File size: 149,960 Bytes
3f3b665
 
c135c5e
 
 
 
d988e19
c135c5e
 
74e9e3e
 
 
 
8ade2e2
74e9e3e
5e93f20
 
 
 
74e9e3e
 
c135c5e
 
 
 
5e93f20
d988e19
c135c5e
 
 
 
8145b83
c135c5e
 
 
d988e19
c135c5e
 
 
8ade2e2
c135c5e
d988e19
c135c5e
 
 
 
 
 
5e93f20
 
c135c5e
 
 
 
8145b83
c135c5e
8dd0ac2
 
 
 
 
8145b83
8dd0ac2
b47dba5
8dd0ac2
 
 
 
c135c5e
d988e19
c135c5e
 
d988e19
c135c5e
 
0974d3a
c135c5e
 
 
 
 
8145b83
c135c5e
 
 
0974d3a
c135c5e
 
 
 
 
 
 
 
 
 
1f6629c
795bc0f
 
c135c5e
 
 
e5f0117
 
 
 
66accd2
 
 
 
 
 
 
0974d3a
 
d988e19
5e93f20
 
0974d3a
 
c135c5e
 
8145b83
c135c5e
 
 
d988e19
795bc0f
9162fb4
1f6629c
c135c5e
 
72e66c8
 
b47dba5
72e66c8
1f7f732
 
 
 
 
b47dba5
1f7f732
 
 
9162fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66accd2
9162fb4
 
 
 
 
a130c8d
 
 
 
 
 
 
9162fb4
a130c8d
 
 
9162fb4
a130c8d
 
9162fb4
a130c8d
 
 
66accd2
9162fb4
 
 
a130c8d
 
 
 
 
 
 
9162fb4
8145b83
 
a130c8d
 
 
 
 
 
 
 
 
9162fb4
 
 
a130c8d
 
 
 
 
 
 
9162fb4
 
 
a130c8d
 
 
 
5e93f20
a130c8d
 
 
 
9162fb4
 
 
a130c8d
 
 
5e93f20
a130c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9162fb4
 
 
a130c8d
 
 
 
 
 
 
9162fb4
 
 
a130c8d
 
 
 
 
 
 
 
8145b83
9162fb4
 
 
 
 
 
 
a130c8d
 
 
 
 
9162fb4
 
a130c8d
 
 
 
 
9162fb4
 
a130c8d
 
 
 
 
9162fb4
66accd2
a130c8d
 
 
 
 
9162fb4
 
b47dba5
9162fb4
 
1f7f732
 
72e66c8
5e93f20
795bc0f
72e66c8
 
e5f0117
 
 
 
6db58a0
e5f0117
d988e19
e5f0117
d988e19
e5f0117
5e93f20
 
 
e5f0117
 
54e965b
 
b47dba5
54e965b
b47dba5
 
 
 
 
 
 
 
 
 
54e965b
b47dba5
5e93f20
795bc0f
b47dba5
54e965b
795bc0f
c135c5e
 
 
ee58110
 
 
 
0974d3a
 
5e93f20
 
d988e19
5e93f20
d988e19
5e93f20
0974d3a
d988e19
ee58110
 
3f3b665
 
b47dba5
3f3b665
f88fed1
 
 
 
 
b47dba5
8145b83
 
 
 
 
 
a130c8d
f88fed1
 
 
ee58110
5e93f20
795bc0f
 
ee58110
 
e5f0117
 
 
b47dba5
e5f0117
f88fed1
 
 
 
 
 
b47dba5
f88fed1
 
 
b47dba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66accd2
8145b83
f88fed1
 
 
e5f0117
5e93f20
da57cd2
e5f0117
 
 
da57cd2
54e965b
840b77e
d988e19
 
 
 
 
 
 
b47dba5
d988e19
 
 
 
 
840b77e
 
 
 
b47dba5
840b77e
1f6629c
840b77e
d988e19
66accd2
840b77e
 
 
 
b47dba5
840b77e
 
 
d988e19
da57cd2
 
 
840b77e
 
b47dba5
840b77e
 
 
d988e19
 
da57cd2
 
 
d988e19
 
da57cd2
840b77e
 
 
 
b47dba5
840b77e
f88fed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66accd2
f88fed1
 
 
 
b47dba5
 
 
 
f88fed1
 
a130c8d
b47dba5
 
 
 
a130c8d
b47dba5
 
 
a130c8d
f88fed1
 
b47dba5
 
 
a130c8d
 
 
 
 
b47dba5
 
 
a130c8d
b47dba5
 
8145b83
 
f88fed1
 
b47dba5
 
 
 
5e93f20
a130c8d
 
b47dba5
 
 
a130c8d
b47dba5
 
 
a130c8d
b47dba5
f88fed1
 
b47dba5
 
 
 
a130c8d
b47dba5
 
 
 
 
 
 
 
 
 
 
f88fed1
 
b47dba5
 
 
 
f88fed1
a130c8d
 
b47dba5
 
 
 
 
8145b83
a130c8d
b47dba5
8145b83
f88fed1
 
 
 
 
 
8145b83
b47dba5
 
 
 
 
8145b83
 
b47dba5
 
 
 
 
8145b83
 
b47dba5
 
 
 
 
f88fed1
 
b47dba5
f88fed1
 
 
 
840b77e
66accd2
840b77e
 
 
 
 
b47dba5
840b77e
f88fed1
 
 
 
b47dba5
 
 
 
 
f88fed1
 
 
b47dba5
f88fed1
 
 
 
8ade2e2
d988e19
840b77e
 
 
 
 
 
 
6d8dc9d
 
d988e19
6d8dc9d
5e93f20
8ade2e2
f62fe9f
 
 
b47dba5
8ade2e2
 
 
5e93f20
840b77e
66accd2
5e93f20
840b77e
 
 
 
 
b47dba5
840b77e
f88fed1
8145b83
 
 
 
 
 
 
 
f88fed1
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
8145b83
f88fed1
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
8145b83
f88fed1
 
 
 
8145b83
f88fed1
 
 
 
8145b83
f88fed1
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
8145b83
f88fed1
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
8145b83
f88fed1
 
 
 
8145b83
f88fed1
 
 
 
 
 
8145b83
f88fed1
 
 
 
8145b83
f88fed1
 
 
 
8145b83
 
f88fed1
 
 
 
 
8145b83
f88fed1
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
8145b83
f88fed1
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
8145b83
f88fed1
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
8145b83
f88fed1
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
8145b83
f88fed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47dba5
f88fed1
 
 
 
840b77e
 
 
8ade2e2
 
6d8dc9d
 
 
 
d988e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d8dc9d
 
8ade2e2
 
b47dba5
1f7f732
 
 
5e93f20
da57cd2
1f7f732
 
 
 
b47dba5
1f7f732
f88fed1
 
 
 
 
b47dba5
 
 
f88fed1
 
 
1f7f732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e93f20
 
 
 
d988e19
5e93f20
d988e19
5e93f20
 
8ade2e2
66accd2
b47dba5
8ade2e2
66accd2
 
 
b47dba5
66accd2
 
 
 
 
 
 
 
8ade2e2
d988e19
 
 
66accd2
 
5e93f20
 
66accd2
5e93f20
 
66accd2
5e93f20
 
66accd2
 
5e93f20
 
66accd2
 
f62fe9f
 
 
 
b47dba5
f62fe9f
66accd2
 
 
b47dba5
66accd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d988e19
 
 
 
 
 
 
66accd2
 
 
f62fe9f
5e93f20
d988e19
 
f62fe9f
 
 
 
b47dba5
f62fe9f
8ade2e2
f62fe9f
5e93f20
66accd2
 
 
f62fe9f
 
 
 
b47dba5
f62fe9f
66accd2
 
 
 
 
 
 
 
 
 
d988e19
66accd2
 
 
 
 
 
f62fe9f
66accd2
d988e19
 
 
 
 
b47dba5
d988e19
 
 
 
 
f62fe9f
 
 
 
b47dba5
da57cd2
 
 
d988e19
66accd2
 
5e93f20
 
66accd2
da57cd2
 
 
 
b47dba5
e5f0117
66accd2
 
d988e19
66accd2
5e93f20
 
66accd2
 
 
 
 
 
b47dba5
66accd2
f88fed1
 
 
 
66accd2
f88fed1
 
b47dba5
f88fed1
 
 
 
e5f0117
d988e19
66accd2
e5f0117
 
a7674fc
45b89de
b47dba5
8ade2e2
 
a7674fc
d988e19
66accd2
5e93f20
 
66accd2
 
 
 
5e93f20
 
 
66accd2
a7674fc
 
 
 
b47dba5
a7674fc
f88fed1
66accd2
 
 
 
b47dba5
 
 
 
 
 
66accd2
 
f88fed1
b47dba5
 
 
 
 
a130c8d
 
b47dba5
f88fed1
 
b47dba5
f88fed1
 
 
 
 
b47dba5
f88fed1
 
b47dba5
f88fed1
 
 
 
45b89de
d988e19
1f6629c
54e965b
 
e5f0117
 
 
 
 
 
ebef497
e5f0117
3f3b665
 
 
c135c5e
 
 
 
 
3f3b665
c135c5e
 
 
 
 
 
 
 
