File size: 14,556 Bytes
c1c1923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#!/usr/bin/env python3

import re

"""
Extracts code from the file "./Libraries.ts".
(Note that "Libraries.ts", must be in the same directory as 
this script).
"""

file = None

def read_file(library: str, model_name: str) -> str:
    text = file

    match = re.search('const ' + library + '.*', text, re.DOTALL).group()
    if match:
        text = match[match.index('`') + 1:match.index('`;')].replace('${model.id}', model_name)

    return text

file = """
import type { ModelData } from "./Types";
/**
 * Add your new library here.
 */
export enum ModelLibrary {
	"adapter-transformers"   = "Adapter Transformers",
	"allennlp"               = "allenNLP",
	"asteroid"               = "Asteroid",
	"diffusers"              = "Diffusers",
	"espnet"                 = "ESPnet",
	"fairseq"                = "Fairseq",
	"flair"                  = "Flair",
	"keras"                  = "Keras",
	"nemo"                   = "NeMo",
	"pyannote-audio"         = "pyannote.audio",
	"sentence-transformers"  = "Sentence Transformers",
	"sklearn"                = "Scikit-learn",
	"spacy"                  = "spaCy",
	"speechbrain"            = "speechbrain",
	"tensorflowtts"          = "TensorFlowTTS",
	"timm"                   = "Timm",
	"fastai"                 = "fastai",
	"transformers"           = "Transformers",
	"stanza"                 = "Stanza",
	"fasttext"               = "fastText",
	"stable-baselines3"      = "Stable-Baselines3",
	"ml-agents"              = "ML-Agents",
}

export const ALL_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary) as (keyof typeof ModelLibrary)[];


/**
 * Elements configurable by a model library.
 */
export interface LibraryUiElement {
	/**
	 * Name displayed on the main
	 * call-to-action button on the model page.
	 */
	btnLabel:  string;
	/**
	 * Repo name
	 */
	repoName: string;
	/**
	 * URL to library's repo
	 */
	repoUrl:   string;
	/**
	 * Code snippet displayed on model page
	 */
	snippet:   (model: ModelData) => string;
}

function nameWithoutNamespace(modelId: string): string {
	const splitted = modelId.split("/");
	return splitted.length === 1 ? splitted[0] : splitted[1];
}

//#region snippets

const adapter_transformers = (model: ModelData) =>
	`from transformers import ${model.config?.adapter_transformers?.model_class}

model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.{model.id}}")
model.load_adapter("${model.id}", source="hf")`;

const allennlpUnknown = (model: ModelData) =>
	`import allennlp_models
from allennlp.predictors.predictor import Predictor

predictor = Predictor.from_path("hf://${model.id}")`;

const allennlpQuestionAnswering = (model: ModelData) =>
	`import allennlp_models
from allennlp.predictors.predictor import Predictor

predictor = Predictor.from_path("hf://${model.id}")
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
predictions = predictor.predict_json(predictor_input)`;

const allennlp = (model: ModelData) => {
	if (model.tags?.includes("question-answering")) {
		return allennlpQuestionAnswering(model);
	}
	return allennlpUnknown(model);
};

const asteroid = (model: ModelData) =>
	`from asteroid.models import BaseModel

model = BaseModel.from_pretrained("${model.id}")`;

const diffusers = (model: ModelData) =>
	`from diffusers import DiffusionPipeline

pipeline = DiffusionPipeline.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""})`;

const espnetTTS = (model: ModelData) =>
	`from espnet2.bin.tts_inference import Text2Speech

model = Text2Speech.from_pretrained("${model.id}")

speech, *_ = model("text to generate speech from")`;

const espnetASR = (model: ModelData) =>
	`from espnet2.bin.asr_inference import Speech2Text

model = Speech2Text.from_pretrained(
  "${model.id}"
)

speech, rate = soundfile.read("speech.wav")
text, *_ = model(speech)`;

const espnetUnknown = () =>
	`unknown model type (must be text-to-speech or automatic-speech-recognition)`;

const espnet = (model: ModelData) => {
	if (model.tags?.includes("text-to-speech")) {
		return espnetTTS(model);
	} else if (model.tags?.includes("automatic-speech-recognition")) {
		return espnetASR(model);
	}
	return espnetUnknown();
};

const fairseq = (model: ModelData) =>
	`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub

models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
    "${model.id}"
)`;


const flair = (model: ModelData) =>
	`from flair.models import SequenceTagger

tagger = SequenceTagger.load("${model.id}")`;

const keras = (model: ModelData) =>
	`from huggingface_hub import from_pretrained_keras

model = from_pretrained_keras("${model.id}")
`;

const pyannote_audio_pipeline = (model: ModelData) =>
	`from pyannote.audio import Pipeline
  
pipeline = Pipeline.from_pretrained("${model.id}")

# inference on the whole file
pipeline("file.wav")

# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)

from pyannote.audio import Audio
waveform, sample_rate = Audio().crop("file.wav", excerpt)
pipeline({"waveform": waveform, "sample_rate": sample_rate})`;

const pyannote_audio_model = (model: ModelData) =>
	`from pyannote.audio import Model, Inference

model = Model.from_pretrained("${model.id}")
inference = Inference(model)

