
display: block;
|
54 |
+
margin-left: auto;
|
55 |
+
margin-right: auto;
|
56 |
+
}
|
57 |
+
.logo-container img {
|
58 |
+
width: 14%; /* Adjust width as necessary */
|
59 |
+
display: block;
|
60 |
+
margin: auto;
|
61 |
+
}
|
62 |
+
.number-input {
|
63 |
+
height: 100%;
|
64 |
+
padding-bottom: 60px; /* Adust the value as needed for more or less space */
|
65 |
+
}
|
66 |
+
.full-height {
|
67 |
+
height: 100%;
|
68 |
+
}
|
69 |
+
.column-container {
|
70 |
+
height: 100%;
|
71 |
+
}
|
72 |
+
.section-divider {
|
73 |
+
align: center;
|
74 |
+
font-size: 100% !important;
|
75 |
+
color: blue !important;
|
76 |
+
}
|
77 |
+
"""
|
78 |
+
|
79 |
+
# Seafoam is the theme
|
80 |
+
class Seafoam(Base):
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
*,
|
84 |
+
primary_hue: colors.Color | str = colors.emerald,
|
85 |
+
secondary_hue: colors.Color | str = colors.blue,
|
86 |
+
neutral_hue: colors.Color | str = colors.gray,
|
87 |
+
spacing_size: sizes.Size | str = sizes.spacing_md,
|
88 |
+
radius_size: sizes.Size | str = sizes.radius_md,
|
89 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
90 |
+
font: fonts.Font
|
91 |
+
| str
|
92 |
+
| Iterable[fonts.Font | str] = (
|
93 |
+
fonts.GoogleFont("Poppins"),
|
94 |
+
"ui-sans-serif",
|
95 |
+
"sans-serif",
|
96 |
+
),
|
97 |
+
font_mono: fonts.Font
|
98 |
+
| str
|
99 |
+
| Iterable[fonts.Font | str] = (
|
100 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
101 |
+
"ui-monospace",
|
102 |
+
"monospace",
|
103 |
+
),
|
104 |
+
):
|
105 |
+
super().__init__(
|
106 |
+
primary_hue=primary_hue,
|
107 |
+
secondary_hue=secondary_hue,
|
108 |
+
neutral_hue=neutral_hue,
|
109 |
+
spacing_size=spacing_size,
|
110 |
+
radius_size=radius_size,
|
111 |
+
text_size=text_size,
|
112 |
+
font=font,
|
113 |
+
font_mono=font_mono,
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
seafoam = Seafoam()
|
118 |
+
|
119 |
+
# Typeletter animation
|
120 |
+
js = """
|
121 |
+
function createGradioAnimation() {
|
122 |
+
var container = document.getElementById('gradio-animation');
|
123 |
+
var text = 'Voice of Jungle';
|
124 |
+
for (var i = 0; i < text.length; i++) {
|
125 |
+
(function(i){
|
126 |
+
setTimeout(function(){
|
127 |
+
var letter = document.createElement('span');
|
128 |
+
letter.style.opacity = '0';
|
129 |
+
letter.style.transition = 'opacity 0.5s';
|
130 |
+
letter.innerText = text[i];
|
131 |
+
container.appendChild(letter);
|
132 |
+
setTimeout(function() {
|
133 |
+
letter.style.opacity = '1';
|
134 |
+
}, 50);
|
135 |
+
}, i * 250);
|
136 |
+
})(i);
|
137 |
+
}
|
138 |
+
}
|
139 |
+
"""
|