 
b47dba5
3f3b665
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# <span style=\"font-width:bold; font-size: 3rem; color:#2656a3;\">**Msc. BDS Module - Data Engineering and Machine Learning Operations in Business (MLOPs)** </span> <span style=\"font-width:bold; font-size: 3rem; color:#333;\">- Part 03: Training Pipeline</span>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## <span style='color:#2656a3'> πŸ—’οΈ This notebook is divided into the following sections:\n",
    "1. Feature selection.\n",
    "2. Creating a Feature View.\n",
    "3. Training datasets creation - splitting into train and test sets.\n",
    "4. Training the model.\n",
    "5. Register the model to Hopsworks Model Registry."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## <span style='color:#2656a3'> βš™οΈ Import of libraries and packages\n",
    "We start with importing some of the necessary libraries needed for this notebook and warnings to avoid unnecessary distractions and keep output clean."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Importing the packages and libraries\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "\n",
    "# Ignore warnings\n",
    "import warnings\n",
    "warnings.filterwarnings('ignore')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## <span style=\"color:#2656a3;\"> πŸ“‘ Connecting to Hopsworks Feature Store\n",
    "We connect to Hopsworks Feature Store so we can retrieve the Feature Groups and select features for training data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Connected. Call `.close()` to terminate connection gracefully.\n",
      "\n",
      "Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/550040\n",
      "Connected. Call `.close()` to terminate connection gracefully.\n"
     ]
    }
   ],
   "source": [
    "# Importing the hopsworks module for interacting with the Hopsworks platform\n",
    "import hopsworks\n",
    "\n",
    "# Logging into the Hopsworks project\n",
    "project = hopsworks.login()\n",
    "\n",
    "# Getting the feature store from the project\n",
    "fs = project.get_feature_store() "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Retrieve the feature groups\n",
    "electricity_fg = fs.get_feature_group(\n",
    "    name='electricity_prices',\n",
    "    version=1,\n",
    ")\n",
    "\n",
    "weather_fg = fs.get_feature_group(\n",
    "    name='weather_measurements',\n",
    "    version=1,\n",
    ")\n",
    "\n",
    "danish_calendar_fg = fs.get_feature_group(\n",
    "    name='dk_calendar',\n",
    "    version=1,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## <span style=\"color:#2656a3;\"> πŸ– Feature View Creation and Retrieving </span>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We first select the features that we want to include for model training.\n",
    "\n",
    "Since we specified `primary_key`as `date` and `timestamp` in `1_feature_backfill` we can now join them together for the `electricity_fg`, `weather_fg` and `danish_holiday_fg`.\n",
    "\n",
    "`join_type` specifies the type of join to perform. An inner join refers to only retaining the rows based on the keys present in all joined DataFrames."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Select features for training data and join them together and except duplicate columns\n",
    "selected_features_training = electricity_fg.select_all()\\\n",
    "    .join(weather_fg.select_except([\"timestamp\", \"datetime\", \"hour\"]), join_type=\"inner\")\\\n",
    "    .join(danish_calendar_fg.select_all(), join_type=\"inner\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Finished: Reading data from Hopsworks, using ArrowFlight (3.20s) \n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>timestamp</th>\n",
       "      <th>datetime</th>\n",
       "      <th>date</th>\n",
       "      <th>hour</th>\n",
       "      <th>dk1_spotpricedkk_kwh</th>\n",
       "      <th>temperature_2m</th>\n",
       "      <th>relative_humidity_2m</th>\n",
       "      <th>precipitation</th>\n",
       "      <th>rain</th>\n",
       "      <th>snowfall</th>\n",
       "      <th>weather_code</th>\n",
       "      <th>cloud_cover</th>\n",
       "      <th>wind_speed_10m</th>\n",
       "      <th>wind_gusts_10m</th>\n",
       "      <th>dayofweek</th>\n",
       "      <th>day</th>\n",
       "      <th>month</th>\n",
       "      <th>year</th>\n",
       "      <th>workday</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1682280000000</td>\n",
       "      <td>2023-04-23 20:00:00+00:00</td>\n",
       "      <td>2023-04-23</td>\n",
       "      <td>20</td>\n",
       "      <td>1.02178</td>\n",
       "      <td>10.4</td>\n",
       "      <td>74.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>100.0</td>\n",
       "      <td>7.6</td>\n",
       "      <td>10.1</td>\n",
       "      <td>6</td>\n",
       "      <td>23</td>\n",
       "      <td>4</td>\n",
       "      <td>2023</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1678816800000</td>\n",
       "      <td>2023-03-14 18:00:00+00:00</td>\n",
       "      <td>2023-03-14</td>\n",
       "      <td>18</td>\n",
       "      <td>0.77461</td>\n",
       "      <td>0.5</td>\n",
       "      <td>88.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>11.6</td>\n",
       "      <td>22.7</td>\n",
       "      <td>1</td>\n",
       "      <td>14</td>\n",
       "      <td>3</td>\n",
       "      <td>2023</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1697259600000</td>\n",
       "      <td>2023-10-14 05:00:00+00:00</td>\n",
       "      <td>2023-10-14</td>\n",
       "      <td>5</td>\n",
       "      <td>-0.01551</td>\n",
       "      <td>9.8</td>\n",
       "      <td>71.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>23.0</td>\n",
       "      <td>29.5</td>\n",
       "      <td>54.7</td>\n",
       "      <td>5</td>\n",
       "      <td>14</td>\n",
       "      <td>10</td>\n",
       "      <td>2023</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1657170000000</td>\n",
       "      <td>2022-07-07 05:00:00+00:00</td>\n",
       "      <td>2022-07-07</td>\n",
       "      <td>5</td>\n",
       "      <td>1.15795</td>\n",
       "      <td>15.0</td>\n",
       "      <td>90.0</td>\n",
       "      <td>0.1</td>\n",
       "      <td>0.1</td>\n",
       "      <td>0.0</td>\n",
       "      <td>51.0</td>\n",
       "      <td>59.0</td>\n",
       "      <td>16.6</td>\n",
       "      <td>31.3</td>\n",
       "      <td>3</td>\n",
       "      <td>7</td>\n",
       "      <td>7</td>\n",
       "      <td>2022</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1647597600000</td>\n",
       "      <td>2022-03-18 10:00:00+00:00</td>\n",
       "      <td>2022-03-18</td>\n",
       "      <td>10</td>\n",
       "      <td>1.48754</td>\n",
       "      <td>8.4</td>\n",
       "      <td>60.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>21.9</td>\n",
       "      <td>45.4</td>\n",
       "      <td>4</td>\n",
       "      <td>18</td>\n",
       "      <td>3</td>\n",
       "      <td>2022</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       timestamp                  datetime        date  hour  \\\n",
       "0  1682280000000 2023-04-23 20:00:00+00:00  2023-04-23    20   \n",
       "1  1678816800000 2023-03-14 18:00:00+00:00  2023-03-14    18   \n",
       "2  1697259600000 2023-10-14 05:00:00+00:00  2023-10-14     5   \n",
       "3  1657170000000 2022-07-07 05:00:00+00:00  2022-07-07     5   \n",
       "4  1647597600000 2022-03-18 10:00:00+00:00  2022-03-18    10   \n",
       "\n",
       "   dk1_spotpricedkk_kwh  temperature_2m  relative_humidity_2m  precipitation  \\\n",
       "0               1.02178            10.4                  74.0            0.0   \n",
       "1               0.77461             0.5                  88.0            0.0   \n",
       "2              -0.01551             9.8                  71.0            0.0   \n",
       "3               1.15795            15.0                  90.0            0.1   \n",
       "4               1.48754             8.4                  60.0            0.0   \n",
       "\n",
       "   rain  snowfall  weather_code  cloud_cover  wind_speed_10m  wind_gusts_10m  \\\n",
       "0   0.0       0.0           3.0        100.0             7.6            10.1   \n",
       "1   0.0       0.0           0.0          0.0            11.6            22.7   \n",
       "2   0.0       0.0           1.0         23.0            29.5            54.7   \n",
       "3   0.1       0.0          51.0         59.0            16.6            31.3   \n",
       "4   0.0       0.0           0.0          0.0            21.9            45.4   \n",
       "\n",
       "   dayofweek  day  month  year  workday  \n",
       "0          6   23      4  2023        0  \n",
       "1          1   14      3  2023        1  \n",
       "2          5   14     10  2023        0  \n",
       "3          3    7      7  2022        1  \n",
       "4          4   18      3  2022        1  "
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Display the first 5 rows of the selected features\n",
    "selected_features_training.show(5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A `Feature View` stands between the **Feature Groups** and **Training Dataset**. Π‘ombining **Feature Groups** we can create a **Feature View** which stores a metadata of our data. Having the **Feature View** we can create a **Training Dataset**.\n",
    "\n",
    "In order to create Feature View we can use `fs.get_or_create_feature_view()` method.\n",
    "\n",
    "We can specify parameters:\n",
    "\n",