# inference on the whole file
inference("file.wav")

# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
inference.crop("file.wav", excerpt)`;

const pyannote_audio = (model: ModelData) => {
	if (model.tags?.includes("pyannote-audio-pipeline")) {
		return pyannote_audio_pipeline(model);
	}
	return pyannote_audio_model(model);
};

const tensorflowttsTextToMel = (model: ModelData) =>
	`from tensorflow_tts.inference import AutoProcessor, TFAutoModel

processor = AutoProcessor.from_pretrained("${model.id}")
model = TFAutoModel.from_pretrained("${model.id}")
`;

const tensorflowttsMelToWav = (model: ModelData) =>
	`from tensorflow_tts.inference import TFAutoModel

model = TFAutoModel.from_pretrained("${model.id}")
audios = model.inference(mels)
`;

const tensorflowttsUnknown = (model: ModelData) =>
	`from tensorflow_tts.inference import TFAutoModel

model = TFAutoModel.from_pretrained("${model.id}")
`;

const tensorflowtts = (model: ModelData) => {
	if (model.tags?.includes("text-to-mel")) {
		return tensorflowttsTextToMel(model);
	} else if (model.tags?.includes("mel-to-wav")) {
		return tensorflowttsMelToWav(model);
	}
	return tensorflowttsUnknown(model);
};

const timm = (model: ModelData) =>
	`import timm

model = timm.create_model("hf_hub:${model.id}", pretrained=True)`;

const sklearn = (model: ModelData) =>
	`from huggingface_hub import hf_hub_download
import joblib

model = joblib.load(
	hf_hub_download("${model.id}", "sklearn_model.joblib")
)`;

const fastai = (model: ModelData) =>
	`from huggingface_hub import from_pretrained_fastai

learn = from_pretrained_fastai("${model.id}")`;

const sentenceTransformers = (model: ModelData) =>
	`from sentence_transformers import SentenceTransformer

model = SentenceTransformer("${model.id}")`;

const spacy = (model: ModelData) =>
	`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl

# Using spacy.load().
import spacy
nlp = spacy.load("${nameWithoutNamespace(model.id)}")

# Importing as module.
import ${nameWithoutNamespace(model.id)}
nlp = ${nameWithoutNamespace(model.id)}.load()`;

const stanza = (model: ModelData) =>
	`import stanza

stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`;


const speechBrainMethod = (speechbrainInterface: string) => {
	switch (speechbrainInterface) {
		case "EncoderClassifier":
		   return "classify_file";
		case "EncoderDecoderASR":
		case "EncoderASR":
			return "transcribe_file";
		case "SpectralMaskEnhancement":
			return "enhance_file";
		case "SepformerSeparation":
			return "separate_file";
		default:
			return undefined;
	}
};

const speechbrain = (model: ModelData) => {
	const speechbrainInterface = model.config?.speechbrain?.interface;
	if (speechbrainInterface === undefined) {
		return `# interface not specified in config.json`;
	}

	const speechbrainMethod = speechBrainMethod(speechbrainInterface);
	if (speechbrainMethod === undefined) {
		return `# interface in config.json invalid`;
	}

	return `from speechbrain.pretrained import ${speechbrainInterface}
model = ${speechbrainInterface}.from_hparams(
  "${model.id}"
)
model.${speechbrainMethod}("file.wav")`;
};

const transformers = (model: ModelData) => {
	const info = model.transformersInfo;
	if (!info) {
		return `# ⚠️ Type of model unknown`;
	}
	if (info.processor) {
		const varName = info.processor === "AutoTokenizer" ? "tokenizer"
			: info.processor === "AutoFeatureExtractor" ? "extractor"
				: "processor"
		;
		return [
			`from transformers import ${info.processor}, ${info.auto_model}`,
			"",
			`${varName} = ${info.processor}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""})`,
			"",
			`model = ${info.auto_model}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""})`,
		].join("\n");
	} else {
		return [
			`from transformers import ${info.auto_model}`,
			"",
			`model = ${info.auto_model}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""})`,
		].join("\n");
	}
};

const fasttext = (model: ModelData) =>
	`from huggingface_hub import hf_hub_download
import fasttext

model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`;

const stableBaselines3 = (model: ModelData) =>
	`from huggingface_sb3 import load_from_hub
checkpoint = load_from_hub(
	repo_id="${model.id}",
	filename="{MODEL FILENAME}.zip",
)`;

const nemoDomainResolver = (domain: string, model: ModelData): string | undefined => {
	const modelName = `${nameWithoutNamespace(model.id)}.nemo`;

	switch (domain) {
		case "ASR":
			return `import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")

transcriptions = asr_model.transcribe(["file.wav"])`;
		default:
			return undefined;
	}
};

const mlAgents = (model: ModelData) =>
	`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`;
	
const nemo = (model: ModelData) => {
	let command: string | undefined = undefined;
	// Resolve the tag to a nemo domain/sub-domain 
	if (model.tags?.includes("automatic-speech-recognition")) {
		command = nemoDomainResolver("ASR", model);
	}
	
	return command ?? `# tag did not correspond to a valid NeMo domain.`;
};