    "- `name` - Name of the feature view to create.\n",
    "- `version` - Version of the feature view to create.\n",
    "- `query` - Query object with the data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Feature view created successfully, explore it at \n",
      "https://c.app.hopsworks.ai:443/p/550040/fs/545863/fv/dk1_electricity_training_feature_view/version/1\n"
     ]
    }
   ],
   "source": [
    "# Getting or creating a feature view named 'dk1_electricity_training_feature_view'\n",
    "version = 1\n",
    "feature_view_training = fs.get_or_create_feature_view(\n",
    "    name='dk1_electricity_training_feature_view',\n",
    "    version=version,\n",
    "    query=selected_features_training,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## <span style=\"color:#2656a3;\"> πŸ‹οΈ Training Dataset Creation</span>\n",
    "\n",
    "In Hopsworks, a training dataset is generated from a query defined by the parent FeatureView, which determines the set of features.\n",
    "\n",
    "**Training Dataset may contain splits such as:** \n",
    "* Training set: This subset of the training data is utilized for model training.\n",
    "* Validation set: Used for evaluating hyperparameters during model training. *(We have not included a validation set for this project)*\n",
    "* Test set: Reserved as a holdout subset of training data for evaluating a trained model's performance.\n",
    "\n",
    "Training dataset is created using `fs.training_data()` method."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Finished: Reading data from Hopsworks, using ArrowFlight (5.01s) \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "VersionWarning: Incremented version to `2`.\n"
     ]
    }
   ],
   "source": [
    "# Retrieve training data from the feature view 'feature_view_training', assigning the features to 'X'.\n",
    "X, _ = feature_view_training.training_data(\n",
    "    description = 'Electricity Prices Training Dataset',\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 20530 entries, 0 to 20529\n",
      "Data columns (total 19 columns):\n",
      " #   Column                Non-Null Count  Dtype  \n",
      "---  ------                --------------  -----  \n",
      " 0   timestamp             20530 non-null  int64  \n",
      " 1   datetime              20530 non-null  object \n",
      " 2   date                  20530 non-null  object \n",
      " 3   hour                  20530 non-null  int64  \n",
      " 4   dk1_spotpricedkk_kwh  20530 non-null  float64\n",
      " 5   temperature_2m        20530 non-null  float64\n",
      " 6   relative_humidity_2m  20530 non-null  float64\n",
      " 7   precipitation         20530 non-null  float64\n",
      " 8   rain                  20530 non-null  float64\n",
      " 9   snowfall              20530 non-null  float64\n",
      " 10  weather_code          20530 non-null  float64\n",
      " 11  cloud_cover           20530 non-null  float64\n",
      " 12  wind_speed_10m        20530 non-null  float64\n",
      " 13  wind_gusts_10m        20530 non-null  float64\n",
      " 14  dayofweek             20530 non-null  int64  \n",
      " 15  day                   20530 non-null  int64  \n",
      " 16  month                 20530 non-null  int64  \n",
      " 17  year                  20530 non-null  int64  \n",
      " 18  workday               20530 non-null  int64  \n",
      "dtypes: float64(10), int64(7), object(2)\n",
      "memory usage: 3.0+ MB\n"
     ]
    }
   ],
   "source": [
    "# Show the information for the training data\n",
    "X.info()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### <span style=\"color:#2656a3;\"> ⛳️ Dataset with train and test splits</span>\n",
    "\n",
    "Here we define our train and test splits for traning the model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Importing function for splitting the data into training and testing sets\n",
    "from sklearn.model_selection import train_test_split"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Drop the columns 'date', 'datetime', and 'timestamp' from the DataFrame 'X' which contain the features\n",
    "X = X.drop(columns=['date', 'datetime', 'timestamp'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Remove the dependent variable 'dk1_spotpricedkk_kwh' from the DataFrame 'X' and assign it to the variable 'y'\n",
    "y = X.pop('dk1_spotpricedkk_kwh')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Split the features and the dependent variable into training and testing sets using the train_test_split function\n",
    "# This splits the data randomly into 80% training and 20% testing sets. We set the random_state to 42 to ensure reproducibility.\n",
    "X_train, X_test, y_train, y_test = train_test_split(\n",
    "    X, \n",
    "    y, \n",
    "    test_size=0.2, \n",
    "    random_state=42,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>hour</th>\n",
       "      <th>temperature_2m</th>\n",
       "      <th>relative_humidity_2m</th>\n",
       "      <th>precipitation</th>\n",
       "      <th>rain</th>\n",
       "      <th>snowfall</th>\n",
       "      <th>weather_code</th>\n",
       "      <th>cloud_cover</th>\n",
       "      <th>wind_speed_10m</th>\n",
       "      <th>wind_gusts_10m</th>\n",
       "      <th>dayofweek</th>\n",
       "      <th>day</th>\n",
       "      <th>month</th>\n",
       "      <th>year</th>\n",
       "      <th>workday</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>16085</th>\n",
       "      <td>20</td>\n",
       "      <td>2.6</td>\n",
       "      <td>90.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>16.9</td>\n",
       "      <td>4</td>\n",
       "      <td>18</td>\n",
       "      <td>3</td>\n",
       "      <td>2022</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6561</th>\n",
       "      <td>21</td>\n",
       "      <td>16.1</td>\n",
       "      <td>93.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>11.4</td>\n",
       "      <td>20.2</td>\n",
       "      <td>0</td>\n",
       "      <td>21</td>\n",
       "      <td>8</td>\n",
       "      <td>2023</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11568</th>\n",
       "      <td>2</td>\n",
       "      <td>12.7</td>\n",
       "      <td>80.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>19.7</td>\n",
       "      <td>40.0</td>\n",
       "      <td>2</td>\n",
       "      <td>27</td>\n",
       "      <td>7</td>\n",
       "      <td>2022</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7530</th>\n",
       "      <td>4</td>\n",
       "      <td>12.8</td>\n",
       "      <td>96.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>39.0</td>\n",
       "      <td>6.9</td>\n",
       "      <td>13.3</td>\n",
       "      <td>1</td>\n",
       "      <td>26</td>\n",
       "      <td>9</td>\n",
       "      <td>2023</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18489</th>\n",
       "      <td>4</td>\n",
       "      <td>6.5</td>\n",
       "      <td>93.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>100.0</td>\n",
       "      <td>23.2</td>\n",
       "      <td>44.3</td>\n",
       "      <td>4</td>\n",
       "      <td>4</td>\n",
       "      <td>2</td>\n",
       "      <td>2022</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       hour  temperature_2m  relative_humidity_2m  precipitation  rain  \\\n",
       "16085    20             2.6                  90.0            0.0   0.0   \n",
       "6561     21            16.1                  93.0            0.0   0.0   \n",
       "11568     2            12.7                  80.0            0.0   0.0   \n",
       "7530      4            12.8                  96.0            0.0   0.0   \n",
       "18489     4             6.5                  93.0            0.0   0.0   \n",
       "\n",
       "       snowfall  weather_code  cloud_cover  wind_speed_10m  wind_gusts_10m  \\\n",
       "16085       0.0           0.0          0.0             9.0            16.9   \n",
       "6561        0.0           0.0          1.0            11.4            20.2   \n",
       "11568       0.0           0.0         10.0            19.7            40.0   \n",
       "7530        0.0           1.0         39.0             6.9            13.3   \n",
       "18489       0.0           3.0        100.0            23.2            44.3   \n",
       "\n",
       "       dayofweek  day  month  year  workday  \n",
       "16085          4   18      3  2022        1  \n",
       "6561           0   21      8  2023        1  \n",
       "11568          2   27      7  2022        1  \n",
       "7530           1   26      9  2023        1  \n",
       "18489          4    4      2  2022        1  "
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Display the first 5 rows of the features in the training data\n",
    "X_train.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "16085    1.86011\n",
       "6561     1.23962\n",
       "11568    1.02308\n",
       "7530     0.77978\n",
       "18489    0.85414\n",
       "Name: dk1_spotpricedkk_kwh, dtype: float64"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Display the first 5 rows of the dependent variable in the training data\n",
    "y_train.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## <span style=\"color:#2656a3;\">🧬 Modeling</span>\n",
    "\n",
    "For Modeling we initialize the `XGBoost Regressor`.\n",
    "\n",
    "The XGBoost Regressor is a powerful and versatile algorithm known for its effectiveness in a wide range of regression tasks, including predictive modeling and time series forecasting. Specifically tailored for regression tasks, it aims to predict continuous numerical values. The algorithm constructs an ensemble of regression trees, optimizing them to minimize a specified loss function, commonly the mean squared error for regression tasks. Ultimately, the final prediction is derived by aggregating the predictions of individual trees."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Importing the XGBoost Regressor\n",
    "import xgboost as xgb\n",
    "\n",
    "# Initialize the XGBoost Regressor\n",
    "model = xgb.XGBRegressor()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "DeprecationWarning: np.find_common_type is deprecated.  Please use `np.result_type` or `np.promote_types`.\n",
      "See https://numpy.org/devdocs/release/1.25.0-notes.html and the docs for more information.  (Deprecated NumPy 1.25)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<style>#sk-container-id-1 {\n",
       "  /* Definition of color scheme common for light and dark mode */\n",
       "  --sklearn-color-text: black;\n",
       "  --sklearn-color-line: gray;\n",
       "  /* Definition of color scheme for unfitted estimators */\n",
       "  --sklearn-color-unfitted-level-0: #fff5e6;\n",
       "  --sklearn-color-unfitted-level-1: #f6e4d2;\n",
       "  --sklearn-color-unfitted-level-2: #ffe0b3;\n",
       "  --sklearn-color-unfitted-level-3: chocolate;\n",
       "  /* Definition of color scheme for fitted estimators */\n",
       "  --sklearn-color-fitted-level-0: #f0f8ff;\n",
       "  --sklearn-color-fitted-level-1: #d4ebff;\n",
       "  --sklearn-color-fitted-level-2: #b3dbfd;\n",
       "  --sklearn-color-fitted-level-3: cornflowerblue;\n",
       "\n",
       "  /* Specific color for light theme */\n",
       "  --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
       "  --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
       "  --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
       "  --sklearn-color-icon: #696969;\n",
       "\n",
       "  @media (prefers-color-scheme: dark) {\n",
       "    /* Redefinition of color scheme for dark theme */\n",
       "    --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
       "    --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
       "    --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
       "    --sklearn-color-icon: #878787;\n",
       "  }\n",
       "}\n",
       "\n",
       "#sk-container-id-1 {\n",
       "  color: var(--sklearn-color-text);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 pre {\n",
       "  padding: 0;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 input.sk-hidden--visually {\n",
       "  border: 0;\n",
       "  clip: rect(1px 1px 1px 1px);\n",
       "  clip: rect(1px, 1px, 1px, 1px);\n",
       "  height: 1px;\n",
       "  margin: -1px;\n",
       "  overflow: hidden;\n",
       "  padding: 0;\n",
       "  position: absolute;\n",
       "  width: 1px;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-dashed-wrapped {\n",
       "  border: 1px dashed var(--sklearn-color-line);\n",
       "  margin: 0 0.4em 0.5em 0.4em;\n",
       "  box-sizing: border-box;\n",
       "  padding-bottom: 0.4em;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-container {\n",
       "  /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
       "     but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
       "     so we also need the `!important` here to be able to override the\n",
       "     default hidden behavior on the sphinx rendered scikit-learn.org.\n",
       "     See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
       "  display: inline-block !important;\n",
       "  position: relative;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-text-repr-fallback {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       "div.sk-parallel-item,\n",
       "div.sk-serial,\n",
       "div.sk-item {\n",
       "  /* draw centered vertical line to link estimators */\n",
       "  background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
       "  background-size: 2px 100%;\n",
       "  background-repeat: no-repeat;\n",
       "  background-position: center center;\n",
       "}\n",
       "\n",
       "/* Parallel-specific style estimator block */\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item::after {\n",
       "  content: \"\";\n",
       "  width: 100%;\n",
       "  border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
       "  flex-grow: 1;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel {\n",
       "  display: flex;\n",
       "  align-items: stretch;\n",
       "  justify-content: center;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  position: relative;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item {\n",
       "  display: flex;\n",
       "  flex-direction: column;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
       "  align-self: flex-end;\n",
       "  width: 50%;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
       "  align-self: flex-start;\n",
       "  width: 50%;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
       "  width: 0;\n",
       "}\n",
       "\n",
       "/* Serial-specific style estimator block */\n",
       "\n",
       "#sk-container-id-1 div.sk-serial {\n",
       "  display: flex;\n",
       "  flex-direction: column;\n",
       "  align-items: center;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  padding-right: 1em;\n",
       "  padding-left: 1em;\n",
       "}\n",
       "\n",
       "\n",
       "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
       "clickable and can be expanded/collapsed.\n",
       "- Pipeline and ColumnTransformer use this feature and define the default style\n",
       "- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
       "*/\n",
       "\n",
       "/* Pipeline and ColumnTransformer style (default) */\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable {\n",
       "  /* Default theme specific background. It is overwritten whether we have a\n",
       "  specific estimator or a Pipeline/ColumnTransformer */\n",
       "  background-color: var(--sklearn-color-background);\n",
       "}\n",
       "\n",
       "/* Toggleable label */\n",
       "#sk-container-id-1 label.sk-toggleable__label {\n",
       "  cursor: pointer;\n",
       "  display: block;\n",
       "  width: 100%;\n",
       "  margin-bottom: 0;\n",
       "  padding: 0.5em;\n",
       "  box-sizing: border-box;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
       "  /* Arrow on the left of the label */\n",
       "  content: \"β–Έ\";\n",
       "  float: left;\n",
       "  margin-right: 0.25em;\n",
       "  color: var(--sklearn-color-icon);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
       "  color: var(--sklearn-color-text);\n",
       "}\n",
       "\n",
       "/* Toggleable content - dropdown */\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content {\n",
       "  max-height: 0;\n",
       "  max-width: 0;\n",
       "  overflow: hidden;\n",
       "  text-align: left;\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content pre {\n",
       "  margin: 0.2em;\n",
       "  border-radius: 0.25em;\n",
       "  color: var(--sklearn-color-text);\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
       "  /* Expand drop-down */\n",
       "  max-height: 200px;\n",
       "  max-width: 100%;\n",
       "  overflow: auto;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
       "  content: \"β–Ύ\";\n",
       "}\n",
       "\n",
       "/* Pipeline/ColumnTransformer-specific style */\n",
       "\n",
       "#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Estimator-specific style */\n",
       "\n",
       "/* Colorize estimator box */\n",
       "#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
       "#sk-container-id-1 div.sk-label label {\n",
       "  /* The background is the default theme color */\n",
       "  color: var(--sklearn-color-text-on-default-background);\n",
       "}\n",
       "\n",
       "/* On hover, darken the color of the background */\n",
       "#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "/* Label box, darken color on hover, fitted */\n",
       "#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Estimator label */\n",
       "\n",
       "#sk-container-id-1 div.sk-label label {\n",
       "  font-family: monospace;\n",
       "  font-weight: bold;\n",
       "  display: inline-block;\n",
       "  line-height: 1.2em;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-label-container {\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       "/* Estimator-specific */\n",
       "#sk-container-id-1 div.sk-estimator {\n",
       "  font-family: monospace;\n",
       "  border: 1px dotted var(--sklearn-color-border-box);\n",
       "  border-radius: 0.25em;\n",
       "  box-sizing: border-box;\n",
       "  margin-bottom: 0.5em;\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-estimator.fitted {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "/* on hover */\n",
       "#sk-container-id-1 div.sk-estimator:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
       "\n",
       "/* Common style for \"i\" and \"?\" */\n",
       "\n",
       ".sk-estimator-doc-link,\n",
       "a:link.sk-estimator-doc-link,\n",
       "a:visited.sk-estimator-doc-link {\n",
       "  float: right;\n",
       "  font-size: smaller;\n",
       "  line-height: 1em;\n",
       "  font-family: monospace;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  border-radius: 1em;\n",
       "  height: 1em;\n",
       "  width: 1em;\n",
       "  text-decoration: none !important;\n",