//#endregion



export const MODEL_LIBRARIES_UI_ELEMENTS: { [key in keyof typeof ModelLibrary]?: LibraryUiElement } = {
	// ^^ TODO(remove the optional ? marker when Stanza snippet is available)
	"adapter-transformers": {
		btnLabel: "Adapter Transformers",
		repoName: "adapter-transformers",
		repoUrl:  "https://github.com/Adapter-Hub/adapter-transformers",
		snippet:  adapter_transformers,
	},
	"allennlp": {
		btnLabel: "AllenNLP",
		repoName: "AllenNLP",
		repoUrl:  "https://github.com/allenai/allennlp",
		snippet:  allennlp,
	},
	"asteroid": {
		btnLabel: "Asteroid",
		repoName: "Asteroid",
		repoUrl:  "https://github.com/asteroid-team/asteroid",
		snippet:  asteroid,
	},
	"diffusers": {
		btnLabel: "Diffusers",
		repoName: "🤗/diffusers",
		repoUrl:  "https://github.com/huggingface/diffusers",
		snippet:  diffusers,
	},
	"espnet": {
		btnLabel: "ESPnet",
		repoName: "ESPnet",
		repoUrl:  "https://github.com/espnet/espnet",
		snippet:  espnet,
	},
	"fairseq": {
		btnLabel: "Fairseq",
		repoName: "fairseq",
		repoUrl:  "https://github.com/pytorch/fairseq",
		snippet:  fairseq,
	},
	"flair": {
		btnLabel: "Flair",
		repoName: "Flair",
		repoUrl:  "https://github.com/flairNLP/flair",
		snippet:  flair,
	},
	"keras": {
		btnLabel: "Keras",
		repoName: "Keras",
		repoUrl:  "https://github.com/keras-team/keras",
		snippet:  keras,
	},
	"nemo": {
		btnLabel: "NeMo",
		repoName: "NeMo",
		repoUrl:  "https://github.com/NVIDIA/NeMo",
		snippet:  nemo,
	},
	"pyannote-audio": {
		btnLabel: "pyannote.audio",
		repoName: "pyannote-audio",
		repoUrl:  "https://github.com/pyannote/pyannote-audio",
		snippet:  pyannote_audio,
	},
	"sentence-transformers": {
		btnLabel: "sentence-transformers",
		repoName: "sentence-transformers",
		repoUrl:  "https://github.com/UKPLab/sentence-transformers",
		snippet:  sentenceTransformers,
	},
	"sklearn": {
		btnLabel: "Scikit-learn",
		repoName: "Scikit-learn",
		repoUrl:  "https://github.com/scikit-learn/scikit-learn",
		snippet:  sklearn,
	},
	"fastai": {
		btnLabel: "fastai",
		repoName: "fastai",
		repoUrl:  "https://github.com/fastai/fastai",
		snippet:  fastai,
	},
	"spacy": {
		btnLabel: "spaCy",
		repoName: "spaCy",
		repoUrl:  "https://github.com/explosion/spaCy",
		snippet:  spacy,
	},
	"speechbrain": {
		btnLabel: "speechbrain",
		repoName: "speechbrain",
		repoUrl:  "https://github.com/speechbrain/speechbrain",
		snippet:  speechbrain,
	},
	"stanza": {
		btnLabel: "Stanza",
		repoName: "stanza",
		repoUrl: "https://github.com/stanfordnlp/stanza",
		snippet: stanza,
	},
	"tensorflowtts": {
		btnLabel: "TensorFlowTTS",
		repoName: "TensorFlowTTS",
		repoUrl:  "https://github.com/TensorSpeech/TensorFlowTTS",
		snippet:  tensorflowtts,
	},
	"timm": {
		btnLabel: "timm",
		repoName: "pytorch-image-models",
		repoUrl:  "https://github.com/rwightman/pytorch-image-models",
		snippet:  timm,
	},
	"transformers": {
		btnLabel: "Transformers",
		repoName: "🤗/transformers",
		repoUrl:  "https://github.com/huggingface/transformers",
		snippet:  transformers,
	},
	"fasttext": {
		btnLabel: "fastText",
		repoName: "fastText",
		repoUrl:  "https://fasttext.cc/",
		snippet:  fasttext,
	},
	"stable-baselines3": {
		btnLabel: "stable-baselines3",
		repoName: "stable-baselines3",
		repoUrl:  "https://github.com/huggingface/huggingface_sb3",
		snippet:  stableBaselines3,
	},
	"ml-agents": {
		btnLabel: "ml-agents",
		repoName: "ml-agents",
		repoUrl:  "https://github.com/huggingface/ml-agents",
		snippet:  mlAgents,
	},
} as const;
"""


if __name__ == '__main__':
    import sys
    library_name = "keras"
    model_name = "Distillgpt2"
    print(read_file(library_name, model_name))
    
    """"
    try:
        args = sys.argv[1:]
        if args:
            print(read_file(args[0], args[1]))
    except IndexError:
        pass
    """