       "  margin-left: 1ex;\n",
       "  /* unfitted */\n",
       "  border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-unfitted-level-1);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link.fitted,\n",
       "a:link.sk-estimator-doc-link.fitted,\n",
       "a:visited.sk-estimator-doc-link.fitted {\n",
       "  /* fitted */\n",
       "  border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-fitted-level-1);\n",
       "}\n",
       "\n",
       "/* On hover */\n",
       "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
       ".sk-estimator-doc-link:hover,\n",
       "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
       ".sk-estimator-doc-link:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
       ".sk-estimator-doc-link.fitted:hover,\n",
       "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
       ".sk-estimator-doc-link.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "/* Span, style for the box shown on hovering the info icon */\n",
       ".sk-estimator-doc-link span {\n",
       "  display: none;\n",
       "  z-index: 9999;\n",
       "  position: relative;\n",
       "  font-weight: normal;\n",
       "  right: .2ex;\n",
       "  padding: .5ex;\n",
       "  margin: .5ex;\n",
       "  width: min-content;\n",
       "  min-width: 20ex;\n",
       "  max-width: 50ex;\n",
       "  color: var(--sklearn-color-text);\n",
       "  box-shadow: 2pt 2pt 4pt #999;\n",
       "  /* unfitted */\n",
       "  background: var(--sklearn-color-unfitted-level-0);\n",
       "  border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link.fitted span {\n",
       "  /* fitted */\n",
       "  background: var(--sklearn-color-fitted-level-0);\n",
       "  border: var(--sklearn-color-fitted-level-3);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link:hover span {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       "/* \"?\"-specific style due to the `<a>` HTML tag */\n",
       "\n",
       "#sk-container-id-1 a.estimator_doc_link {\n",
       "  float: right;\n",
       "  font-size: 1rem;\n",
       "  line-height: 1em;\n",
       "  font-family: monospace;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  border-radius: 1rem;\n",
       "  height: 1rem;\n",
       "  width: 1rem;\n",
       "  text-decoration: none;\n",
       "  /* unfitted */\n",
       "  color: var(--sklearn-color-unfitted-level-1);\n",
       "  border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 a.estimator_doc_link.fitted {\n",
       "  /* fitted */\n",
       "  border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-fitted-level-1);\n",
       "}\n",
       "\n",
       "/* On hover */\n",
       "#sk-container-id-1 a.estimator_doc_link:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-3);\n",
       "}\n",
       "</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
       "             colsample_bylevel=None, colsample_bynode=None,\n",
       "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
       "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
       "             gamma=None, grow_policy=None, importance_type=None,\n",
       "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
       "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
       "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
       "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
       "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
       "             num_parallel_tree=None, random_state=None, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;XGBRegressor<span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
       "             colsample_bylevel=None, colsample_bynode=None,\n",
       "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
       "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
       "             gamma=None, grow_policy=None, importance_type=None,\n",
       "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
       "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
       "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
       "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
       "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
       "             num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div>"
      ],
      "text/plain": [
       "XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
       "             colsample_bylevel=None, colsample_bynode=None,\n",
       "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
       "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
       "             gamma=None, grow_policy=None, importance_type=None,\n",
       "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
       "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
       "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
       "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
       "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
       "             num_parallel_tree=None, random_state=None, ...)"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Train the model on the training data\n",
    "model.fit(X_train, y_train)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## <span style='color:#ff5f27'> βš–οΈ Model Validation\n",
    "\n",
    "After fitting the XGBoost Regressor, we evaluate the performance using the following validation metrics.\n",
    "\n",
    "**Mean Squared Error (MSE):**\n",
    "- Measures the average squared difference between the actual and predicted values in a regression problem. \n",
    "- It squares the differences between predicted and actual values to penalize larger errors more heavily.\n",
    "- Lower MSE values indicate better model performance.\n",
    "\n",
    "**R-squared (RΒ²):**\n",
    "- Measures the proportion of the variance in the dependent variable (target) that is predictable from the independent variables (features) in a regression model.\n",
    "- R-squared values range from 0 to 1, where 0 indicates that the model does not explain any variability in the target variable, and 1 indicates that the model explains all the variability.\n",
    "- R-squared is a useful metric for assessing how well the regression model fits the observed data. However, it does not provide information about the goodness of fit on new, unseen data.\n",
    "\n",
    "**Mean Absolute Error (MAE):**\n",
    "- Measures the average absolute difference between the actual and predicted values.\n",
    "- MAE is less sensitive to outliers compared to MSE because it does not square the errors.\n",
    "- Like MSE and RMSE, lower MAE values indicate better model performance.\n",
    "\n",
    "MSE focus on the magnitude of errors, while R-squared provides insight into the proportion of variance explained by the model. MAE provides a measure of average error without considering the direction of errors."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Importing the model validation metric functions from the sklearn library\n",
    "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⛳️ MSE: 0.058650463336654024\n",
      "⛳️ R^2: 0.932941138051651\n",
      "⛳️ MAE: 0.1659344568393483\n"
     ]
    }
   ],
   "source": [
    "# Predict target values on the test set\n",
    "y_pred = model.predict(X_test)\n",
    "\n",
    "# Calculate Mean Squared Error (MSE) using sklearn\n",
    "mse = mean_squared_error(y_test, y_pred)\n",
    "print(\"⛳️ MSE:\", mse)\n",
    "\n",
    "# Calculate R squared using sklearn\n",
    "r2 = r2_score(y_test, y_pred)\n",
    "print(\"⛳️ R^2:\", r2)\n",
    "\n",
    "# Calculate Mean Absolute Error (MAE) using sklearn\n",
    "mae = mean_absolute_error(y_test, y_pred)\n",
    "print(\"⛳️ MAE:\", mae)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this case, the `MSE` is 0.0546, which suggests that on average, the squared difference between the actual and predicted values is relatively low. An `R^2` value of 0.933 indicates that approximately 93.33% of the variance in the dependent variable is predictable from the feature variables in the model. This is a high value, suggesting that the model explains a significant portion of the variability in the data. A `MAE` of 0.1604 suggests that, on average, the model's predictions are off by approximately 0.1604 units from the actual values. Similar to MSE, a lower MAE indicates better accuracy of the model.\n",
    "\n",
    "In summary, based on these metrics, the model seems to perform quite well. It has relatively low error (both in terms of MSE and MAE), and a high percentage of the variance in the dependent variable is explained by the feature variables, as indicated by the high R-squared value."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABR30lEQVR4nO3deVhU9f4H8PewDSACKpssCor7goimmIoLiUuWuWRkguaWuZbXEsutuqLVdWshr5pUN3fTNPdcMzc0cc8tVG4uuAQIJArz/f3hZX6ODDADs5xz5v16nnmUM2fO+cxZ3+d7llEJIQSIiIiIZM7O2gUQERERmQJDDRERESkCQw0REREpAkMNERERKQJDDRERESkCQw0REREpAkMNERERKQJDDRERESkCQw0REREpAkMNScagQYMQHBxs7TKsLjk5GSqVCleuXNF269ChAzp06GC1mp6mr8aKuHLlClQqFZKTk00yPFMp73RXqVSYPn26yesxB6nWmpOTg6FDh8LPzw8qlQrjx4+3dkkkAww1FlK0EyjpdejQIWuXaJCzZ89i+vTpJtuZSVFwcLDOvPHx8UG7du2wbt06a5dmlLy8PEyfPh179uyxWg3Tp08vdbm/efOmReq4fv06pk+fjtTUVIuM72kHDhzA9OnTkZmZadLhdujQQWd6Vq1aFS1btsTXX38NjUZj0nFZ2syZM5GcnIyRI0fiu+++w8CBA61dkiQMGjRIZ567ubmhVq1a6Nu3L9auXat3vnfo0AGNGzcu1n3nzp1wdXVF8+bNce/ePQDA9u3bMWTIEDRu3Bj29vayO9B0sHYBtuaDDz5ASEhIse6hoaFWqMZ4Z8+exYwZM9ChQwfZLezGaNasGSZMmADg8Q5x4cKF6N27N5KSkvDGG29YvJ7t27cb/Zm8vDzMmDEDAKzeypOUlAQ3N7di3T09PS0y/uvXr2PGjBkIDg5Gs2bNDP5ceaY7APz9999wcPj/zeuBAwcwY8YMDBo0yOTfOTAwEImJiQCA27dv49tvv8WQIUNw4cIFzJo1y+hapWLXrl1o3bo1pk2bZu1SJEetVmPx4sUAHs+/q1evYuPGjejbty86dOiAH3/8Ee7u7qUOY9euXejZsyfq1auHn3/+GVWrVgUALFu2DCtXrkTz5s3h7+9v9u9iatJbkhWuW7duaNGihbXLoDIEBATgtdde0/4dFxeH0NBQzJ07t8RQU1BQAI1GAycnJ5PXY45hWlLfvn3h5eVl7TIMlpeXB1dX13JPd2dnZxNXVDIPDw+dZXXEiBGoV68ePv/8c3z44YdwdHQs9hmNRoOHDx/C2dnZorUaIyMjAw0bNjTZ8My1fgoh8ODBA7i4uJh0uKVxcHDQmecA8NFHH2HWrFlISEjAsGHDsHLlyhI/v3fvXvTs2RN169bVCTTA4xayRYsWwdHREc8//zxOnz5ttu9hDjz9JDHTpk2DnZ0ddu7cqdN9+PDhcHJywokTJwAAe/bsgUqlwsqVKzF58mT4+fmhUqVKeOGFF5Cenl5suIcPH0bXrl3h4eEBV1dXREVF4ddffy3W359//okhQ4bA398farUaISEhGDlyJB4+fIjk5GT069cPANCxY0dt8+eTpze2bNmCdu3aoVKlSqhcuTJ69OiBM2fOFBvP+vXr0bhxYzg7O6Nx48YGn9p5/vnnUatWLb3vRUZG6gTGHTt2oG3btvD09ISbmxvq1auHyZMnGzSep/n5+aFBgwZIS0sD8P/XgHz66aeYN28eateuDbVajbNnzwIAfv/9d/Tt2xdVq1aFs7MzWrRogQ0bNhQb7pkzZ9CpUye4uLggMDAQH330UYnNx0+3tjx48ADTp09H3bp14ezsjOrVq6N37964fPkyrly5Am9vbwDAjBkztPPqyWsnTF2jORhaY2ZmJt566y0EBwdDrVYjMDAQcXFxuHPnDvbs2YOWLVsCAAYPHqydFkXX7xQ1zR87dgzt27eHq6urdjkxdroXeXJaT58+HRMnTgQAhISEaMd/5coVREVFISwsTO93r1evHmJiYoyeZq6urmjdujVyc3Nx+/ZtbT2jR4/G999/j0aNGkGtVmPr1q3Fai1S2nbgyWk+fvx4BAUFQa1WIzQ0FLNnzy62bKxYsQIRERGoXLky3N3d0aRJE8yfP7/E+ou2bWlpadi0aZPO9AIeh50hQ4bA19cXzs7OCAsLwzfffKMzjLLWT32WLl2KTp06wcfHB2q1Gg0bNkRSUlKx/oKDg/H8889j27ZtaNGiBVxcXLBw4UKjpsmnn36KNm3aoFq1anBxcUFERATWrFlTYm2GmjRpErp06YLVq1fjwoULevv55Zdf0KNHD4SGhuLnn39GtWrVdN739/fXG4Tlgi01FpaVlYU7d+7odFOpVNoF6/3338fGjRsxZMgQnDp1CpUrV8a2bduwaNEifPjhh8U2gP/85z+hUqnw7rvvIiMjA/PmzUN0dDRSU1O1Rw67du1Ct27dEBERoQ1NRSvwL7/8gmeeeQbA4yb6Z555BpmZmRg+fDjq16+PP//8E2vWrEFeXh7at2+PsWPHYsGCBZg8eTIaNGgAANp/v/vuO8THxyMmJgazZ89GXl4ekpKS0LZtWxw/flx7umr79u3o06cPGjZsiMTERNy9exeDBw9GYGBgmdOvf//+iIuLQ0pKinZHBQBXr17FoUOH8MknnwB4vCN+/vnn0bRpU3zwwQdQq9W4dOmS3iBniEePHiE9Pb3YBmDp0qV48OABhg8fDrVajapVq+LMmTN49tlnERAQgEmTJqFSpUpYtWoVevXqhbVr1+Kll14CANy8eRMdO3ZEQUGBtr9///vfBh3xFRYW4vnnn8fOnTvxyiuvYNy4cbh//z527NiB06dPIzo6GklJSRg5ciReeukl9O7dGwDQtGlT7fQxd41PKjpf/yQHB4dST8UYWmNOTg7atWuHc+fO4fXXX0fz5s1x584dbNiwAf/973/RoEEDfPDBB5g6dSqGDx+Odu3aAQDatGmjHdfdu3fRrVs3vPLKK3jttdfg6+tbruleu3btYp/p3bs3Lly4gOXLl2Pu3LnaFitvb28MHDgQw4YNw+nTp3WueUhJScGFCxfw/vvvlz1x9fjjjz9gb2+vM3137dqFVatWYfTo0fDy8irx9HFZ2wEnJyfk5eUhKioKf/75J0aMGIEaNWrgwIEDSEhIwI0bNzBv3jwAjw8sYmNj0blzZ8yePRsAcO7cOfz6668YN26c3vE3aNAA3333Hd566y0EBgZqTwN7e3vj77//RocOHXDp0iWMHj0aISEhWL16NQYNGoTMzMxiw9S3fpYkKSkJjRo1wgsvvAAHBwds3LgRb775JjQaDUaNGqXT7/nz5xEbG4sRI0Zg2LBhqFevnsHTBADmz5+PF154AQMGDMDDhw+xYsUK9OvXDz/99BN69OhRYo2GGDhwILZv344dO3agbt26Ou/9+uuv6N69O0JCQrBz505ZtZ4aTJBFLF26VADQ+1Kr1Tr9njp1Sjg5OYmhQ4eKv/76SwQEBIgWLVqIR48eafvZvXu3ACACAgJEdna2tvuqVasEADF//nwhhBAajUbUqVNHxMTECI1Go+0vLy9PhISEiOeee07bLS4uTtjZ2YmUlJRi9Rd9dvXq1QKA2L17t8779+/fF56enmLYsGE63W/evCk8PDx0ujdr1kxUr15dZGZmartt375dABA1a9YsdTpmZWUJtVotJkyYoNP9448/FiqVSly9elUIIcTcuXMFAHH79u1Sh6dPzZo1RZcuXcTt27fF7du3xYkTJ8Qrr7wiAIgxY8YIIYRIS0sTAIS7u7vIyMjQ+Xznzp1FkyZNxIMHD7TdNBqNaNOmjahTp4622/jx4wUAcfjwYW23jIwM4eHhIQCItLQ0bfeoqCgRFRWl/fvrr78WAMScOXOK1V80r27fvi0AiGnTphXrxxw16jNt2rQSl/t69epp+yuankuXLjW6xqlTpwoA4ocffihxWqSkpBQbfpGoqCgBQHz11Vd63zN2ugshik33Tz75RO/0yszMFM7OzuLdd9/V6T527FhRqVIlkZOTU2w8T9dXv3597bJ67tw5MXbsWAFA9OzZU6ceOzs7cebMmWLDeLpWQ7YDH374oahUqZK4cOGCzvuTJk0S9vb24tq1a0IIIcaNGyfc3d1FQUFBqd9Dn5o1a4oePXrodJs3b54AIP7zn/9ouz18+FBERkYKNzc37bawtPWzJHl5ecW6xcTEiFq1ahWrC4DYunWrTndDp4m+cT18+FA0btxYdOrUqcw64+PjRaVKlUp8//jx4wKAeOutt7TdoqKiRNWqVUXlypVFo0aNDJ4mPXr0KHObLDU8/WRhX3zxBXbs2KHz2rJli04/jRs3xowZM7B48WLExMTgzp07+Oabb/RezBcXF4fKlStr/+7bty+qV6+OzZs3AwBSU1Nx8eJFvPrqq7h79y7u3LmDO3fuIDc3F507d8a+ffug0Wig0Wiwfv169OzZU+81PyqVqtTvtWPHDmRmZiI2NlY7jjt37sDe3h6tWrXC7t27AQA3btxAamoq4uPj4eHhof38c889Z9D5c3d3d3Tr1g2rVq2CEELbfeXKlWjdujVq1KgB4P8vQP3xxx/Ldapk+/bt8Pb2hre3N8LCwrB69WoMHDhQe7RZpE+fPtrTPMDjFoldu3bh5Zdfxv3797XT4e7du4iJicHFixfx559/AgA2b96M1q1ba1vKgMdHowMGDCizvrVr18LLywtjxowp9l5Z88pSNT5d79PL/dKlS01S49q1axEWFqZtuTFmWhRRq9UYPHiwQd+jvNNdHw8PD7z44otYvny5dnkuLCzEypUr0atXL1SqVKnMYfz+++/aZbVBgwb47LPP0KNHD3z99dc6/UVFRZW5jhm6HVi9ejXatWuHKlWq6Kzv0dHRKCwsxL59+wA8Xg9zc3OxY8cOg6ZHWTZv3gw/Pz/ExsZquzk6OmLs2LHIycnB3r17dfp/ev0szZOtj0Ut6lFRUfjjjz+QlZWl029ISEixU4OGTpOnx/XXX38hKysL7dq1w2+//WZQraUpuiD//v37Ot1zc3Nx//59+Pr6lnkRsZzx9JOFPfPMMwZdKDxx4kSsWLECR44cwcyZM0vcGNWpU0fnb5VKhdDQUO3554sXLwIA4uPjSxxXVlYWHj58iOzsbL23/RmiaDydOnXS+37RSnT16lW9dQOPryEwZKXu378/1q9fj4MHD6JNmza4fPkyjh07ptO8279/fyxevBhDhw7FpEmT0LlzZ/Tu3Rt9+/aFnV3ZWb5Vq1b46KOPoFKp4OrqigYNGug9VfL0nWyXLl2CEAJTpkzBlClT9A47IyMDAQEBuHr1Klq1alXs/Xr16pVZ3+XLl1GvXr1y3bViqRqf1L59e6Oauo2p8fLly+jTp49R9TwtICDAoAtIKzLdSxIXF4eVK1fil19+Qfv27fHzzz/j1q1bBt/CHBwcjEWLFkGlUsHZ2Rl16tSBj49Psf703XX5tNu3bxu0Hbh48SJOnjxZYmDIyMgAALz55ptYtWoVunXrhoCAAHTp0gUvv/wyunbtasA3K+7q1auoU6dOsXW46BR40faliCHfucivv/6KadOm4eDBg8jLy9N5LysrS+cgTN9wDZ0mAPDTTz/ho48+QmpqKvLz87XdyxOMn5aTkwMAOge7wOM7bOPi4vDuu+8iNjYWq1evhr29fYXHJzUMNRL1xx9/aIPCqVOnyj2colaKTz75pMRbWd3c3PRe81Ce8Xz33Xfw8/Mr9r4pdwI9e/aEq6srVq1ahTZt2mDVqlWws7PTXsQMPD4S2rdvH3bv3o1NmzZh69atWLlyJTp16oTt27eXuTJ7eXkhOjq6zFqevrakaDr84x//KPEiT2vfvs8ai7PknStPi4mJga+vL/7zn/+gffv2+M9//gM/Pz+Dlj8AqFSpUrmW1YrQaDR47rnn8M477+h9v+haDh8fH6SmpmLbtm3YsmULtmzZgqVLlyIuLq7Yxb3mYOh3vnz5Mjp37oz69etjzpw5CAoKgpOTEzZv3oy5c+cWa+3VN1xDp8kvv/yCF154Ae3bt8eXX36J6tWrw9HREUuXLsWyZcuM/IbFFd2tpG/9eOedd3D37l18/PHHGDZsGJYsWWKSICUlDDUSpNFoMGjQILi7u2P8+PGYOXMm+vbtq73Y80lFwaeIEAKXLl3SXhBadOGiu7t7qRs+b29vuLu7l3n7XkkrQNF4fHx8Sh1PzZo19dYNPL74zhCVKlXC888/j9WrV2POnDlYuXIl2rVrV+yZCnZ2dujcuTM6d+6MOXPmYObMmXjvvfewe/dug3cYxiq6M8vR0bHMcdSsWbPc06F27do4fPgwHj16VOKdCiXNK0vVWBHG1Fi7du1yL7fGMmS6Gzt+e3t7vPrqq0hOTsbs2bOxfv16DBs2zCpH0YZuB2rXro2cnByD1iMnJyf07NkTPXv2hEajwZtvvomFCxdiypQpRgfTmjVr4uTJk9BoNDqtNb///rv2/fLYuHEj8vPzsWHDBu0pbADa0+aGMHSarF27Fs7Ozti2bRvUarW2e2mnY43x3XffQaVS4bnnntP7/uzZs3Hv3j0sXrwYVapUwb/+9S+TjFcqeE2NBM2ZMwcHDhzAv//9b3z44Ydo06YNRo4cWeyuKQD49ttvdc6drlmzBjdu3EC3bt0AABEREahduzY+/fRTbbPkk4pu+bSzs0OvXr2wceNGHD16tFh/Ref7i87xP/1k1JiYGLi7u2PmzJl49OhRieOpXr06mjVrhm+++UbnPPWOHTtKvd3yaf3798f169exePFinDhxAv3799d5X1/LU1FL1ZPNvabm4+ODDh06YOHChbhx40ax94umAwB0794dhw4dwpEjR3Te//7778scT58+fXDnzh18/vnnxd4rmleurq4Ais8rS9VYEcbU2KdPH5w4cULvYwHKWm6NZch016es8Q8cOBB//fUXRowYgZycnGLPILEUQ7cDL7/8Mg4ePIht27YV6yczMxMFBQUAHt9V9vTwiw64yrMedu/eHTdv3tR5BktBQQE+++wzuLm5ISoqyuhhAtAGyCfnYVZWllFBw9BpYm9vD5VKhcLCQu37V65cwfr168tV+5NmzZqF7du3o3///npP8RdZuHAh+vbtizlz5uCjjz6q8HilhC01FrZlyxbtUcWT2rRpg1q1auHcuXOYMmUKBg0ahJ49ewJ4/BMLzZo1056fflLVqlXRtm1bDB48GLdu3cK8efMQGhqKYcOGAXi8EVm8eDG6deuGRo0aYfDgwQgICMCff/6J3bt3w93dHRs3bgTw+KFL27dvR1RUFIYPH44GDRrgxo0bWL16Nfbv3w9PT080a9YM9vb2mD17NrKysqBWq7XPdkhKSsLAgQPRvHlzvPLKK/D29sa1a9ewadMmPPvss9odQWJiInr06IG2bdvi9ddfx7179/DZZ5+hUaNGeoOXPt27d0flypXxj3/8A/b29sWuqfjggw+wb98+9OjRAzVr1kRGRga+/PJLBAYGom3btsbNNCN98cUXaNu2LZo0aYJhw4ahVq1auHXrFg4ePIj//ve/2mcNvfPOO/juu+/QtWtXjBs3Tnu7dNHRaGni4uLw7bff4u2338aRI0fQrl075Obm4ueff8abb76JF198ES4uLmjYsCFWrlyJunXromrVqmjcuDEaN25skRqftGbNGr1PFH7uuedKvH3a0BonTpyINWvWoF+/fnj99dcRERGBe/fuYcOGDfjqq68QFhaG2rVrw9PTE1999RUqV66MSpUqoVWrVkZdc2HodNcnIiICAPDee+/hlVdegaOjI3r27KkNO+Hh4WjcuDFWr16NBg0aoHnz5kbVZUqGbAcmTpyIDRs24Pnnn8egQYMQERGB3NxcnDp1CmvWrMGVK1fg5eWFoUOH4t69e+jUqRMCAwNx9epVfPbZZ2jWrJn2OhhjDB8+HAsXLsSgQYNw7NgxBAcHY82aNfj1118xb968YteRGKpLly7aFqWiYLlo0SL4+PjoDdX6GDpNevTogTlz5qBr16549dVXkZGRgS+++AKhoaEGr1MFBQX4z3/+A+Dxc5OuXr2KDRs24OTJk+jYsSP+/e9/l/p5Ozs7fP/998jKysKUKVNQtWpVvPnmmwCAkydPap8FdenSJWRlZWmDT1hYmHa/JFnWuenK9pR2Szf+d6tpQUGBaNmypQgMDNS53VkIIebPny8AiJUrVwoh/v+W7uXLl4uEhATh4+MjXFxcRI8ePbS3NT/p+PHjonfv3qJatWpCrVaLmjVripdfflns3LlTp7+rV6+KuLg44e3tLdRqtahVq5YYNWqUyM/P1/azaNEiUatWLWFvb1/s9u7du3eLmJgY4eHhIZydnUXt2rXFoEGDxNGjR3XGs3btWtGgQQOhVqtFw4YNxQ8//CDi4+ONun1wwIABAoCIjo4u9t7OnTvFiy++KPz9/YWTk5Pw9/cXsbGxxW631EffraRPK7pl9JNPPtH7/uXLl0VcXJzw8/MTjo6OIiAgQDz//PNizZo1Ov2dPHlSREVFCWdnZxEQECA+/PBDsWTJkjJv6Rbi8W2h7733nggJCRGOjo7Cz89P9O3bV1y+fFnbz4EDB0RERIRwcnIqduuuqWvUp7Rbup9cdvTd0m1MjXfv3hWjR48WAQEBwsnJSQQGBor4+Hhx584dbT8//vijaNiwoXBwcNAZV1RUlGjUqJHe+ss73Z+e1kI8vuU3ICBA2NnZ6Z12H3/8sQAgZs6cWeo0fbq+kmp/EgAxatSoEt97ulZDtgP3798XCQkJIjQ0VDg5OQkvLy/Rpk0b8emnn4qHDx8KIYRYs2aN6NKli/Dx8RFOTk6iRo0aYsSIEeLGjRtl1lzSenjr1i0xePBg4eXlJZycnESTJk2KLTdlrZ/6bNiwQTRt2lQ4OzuL4OBgMXv2bO0t/E/Oq9K2D4ZMEyGEWLJkiahTp45Qq9Wifv36YunSpdp1pSzx8fE665Crq6sIDg4Wffr0EWvWrBGFhYXFPlPScpKTkyNat24t7OzsxPfffy+EKH1fFR8fX2Z91qYSopQ2U5KsPXv2oGPHjli9ejX69u1r7XKIqILmz5+Pt956C1euXNG5roOIDMdraoiIrEwIgSVLliAqKoqBhqgCeE0NEZGV5ObmYsOGDdi9ezdOnTqFH3/80dolEckaQw0RkZXcvn0br776Kjw9PTF58mS88MIL1i6JSNZ4TQ0REREpAq+pISIiIkVgqCEiIiJFsKlrajQaDa5fv47KlSsr7vcuiIiIlEoIgfv378Pf37/UHyW2qVBz/fp1BAUFWbsMIiIiKof09HQEBgaW+L5NhZqiR2inp6fD3d3dytUQERGRIbKzsxEUFFTmT2HYVKgpOuXk7u7OUENERCQzZV06wguFiYiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIEWQVav7880+89tprqFatGlxcXNCkSRMcPXrU2mURERGRBDhYuwBD/fXXX3j22WfRsWNHbNmyBd7e3rh48SKqVKli7dKIiIhIAmQTambPno2goCAsXbpU2y0kJMSKFREREZGUyOb004YNG9CiRQv069cPPj4+CA8Px6JFi6xdFhEREUmEbELNH3/8gaSkJNSpUwfbtm3DyJEjMXbsWHzzzTclfiY/Px/Z2dk6LyIiIlImlRBCWLsIQzg5OaFFixY4cOCAttvYsWORkpKCgwcP6v3M9OnTMWPGjGLds7Ky4O7ubrZaiYiIyHSys7Ph4eFR5v5bNi011atXR8OGDXW6NWjQANeuXSvxMwkJCcjKytK+0tPTzV0mERERWYlsLhR+9tlncf78eZ1uFy5cQM2aNUv8jFqthlqtNndpREREJAGyaal56623cOjQIcycOROXLl3CsmXL8O9//xujRo2ydmlEREQkAbIJNS1btsS6deuwfPlyNG7cGB9++CHmzZuHAQMGWLs0IiIikgDZXChsCoZeaERERETSobgLhYmIiIhKw1BDREREisBQQ0RERIrAUENlW9bf2hUQERGViaGGiIiIFIGhhsqUmp5p7RKIiIjKxFBDRLaDp1KJFI2hhoiIiBSBoYaIiIgUgaGGiIiIFIGhhoiIiBSBoYaIiIgUgaGGiGwGH09ApGwMNaR8vI2XiMgmMNQQERGRIjDUEBERkSIw1BAREZEiMNQQERGRIjDUEBERkSIw1JDi8TZeIiLbwFBDREREisBQQ0RERIrAUENERESKwFBDREREisBQQ0RERIrAUENERESKwFBDREREisBQQ0RERIrAUENERESKwFBDREREisBQQ0RERIrAUENERESKwFBDREREiiCbUDN9+nSoVCqdV/369a1dFhEREUmEg7ULMEajRo3w888/a/92cJBV+URERGRGskoFDg4O8PPzs3YZREREJEGyOf0EABcvXoS/vz9q1aqFAQMG4Nq1a6X2n5+fj+zsbJ0XERERKZNsQk2rVq2QnJyMrVu3IikpCWlpaWjXrh3u379f4mcSExPh4eGhfQUFBVmwYiIiIrIk2YSabt26oV+/fmjatCliYmKwefNmZGZmYtWqVSV+JiEhAVlZWdpXenq6BSsmIiIiS5LVNTVP8vT0RN26dXHp0qUS+1Gr1VCr1RasioiIiKxFNi01T8vJycHly5dRvXp1a5dCREREEiCbUPOPf/wDe/fuxZUrV3DgwAG89NJLsLe3R2xsrLVLIyIiIgmQzemn//73v4iNjcXdu3fh7e2Ntm3b4tChQ/D29rZ2aURERCQBsgk1K1assHYJREREJGGyOf1EREREVBqGGiIiIlIEhhoiIiJSBIYaIiIiUgSGGiIiIlIEhhoiIiJSBIYaIiIiUgSGGiIiIlIEhhoiIiJSBIYaIiIiUgSGGiIiIlIEhhoiIiMNSU6xdglEpAdDDRGRkcbcet/aJRCRHgw1REREpAgMNURERKQIDDVEREQ2SInXhjHUEBERkSIw1BAREZEiMNQQERGRIjDUEBliWX9rV0BERGVgqCEiIiJFYKghIiIiRWCoISIiIkVgqCEiIiJFYKghIiIiRWCoISJ6ihKftEpkCxhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIieMubW+9YugYjKgaGGiIiIFIGhhoiIiBSBoYaIiIgUQbahZtasWVCpVBg/fry1SyEiIiIJkGWoSUlJwcKFC9G0aVNrl0JEREQSIbtQk5OTgwEDBmDRokWoUqWKtcshIiKSJSXe5Se7UDNq1Cj06NED0dHRZfabn5+P7OxsnReRKfAx+kRE0uNg7QKMsWLFCvz2229ISTFsh5KYmIgZM2aYuSoiIiKSAtm01KSnp2PcuHH4/vvv4ezsbNBnEhISkJWVpX2lp6ebuUoiIiKyFtm01Bw7dgwZGRlo3ry5tlthYSH27duHzz//HPn5+bC3t9f5jFqthlqttnSpREREZAWyCTWdO3fGqVOndLoNHjwY9evXx7vvvlss0BAREZFtkU2oqVy5Mho3bqzTrVKlSqhWrVqx7kRERGR7ZHNNDZGUKPFWSJNY1t/aFRCRDZNNS40+e/bssXYJRGQhQ5JTsGRQS2uXQUQSxpYaIiIiUgSGGiKSBZ7yI5vD07lGY6ghIqvgU5mJyNQYaojMiUdaREQWw1BDREREisBQQ8rD1hEiIpvEUENERESKwFBDZIDU9Exrl0BEVBxbpnUw1BCRyfHOJiKyBoYaIiIiUgSGGiIiIlIEhhoisl28HoFIURhqiIiISBEYaohMhUf9RGRCvOvSeCYNNTk5OaYcnE1InR1j7RKIKoZhjmSId+gpk8GhZu7cuaW+f//+fcTEcAdNRERE1mFwqJk8eTK+/fZbve/l5uaia9euuHv3rskKIyL5GnPrfWuXQEQ2yOBQ891332HEiBHYsGGDTvfc3FzExMTg9u3b2L17t8kLJCIiIv143Y0uB0N77Nu3LzIzMxEbG4tNmzahQ4cO2haaW7duYe/evahevbo5ayWSndT0TDSzdhFERDbC4FADAEOHDsW9e/fw4osv4scff8TUqVNx/fp17N27F/7+/uaqkUgWGGCIiKzLqFADAO+88w7u3buHzp07Izg4GHv27EFgYKA5aiMiBXt83c02a5dBRApicKjp3bu3zt+Ojo7w8vLCuHHjdLr/8MMPpqmMiIiIyAgGXyjs4eGh84qNjUXDhg2LdSciogpS0rN/KvJdlDQdyCIMbqlZunRpmf3w4XtEZGlDklOwZFBLa5dBRBLAh+8RERGRIpjk4Xs5OTl8+B4RERXD56iQJZnk4Xtdu3blw/eIiDswIrIqg0NN37598dlnnyE2NhZ79uwBAJ2H7+3Zs4cP3yMiMjdePEtUIj58j4iIiBSBD98jxeGTfc1gWX/g1ZXWroKIqFR8+B4REREpgsGh5ukH68XGxpq8GCIiKh1bIolKZtKH75Fl8GFjRMrG4EJUPgbf/fQkIQTu3Llj0efSJCUloWnTpnB3d4e7uzsiIyOxZcsWi42fzIB3cRARkQkZFWpu3ryJuLg4VKlSBb6+vvDx8UGVKlXw+uuv49atW+aqEQAQGBiIWbNm4dixYzh69Cg6deqEF198EWfOnDHreImIiEgeDD79lJ2djTZt2iAnJweDBw9G/fr1IYTA2bNnsXz5cuzfvx+//fYb3NzczFJoz549df7+5z//iaSkJBw6dAiNGjUyyziJSPrG3HofwLZyfZaneYiUxeBQM3/+fNjb2+PMmTPw9vbWee/999/Hs88+iwULFmDy5MkmL/JphYWFWL16NXJzcxEZGVlif/n5+cjPz9f+nZ2dbfbaiIiIyDoMPv20adMmTJ48uVigAQAfHx8kJCRg48aNJi3uaadOnYKbmxvUajXeeOMNrFu3Dg0bNiyx/8TERHh4eGhfQUFBZq1PMnitCpkYf/6AiOTA4FBz4cIFtGnTpsT327Rpg/Pnz5ukqJLUq1cPqampOHz4MEaOHIn4+HicPXu2xP4TEhKQlZWlfaWnp5u1PiJSGB4gEMmKwaEmOzsbnp6eJb7v6elp9tM7Tk5OCA0NRUREBBITExEWFob58+eX2L9ardbeLVX0UoLH1xAQkakNSU6xdglkIdyOKpPBoUYIATu7kntXqVQQQpikKENpNBqda2aIiIgUhy2GBjP4QmEhBOrWrQuVSlXi++aUkJCAbt26oUaNGrh//z6WLVuGPXv2YNu28t31QOXE3wAiG8K7o4jkRTZPFM7IyEBcXBxu3LgBDw8PNG3aFNu2bcNzzz1n1bqkiBtimWFQJCIyCYNDTXx8vDnrKNOSJUusOn4iIiKStnL9TALZLt7aS0REUsVQQ0T0P7wjhkjeGGqIiIgkjC3khmOoISIiMifekm0xDDVERFQx3GmTRBh891ORwsJCJCcnY+fOncjIyIBGo9F5f9euXSYrjoikTzaPEOCOl0jxjA4148aNQ3JyMnr06IHGjRuX+DA+IiKiipBNYCbJMDrUrFixAqtWrUL37t3NUQ8RERFRuRh9TU3Rj0oSERERSYnRoWbChAmYP3++xX+8koiIiKg0Rp9+2r9/P3bv3o0tW7agUaNGcHR01Hn/hx9+MFlxRLaA1w0Q/b8hySlYMqhl6T3x99KoBEaHGk9PT7z00kvmqIWIiIio3IwONdb+tW4iIpIWtjaSVPDhe0RERKQIBrXUNG/eHDt37kSVKlUQHh5e6rNpfvvtN5MVR8rGozuyCVa8/sOg61Mk5vGPim6zdhkkUwaFmhdffBFqtRoA0KtXL3PWQ0REpCg8gLMcg0LNtGnT9P6fSFZ4xwQRkaLxmhoiIiJSBIYaIiIiUgSGGiIiIlIEhhoiIiJShHKHmocPH+L8+fMoKCgwZT1EZpOanmntEoiIyIyMDjV5eXkYMmQIXF1d0ahRI1y7dg0AMGbMGMyaNcvkBZLhhiSnWLsEspRl/a1dAcnA42e+KA8PUKgkRoeahIQEnDhxAnv27IGzs7O2e3R0NFau5O2yRESyw5BMCmF0qFm/fj0+//xztG3bVufJwo0aNcLly5dNWhxZEDdqRLLH1toScPtmM4wONbdv34aPj0+x7rm5uaX+fAIRmQ6b34mIijM61LRo0QKbNm3S/l0UZBYvXozIyEjTVUZERERkBIN+JuFJM2fORLdu3XD27FkUFBRg/vz5OHv2LA4cOIC9e/eao0bZkOOPxxXhb5MQEZHcGd1S07ZtW6SmpqKgoABNmjTB9u3b4ePjg4MHDyIiIsIcNRIRkQGUercTkaGMbqkBgNq1a2PRokWmroWISHHYCkpkOUa31GzevBnbtm0r1n3btm3YsmWLSYoiIrI63jGjGLyw3nYYHWomTZqEwsLCYt2FEJg0aZJJiiIiIiIyltGh5uLFi2jYsGGx7vXr18elS5dMUpQ+iYmJaNmyJSpXrgwfHx/06tUL58+fN9v4iIhsGluqSIaMDjUeHh74448/inW/dOkSKlWqZJKi9Nm7dy9GjRqFQ4cOYceOHXj06BG6dOmC3Nxcs42TiMhW8ZQNyZHRoebFF1/E+PHjdZ4efOnSJUyYMAEvvPCCSYt70tatWzFo0CA0atQIYWFhSE5OxrVr13Ds2DGzjZOIiEyIrT9kZkaHmo8//hiVKlVC/fr1ERISgpCQEDRo0ADVqlXDp59+ao4a9crKygIAVK1a1WLjJCKyFv4EAlHZjL6l28PDAwcOHMCOHTtw4sQJuLi4oGnTpmjfvr056tNLo9Fg/PjxePbZZ9G4ceMS+8vPz0d+fr727+zsbEuUR0REFbGsP/AqfyCZjFeu59SoVCp06dIFXbp0MXU9Bhk1ahROnz6N/fv3l9pfYmIiZsyYYaGqrO/xg7eK325PRERkCwwKNQsWLMDw4cPh7OyMBQsWlNrv2LFjTVJYSUaPHo2ffvoJ+/btQ2BgYKn9JiQk4O2339b+nZ2djaCgILPWR0QkN3xAICmFQaFm7ty5GDBgAJydnTF37twS+1OpVGYLNUIIjBkzBuvWrcOePXsQEhJS5mfUajXUarVZ6iEiIvNgyKLyMijUpKWl6f2/JY0aNQrLli3Djz/+iMqVK+PmzZsAHl/j4+LiYpWaiIiISDqMuvvp0aNHqF27Ns6dO2euekqUlJSErKwsdOjQAdWrV9e+Vq7kxWREVDLeNURkO4wKNY6Ojnjw4IG5aimVEELva9CgQVaph4hIrqQa9Iyui8+9oacY/ZyaUaNGYfbs2SgoKDBHPbL2+O4jIrIUqe6cicg6jL6lOyUlBTt37sT27dvRpEmTYj+N8MMPP5isOCIiIiJDGR1qPD090adPH3PUQkREJE18IKAsGB1qli5dao46iIjIQvigTlIqg6+p0Wg0mD17Np599lm0bNkSkyZNwt9//23O2oiIiCSBv1ouDwaHmn/+85+YPHky3NzcEBAQgPnz52PUqFHmrI2IpM7Kd5/w4nxlkez85F1WsmFwqPn222/x5ZdfYtu2bVi/fj02btyI77//HhqNxpz1ERERAeDdblQ2g0PNtWvX0L17d+3f0dHRUKlUuH79ulkKIyIiehqDDZXG4FBTUFAAZ2dnnW6Ojo549OiRyYsiIjI1XhOhPLY4T0sKdQx7jxl891PR03uf/IHIBw8e4I033tB5Vg2fU0OSZOlz4rz9k4jI4gxuqYmPj4ePjw88PDy0r9deew3+/v463YiIpESyF59WkJyOzE1Vq1LnZWkMnXZ6p40NXuBscEsNn09DREREUmb0bz8RERWxxWsaiEi6GGqIiGTAFk+9EBmLoYaIyAbJ6ZocIkMx1BAREZWCp1nlg6FGDmzwCnYp4pGtbeGOjEh+GGqIyCwMCYEMirqUOj14PRBZCkMNEZmFITsy7uxIblJnx1h0fFxHjMNQQ9LAU2xERFRBDDVkUUptXn8ar8cgshAeENETGGpIWiS8gbJWM3BZQVBqQVFq9VDFWfqUi2JJePumFAw1JCls4SiO59SJqAi3B6VjqJEBs+zozXzEwCM76WELipnxKJzI6hhqFMYmd1zcmZC1mHLZM3JYPGKnIiVt9409IFbC/oOhxgaVe8GVcniQcm1kk5Swg7AVVp1X3HaZFEONDbLFIzxeq0OWZovrWVmkuh5yXikHQw0RSR5bPWTAQi0OkgggCm1dkcS0rSCGGpIM7rhKYYKNqMEbLAVssLkslU0JOzB6jPPy/zHUkOylpmdKtlmbqFQKCJBFuA6SFDDUWIApbm829ZFneTZAJX5GQRtmS2JrAj2JoUD59M1jucx3uWyvGGqowuSyUhIVkcsGmsrG7Q89iaGGiEzK1Of3GUCITMTAVnU5r3OyCjX79u1Dz5494e/vD5VKhfXr11u7JMnhBWMWYObTbXLeoMgF1xOqCLm2DlW0bjlsm2QVanJzcxEWFoYvvvjC2qUQyVtJwYzXR5WN00j25LBzpvKRVajp1q0bPvroI7z00kvWLoUsgTsPsoYyljtTH6VzB0tkOrIKNbZAkRs4hhNSqCcDjlxPSVgMtwNkAYoONfn5+cjOztZ5kXRZ9DqHCmxglbzzMvUzf0wR0m3p+hdJfFdj1g0GFf0UekGuJJbPMig61CQmJsLDw0P7CgoKsnZJVmfOlUhuK6icGBo0bGEelOc7Snm6yGFHQf/DECd5ig41CQkJyMrK0r7S09OtXVKZStrAFXWX8sbZEkzxIENA2a0t5mbryyD9D3fwJEGKDjVqtRru7u46L6WxpR2MLX1XvUrYidjCkb4tfEeSL+22yYigZ63tmakODKVKVqEmJycHqampSE1NBQCkpaUhNTUV165ds25hViT5jf2TKzmP7IjKh+uOJFiyhdfmD+LKSVah5ujRowgPD0d4eDgA4O2330Z4eDimTp1q5coqztAFWPIhxpIUuqHnPJYWa+9cLD3+J3fcZY2bp3FJamQVajp06AAhRLFXcnKytUsjA3ADKBEKDYNkHtYOdeZgsQMHrmsWJ6tQo2SKOjrnikzGMHJ5UdS6IgOc3qUrLfSV1upV0nQtuuZFqtNd6iGXoYZKZcwCXOJK+sSKbUg/ReN8umXn6c+y5af8OO1MoDzh/anPyHk+SLV2Y3e6ptxJS3Wa2BKGGgmSehIm0zDHkZhUj+6USMo7sApvQ2TQ2srtpJnJYBnQh6GGSiT7jcay/rK+fdGS01/fuOQ8/60d7kqadlIOQkRPKqml/Ml1S4rbCIYaCTJog2xIipZp0pYbU67YTw6rwqfbOP9NwtoBSUqktBMzyXxZ1t8kwynvMLhsmR5DDZVIDiucSc+H62vVkXEwKCkESba1QMrTWsq1kSyYZXta2nJZgWW23LVKYD1hqDETKR3RPKm8C6tUv0+JJLByyWmaWTzASmD+mJMcDghMxVzL+dPDNfRUsjHT3hQB3+JhxUCWOHiR4nLOUGMm5p7Z5lhg9W2cyvM99NVmjR28KaaRuTYMppge1gpNUtyQlUsJOw7JtmRR+Sg8QJuczC9tYKghrdJ2VuXdkUl9BzEkOaXCK2hZP0JqimFZg95azLAxS03PNM1wrbmhNeO4x9x6X/LrEZmWpQ5ay0vKyyNDjalIOLlKQUV21uZu3ubvuRjO2Gmlne/lXD8sOr3MuA6XeerEWtsPCW+3pBTwpcoc267yDlMqd5oy1FC5yX0HbTZyb3UoiZlrenpjWtHly1aOTMtUjvkmpZ2lXMcrJWWtC6ZaV6QwrRlqzEjpO/0xt963yM6XR2zmpZTlVLtB/d8yaexyU5ENshQ25pIgpTBu6VpMMD6lrIvWxFCjUEOSUwzf0EppQ2QkKQaekqZ7ac+gMTepbSwNWTbleLF9eRlaS3nmo86wZbyuW4rU1hVTKGtdkuJ2tLwYakxEShtIY8m59oooz4pskg2eiXYsStoQVZRUzuebW0XnebmviTLT8M2OIc5gSglzDDVkFaWtQLLeWZtoIyq5nYPMyXqZ0sNUIc7cIYf0K2n7Z8z0NVkIUVjwY6iRMT7rxEJkvNIbM3+teaRm0RBXgfkp6RYhGS+nRKbCUGNhkt4oKoi5dpJlhTGptbA8Xa+hwUUpTdH6SG0emYq1vlep64QVg1ZqeqZi57U5yOpAsxQMNTJmzoVQyTu10ljie0ttQ6uUjVkRKU3f0pYnky5rbKWRjSHJKZJa56S0vpgCQw2ZhFxDkJQ2LvqY4vSRtTeiit95m7imCt/hVFa/EmgtluKPx1Z0OTV0HijlzkepbvMZakiWzLVCSS3kWLKeJ8elb7yWOKKT6oayvKS2PFma3mVGisG0BOVdHqXY+mEryyJDjRkZvBDJaCUn0zLlHQy28EvbUtxZGMrQeW0rOx8penIeWbuFk8qHocaS/rcTUNrRKCD/DbHOPHlqZ23IjtSQeSr3aWQNnGblI+XpZrVgaqMHj1JeFsyBocbMntzZlbQyy/nok6RB6suQ1OsjhdETYMp9zYuNhiG5YqixEEk+Ip8rK1GFMbCZhtSmo621cCgFQw1ViNQ2RDZHjsG0lJq5IyGiimCoISIiKgEP3OSFoUaqTHQEXtoFrFxZTccWWxjKu/xwuZMWJd64IIllTI6tqArAUENkQaYOP5LYeJO0cGdKpiajZYqhhoiMpsSje6Vg0CVbxlAjI9yR/I81HjRHRAax9e2UEr+/nIIyQw3pJZXQoMQNBJmPlJcXqaxTkiSj0xskbQw1ClfWhpQb2sc4HYhMg+uS+Uk5vFsbQ41Eyam5z5ys8cOKSp723OEQmVfROqbk7YiUyS7UfPHFFwgODoazszNatWqFI0eOWLskg3BnYhweiUibMcuztX5p3NbJaR1iAJAfqa5rsgo1K1euxNtvv41p06bht99+Q1hYGGJiYpCRkWHt0kyD55W1pLrCEJH0yCnAkXnJKtTMmTMHw4YNw+DBg9GwYUN89dVXcHV1xddff23t0oiIjMLgTmR6sgk1Dx8+xLFjxxAdHa3tZmdnh+joaBw8eFDvZ/Lz85Gdna3zsjRjNlxsgiUiW5E6O8Zkw7K1gDjm1vs2950NpRJCCGsXYYjr168jICAABw4cQGRkpLb7O++8g7179+Lw4cPFPjN9+nTMmDGjWPesrCy4u7ubtV6zWNYfeHWltasoVersGDR7d1uF+yEiaeF6K31DklOwZFBLa5dhFtnZ2fDw8Chz/y2blprySEhIQFZWlvaVnp5u7ZIqRuKBBgA3ekQK1SzI09olEJXJwdoFGMrLywv29va4deuWTvdbt27Bz89P72fUajXUarUlyiMiIrIqpbbSGEM2LTVOTk6IiIjAzp07td00Gg127typczqKiIiIbJNsWmoA4O2330Z8fDxatGiBZ555BvPmzUNubi4GDx5s7dLICGzGJiIic5BVqOnfvz9u376NqVOn4ubNm2jWrBm2bt0KX19fa5dGREREViarUAMAo0ePxujRo61dBhEREUmMbK6pISIiIioNQw0REZVNBo+UIGKoISIiIkVgqCEiIiJFYKghIiIiRWCoIcvjuXkiIjIDhhoiIiJSBIYaIiIiUgSGGiIiIlIEhhoiIiJSBIYaIiIiUgSGGiIiIlIE2f2gJRGVj0ajwcOHD61dBlWAo6Mj7O3trV0GkWQx1BDZgIcPHyItLQ0ajcbapVAFeXp6ws/PDyqVytqlEEkOQw2RwgkhcOPGDdjb2yMoKAh2djzrLEdCCOTl5SEjIwMAUL16dStXRCQ9DDVECldQUIC8vDz4+/vD1dXV2uVQBbi4uAAAMjIy4OPjw1NRRE/hIRuRwhUWFgIAnJycrFwJmUJRMH306JGVKyGSHoYaIhvBazCUgfORqGQMNURk84KDgzFv3jzt3yqVCuvXr7d4HdOnT0ezZs0sPl4ipWCoISJ6yo0bN9CtWzeD+mUQIZIOXihMZKOGJKdYdHxLBrU06/AfPnxosuuG/Pz8TDIcIrIsttQQkSR16NABo0ePxujRo+Hh4QEvLy9MmTIFQggAj08Zffjhh4iLi4O7uzuGDx8OANi/fz/atWsHFxcXBAUFYezYscjNzdUONyMjAz179oSLiwtCQkLw/fffFxv306ef/vvf/yI2NhZVq1ZFpUqV0KJFCxw+fBjJycmYMWMGTpw4AZVKBZVKheTkZABAZmYmhg4dCm9vb7i7u6NTp044ceKEznhmzZoFX19fVK5cGUOGDMGDBw9MPBWJbAtDDRFJ1jfffAMHBwccOXIE8+fPx5w5c7B48WLt+59++inCwsJw/PhxTJkyBZcvX0bXrl3Rp08fnDx5EitXrsT+/fsxevRo7WcGDRqE9PR07N69G2vWrMGXX36pffaLPjk5OYiKisKff/6JDRs24MSJE3jnnXeg0WjQv39/TJgwAY0aNcKNGzdw48YN9O/fHwDQr18/ZGRkYMuWLTh27BiaN2+Ozp074969ewCAVatWYfr06Zg5cyaOHj2K6tWr48svvzTTlCSyDTz9RESSFRQUhLlz50KlUqFevXo4deoU5s6di2HDhgEAOnXqhAkTJmj7Hzp0KAYMGIDx48cDAOrUqYMFCxYgKioKSUlJuHbtGrZs2YIjR46gZcvHp8OWLFmCBg0alFjDsmXLcPv2baSkpKBq1aoAgNDQUO37bm5ucHBw0DlltX//fhw5cgQZGRlQq9UAHgew9evXY82aNRg+fDjmzZuHIUOGYMiQIQCAjz76CD///DNba4gqgC01RCRZrVu31rmFOTIyEhcvXtQ+e6dFixY6/Z84cQLJyclwc3PTvmJiYqDRaJCWloZz587BwcEBERER2s/Ur18fnp6eJdaQmpqK8PBwbaAxxIkTJ5CTk4Nq1arp1JKWlobLly8DAM6dO4dWrVrpfC4yMtLgcRBRcWypISLZqlSpks7fOTk5GDFiBMaOHVus3xo1auDChQtGj6PoKb7GyMnJQfXq1bFnz55i75UWoIioYhhqiEiyDh8+rPP3oUOHUKdOnRJ/HqB58+Y4e/aszumhJ9WvXx8FBQU4duyY9vTT+fPnkZmZWWINTZs2xeLFi3Hv3j29rTVOTk7alqMn67h58yYcHBwQHBysd7gNGjTA4cOHERcXp/P9iKj8ePqJiCTr2rVrePvtt3H+/HksX74cn332GcaNG1di/++++y4OHDiA0aNHIzU1FRcvXsSPP/6ovVC4Xr166Nq1K0aMGIHDhw/j2LFjGDp0aKmtMbGxsfDz80OvXr3w66+/4o8//sDatWtx8OBBAI/vwkpLS0Nqairu3LmD/Px8REdHIzIyEr169cL27dtx5coVHDhwAO+99x6OHj0KABg3bhy+/vprLF26FBcuXMC0adNw5swZE049ItvDUENEkhUXF4e///4bzzzzDEaNGoVx48Zpb93Wp2nTpti7dy8uXLiAdu3aITw8HFOnToW/v7+2n6VLl8Lf3x9RUVHo3bs3hg8fDh8fnxKH6eTkhO3bt8PHxwfdu3dHkyZNMGvWLG1rUZ8+fdC1a1d07NgR3t7eWL58OVQqFTZv3oz27dtj8ODBqFu3Ll555RVcvXoVvr6+AID+/ftjypQpeOeddxAREYGrV69i5MiRJppyRLZJJYoe+mADsrOz4eHhgaysLLi7u1u7HCKLePDgAdLS0hASEgJnZ2drl2OwDh06oFmzZjo/X0DynZ9EFWHo/pstNURERKQIDDVERESkCLz7iYgkSd/t0EREpZFNS80///lPtGnTBq6urnzOAxERERUjm1Dz8OFD9OvXj3cHEBERkV6yOf00Y8YMAND+Ai4RERHRk2QTasojPz8f+fn52r+zs7OtWA0RERGZk2xOP5VHYmIiPDw8tK+goCBrl0RERERmYtVQM2nSJKhUqlJfv//+e7mHn5CQgKysLO0rPT3dhNUTERGRlFj19NOECRMwaNCgUvupVatWuYevVquhVqvL/XkiIkvZs2cPOnbsiL/++ot3eBKVk1VDjbe3N7y9va1ZAhFRuTGIEEmLbC4UvnbtGu7du4dr166hsLAQqampAIDQ0FC4ublZtzgiOVrW37Lje3WlZcdHRDZHNhcKT506FeHh4Zg2bRpycnIQHh6O8PBwHD161NqlEZGZaDQaJCYmIiQkBC4uLggLC8OaNWsghEB0dDRiYmJQ9Ju89+7dQ2BgIKZOnQrgcSuKSqXCpk2b0LRpUzg7O6N169Y4ffq0zjj279+Pdu3awcXFBUFBQRg7dixyc3O17+fn5+Pdd99FUFAQ1Go1QkNDsWTJEly5cgUdO3YEAFSpUgUqlUp7Or2kup+0efNm1K1bFy4uLujYsSOuXLlipqlIZDtkE2qSk5MhhCj26tChg7VLIyIzSUxMxLfffouvvvoKZ86cwVtvvYXXXnsN+/btwzfffIOUlBQsWLAAAPDGG28gICBAG2qKTJw4Ef/617+QkpICb29v9OzZE48ePQIAXL58GV27dkWfPn1w8uRJrFy5Evv378fo0aO1n4+Li8Py5cuxYMECnDt3DgsXLoSbmxuCgoKwdu1aAMD58+dx48YNzJ8/v9S69+7dCwBIT09H79690bNnT6SmpmLo0KGYNGmS2acnkdLJ5vQTEdmW/Px8zJw5Ez///DMiIyMBPL5xYP/+/Vi4cCGWLVuGhQsXIi4uDjdv3sTmzZtx/PhxODjobtamTZuG5557DgDwzTffIDAwEOvWrcPLL7+MxMREDBgwAOPHjwcA1KlTBwsWLEBUVBSSkpJw7do1rFq1Cjt27EB0dLS2hiJVq1YFAPj4+GivqSmr7qJh165dG//6178AAPXq1cOpU6cwe/Zs80xMIhvBUENEknTp0iXk5eVpA0mRhw8fIjw8HADQr18/rFu3DrNmzUJSUhLq1KlTbDhFwQJ4HELq1auHc+fOAQBOnDiBkydP4vvvv9f2I4SARqNBWloaTp06BXt7e0RFRZm07nPnzqFVq1Yl1klE5cNQQ0SSlJOTAwDYtGkTAgICdN4relRDXl4ejh07Bnt7e1y8eLFc4xgxYgTGjh1b7L0aNWrg0qVLZqmbiMyDoYaIJKlhw4ZQq9W4du1aiS0lEyZMgJ2dHbZs2YLu3bujR48e6NSpk04/hw4dQo0aNQAAf/31Fy5cuIAGDRoAAJo3b46zZ88iNDRU7/CbNGkCjUaDvXv3ak8/PcnJyQkAUFhYaFTdDRo0wIYNG4rVSUQVw1BDRJJUuXJl/OMf/8Bbb70FjUaDtm3bIisrC7/++ivc3d3h5eWFr7/+GgcPHkTz5s0xceJExMfH4+TJk6hSpYp2OB988AGqVasGX19fvPfee/Dy8kKvXr0AAO+++y5at26N0aNHY+jQoahUqRLOnj2LHTt24PPPP0dwcDDi4+Px+uuvY8GCBQgLC8PVq1eRkZGBl19+GTVr1oRKpcJPP/2E7t27w8XFpcy64+Pj8cYbb+Bf//oXJk6ciKFDh+LYsWP8sV4iE5DN3U9EZHs+/PBDTJkyBYmJiWjQoAG6du2KTZs2ITg4GEOGDMH06dPRvHlzAMCMGTPg6+uLN954Q2cYs2bNwrhx4xAREYGbN29i48aN2haWpk2bYu/evbhw4QLatWuH8PBwTJ06Ff7+/trPJyUloW/fvnjzzTdRv359DBs2THvLd0BAAGbMmIFJkybB19dXe9dUSXWHhIQAeHxqa+3atVi/fj3CwsLw1VdfYebMmWafnkRKpxJFD3mwAdnZ2fDw8EBWVhbc3d2tXQ6RRTx48ABpaWkICQmBs7OztcuxGKU+7ddW5yfZNkP332ypISIiIkVgqCEiIiJF4IXCRKRIHTp0gA2dXScisKWGiIiIFIKhhoiIiBSBoYbIRvBUjDJwPhKVjKGGSOHs7e0BPP7tIZK/vLw8AICjo6OVKyGSHl4oTKRwDg4OcHV1xe3bt+Ho6Ag7Ox7LyJEQAnl5ecjIyICnp6c2rBLR/2OoIVI4lUqF6tWrIy0tDVevXrV2OVRBnp6e8PPzs3YZRJLEUENkA5ycnFCnTh2egpI5R0dHttAQlYKhhshG2NnZ8bH6RKRoPLlOREREisBQQ0RERIrAUENERESKYFPX1BQ9tCo7O9vKlRAREZGhivbbZT180qZCzf379wEAQUFBVq6EiIiIjHX//n14eHiU+L5K2NAztzUaDa5fv47KlStDpVKZbLjZ2dkICgpCeno63N3dTTZcMi/ON3nifJMnzjd5ksp8E0Lg/v378Pf3L/UBojbVUmNnZ4fAwECzDd/d3Z0rqwxxvskT55s8cb7JkxTmW2ktNEV4oTAREREpAkMNERERKQJDjQmo1WpMmzYNarXa2qWQETjf5InzTZ443+RJbvPNpi4UJiIiIuViSw0REREpAkMNERERKQJDDRERESkCQw0REREpAkONCXzxxRcIDg6Gs7MzWrVqhSNHjli7JJuxb98+9OzZE/7+/lCpVFi/fr3O+0IITJ06FdWrV4eLiwuio6Nx8eJFnX7u3buHAQMGwN3dHZ6enhgyZAhycnJ0+jl58iTatWsHZ2dnBAUF4eOPPzb3V1O0xMREtGzZEpUrV4aPjw969eqF8+fP6/Tz4MEDjBo1CtWqVYObmxv69OmDW7du6fRz7do19OjRA66urvDx8cHEiRNRUFCg08+ePXvQvHlzqNVqhIaGIjk52dxfT5GSkpLQtGlT7UPYIiMjsWXLFu37nF/yMGvWLKhUKowfP17bTVHzTlCFrFixQjg5OYmvv/5anDlzRgwbNkx4enqKW7duWbs0m7B582bx3nvviR9++EEAEOvWrdN5f9asWcLDw0OsX79enDhxQrzwwgsiJCRE/P3339p+unbtKsLCwsShQ4fEL7/8IkJDQ0VsbKz2/aysLOHr6ysGDBggTp8+LZYvXy5cXFzEwoULLfU1FScmJkYsXbpUnD59WqSmporu3buLGjVqiJycHG0/b7zxhggKChI7d+4UR48eFa1btxZt2rTRvl9QUCAaN24soqOjxfHjx8XmzZuFl5eXSEhI0Pbzxx9/CFdXV/H222+Ls2fPis8++0zY29uLrVu3WvT7KsGGDRvEpk2bxIULF8T58+fF5MmThaOjozh9+rQQgvNLDo4cOSKCg4NF06ZNxbhx47TdlTTvGGoq6JlnnhGjRo3S/l1YWCj8/f1FYmKiFauyTU+HGo1GI/z8/MQnn3yi7ZaZmSnUarVYvny5EEKIs2fPCgAiJSVF28+WLVuESqUSf/75pxBCiC+//FJUqVJF5Ofna/t59913Rb169cz8jWxHRkaGACD27t0rhHg8nxwdHcXq1au1/Zw7d04AEAcPHhRCPA60dnZ24ubNm9p+kpKShLu7u3ZevfPOO6JRo0Y64+rfv7+IiYkx91eyCVWqVBGLFy/m/JKB+/fvizp16ogdO3aIqKgobahR2rzj6acKePjwIY4dO4bo6GhtNzs7O0RHR+PgwYNWrIwAIC0tDTdv3tSZPx4eHmjVqpV2/hw8eBCenp5o0aKFtp/o6GjY2dnh8OHD2n7at28PJycnbT8xMTE4f/48/vrrLwt9G2XLysoCAFStWhUAcOzYMTx69Ehn3tWvXx81atTQmXdNmjSBr6+vtp+YmBhkZ2fjzJkz2n6eHEZRP1w/K6awsBArVqxAbm4uIiMjOb9kYNSoUejRo0ex6au0eWdTP2hpanfu3EFhYaHOjAYAX19f/P7771aqiorcvHkTAPTOn6L3bt68CR8fH533HRwcULVqVZ1+QkJCig2j6L0qVaqYpX5bodFoMH78eDz77LNo3LgxgMfT1cnJCZ6enjr9Pj3v9M3bovdK6yc7Oxt///03XFxczPGVFOvUqVOIjIzEgwcP4ObmhnXr1qFhw4ZITU3l/JKwFStW4LfffkNKSkqx95S2rjHUEJFVjRo1CqdPn8b+/futXQqVoV69ekhNTUVWVhbWrFmD+Ph47N2719plUSnS09Mxbtw47NixA87OztYux+x4+qkCvLy8YG9vX+wq8Vu3bsHPz89KVVGRonlQ2vzx8/NDRkaGzvsFBQW4d++eTj/6hvHkOKh8Ro8ejZ9++gm7d+9GYGCgtrufnx8ePnyIzMxMnf6fnndlzZeS+nF3d+dRfzk4OTkhNDQUERERSExMRFhYGObPn8/5JWHHjh1DRkYGmjdvDgcHBzg4OGDv3r1YsGABHBwc4Ovrq6h5x1BTAU5OToiIiMDOnTu13TQaDXbu3InIyEgrVkYAEBISAj8/P535k52djcOHD2vnT2RkJDIzM3Hs2DFtP7t27YJGo0GrVq20/ezbtw+PHj3S9rNjxw7Uq1ePp57KSQiB0aNHY926ddi1a1ex03sRERFwdHTUmXfnz5/HtWvXdObdqVOndELpjh074O7ujoYNG2r7eXIYRf1w/TQNjUaD/Px8zi8J69y5M06dOoXU1FTtq0WLFhgwYID2/4qadxa9LFmBVqxYIdRqtUhOThZnz54Vw4cPF56enjpXiZP53L9/Xxw/flwcP35cABBz5swRx48fF1evXhVCPL6l29PTU/z444/i5MmT4sUXX9R7S3d4eLg4fPiw2L9/v6hTp47OLd2ZmZnC19dXDBw4UJw+fVqsWLFCuLq68pbuChg5cqTw8PAQe/bsETdu3NC+8vLytP288cYbokaNGmLXrl3i6NGjIjIyUkRGRmrfL7rNtEuXLiI1NVVs3bpVeHt7673NdOLEieLcuXPiiy++4C3C5TRp0iSxd+9ekZaWJk6ePCkmTZokVCqV2L59uxCC80tOnrz7SQhlzTuGGhP47LPPRI0aNYSTk5N45plnxKFDh6xdks3YvXu3AFDsFR8fL4R4fFv3lClThK+vr1Cr1aJz587i/PnzOsO4e/euiI2NFW5ubsLd3V0MHjxY3L9/X6efEydOiLZt2wq1Wi0CAgLErFmzLPUVFUnfPAMgli5dqu3n77//Fm+++aaoUqWKcHV1FS+99JK4ceOGznCuXLkiunXrJlxcXISXl5eYMGGCePTokU4/u3fvFs2aNRNOTk6iVq1aOuMgw73++uuiZs2awsnJSXh7e4vOnTtrA40QnF9y8nSoUdK8UwkhhGXbhoiIiIhMj9fUEBERkSIw1BAREZEiMNQQERGRIjDUEBERkSIw1BAREZEiMNQQERGRIjDUEBERkSIw1BCRbAwaNAi9evWydhlEJFH8lW4ikgSVSlXq+9OmTcP8+fPB54USUUkYaohIEm7cuKH9/8qVKzF16lScP39e283NzQ1ubm7WKI2IZIKnn4hIEvz8/LQvDw8PqFQqnW5ubm7FTj916NABY8aMwfjx41GlShX4+vpi0aJFyM3NxeDBg1G5cmWEhoZiy5YtOuM6ffo0unXrBjc3N/j6+mLgwIG4c+eOhb8xEZkaQw0Rydo333wDLy8vHDlyBGPGjMHIkSPRr18/tGnTBr/99hu6dOmCgQMHIi8vDwCQmZmJTp06ITw8HEePHsXWrVtx69YtvPzyy1b+JkRUUQw1RCRrYWFheP/991GnTh0kJCTA2dkZXl5eGDZsGOrUqYOpU6fi7t27OHnyJADg888/R3h4OGbOnIn69esjPDwcX3/9NXbv3o0LFy5Y+dsQUUXwmhoikrWmTZtq/29vb49q1aqhSZMm2m6+vr4AgIyMDADAiRMnsHv3br3X51y+fBl169Y1c8VEZC4MNUQka46Ojjp/q1QqnW5Fd1VpNBoAQE5ODnr27InZs2cXG1b16tXNWCkRmRtDDRHZlObNm2Pt2rUIDg6GgwM3gURKwmtqiMimjBo1Cvfu3UNsbCxSUlJw+fJlbNu2DYMHD0ZhYaG1yyOiCmCoISKb4u/vj19//RWFhYXo0qULmjRpgvHjx8PT0xN2dtwkEsmZSvDxnERERKQAPCwhIiIiRWCoISIiIkVgqCEiIiJFYKghIiIiRWCoISIiIkVgqCEiIiJFYKghIiIiRWCoISIiIkVgqCEiIiJFYKghIiIiRWCoISIiIkVgqCEiIiJF+D8PqPX5XGNf+QAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Importing the matplotlib library for plotting the predictions against the expected values\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Plot the predictions against the expected values\n",
    "plt.title('Expected vs Predicted Electricity Prices for area DK1')\n",
    "\n",
    "# Plot the predicted values\n",
    "plt.bar(x=np.arange(len(y_pred)), height=y_pred, label='predicted', alpha=0.7)\n",
    "\n",
    "# Plot the expected values\n",
    "plt.bar(x=np.arange(len(y_pred)), height=y_test, label='expected', alpha=0.7)\n",
    "\n",
    "# Add labels to the x-axis and y-axis\n",
    "plt.xlabel('Time')\n",
    "plt.ylabel('Price in DKK')\n",
    "\n",
    "# Add a legend and display the plot\n",
    "plt.legend()\n",
    "plt.show() "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHHCAYAAAClV3ArAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC570lEQVR4nOzdeVxN+f/A8dctlbQqLSLKmi0aO1FDZBljG2YxY5kwZmxZQpaUrcYwsg1jUBjLLJYZJkyW7Ps2hpF9GDQxUtKoW/f8/vDrfF2FaqLk/Xw87kPncz7bOZ/c++5zPudcjaIoCkIIIYQQQhQBBgXdASGEEEIIIfKLBLdCCCGEEKLIkOBWCCGEEEIUGRLcCiGEEEKIIkOCWyGEEEIIUWRIcCuEEEIIIYoMCW6FEEIIIUSRIcGtEEIIIYQoMiS4FUIIIYQQRYYEt0IIIQqtyMhINBoNV69eLeiuCCFeERLcCiFEIZIZzGX3GjNmzAtpc//+/QQHB3Pv3r0XUv/rLCUlheDgYGJiYgq6K0K8NooVdAeEEEJkNWnSJFxdXfXSatas+ULa2r9/PyEhIfTu3Rtra+sX0kZeffTRR7z33nuYmJgUdFfyJCUlhZCQEAC8vb0LtjNCvCYkuBVCiEKobdu21KtXr6C78Z88ePAAMzOz/1SHoaEhhoaG+dSjl0en05GWllbQ3RDitSTLEoQQ4hW0efNmmjVrhpmZGRYWFrRv354zZ87o5fntt9/o3bs3FSpUoHjx4jg6OvLxxx/zzz//qHmCg4MJCAgAwNXVVV0CcfXqVa5evYpGoyEyMjJL+xqNhuDgYL16NBoNZ8+e5YMPPqBkyZJ4enqq+7/99lvq1q2LqakpNjY2vPfee1y/fv25x5ndmlsXFxfeeustYmJiqFevHqamptSqVUu99L9u3Tpq1apF8eLFqVu3LidOnNCrs3fv3pibm3P58mV8fX0xMzPDycmJSZMmoSiKXt4HDx4wYsQInJ2dMTExoWrVqsyYMSNLPo1Gw6BBg1i5ciU1atTAxMSEhQsXYmdnB0BISIh6bjPPW07G5/Fze/HiRXV23crKij59+pCSkpLlnH377bc0aNCAEiVKULJkSZo3b86vv/6qlycnvz9CvKpk5lYIIQqhxMRE7ty5o5dWqlQpAFasWEGvXr3w9fXl888/JyUlhQULFuDp6cmJEydwcXEBIDo6msuXL9OnTx8cHR05c+YMixYt4syZMxw8eBCNRkOXLl04f/48q1evZtasWWobdnZ23L59O9f97tatG5UrV2batGlqADh16lQmTJhA9+7d6du3L7dv32bu3Lk0b96cEydO5GkpxMWLF/nggw/45JNP+PDDD5kxYwYdOnRg4cKFjB07ls8++wyA0NBQunfvTmxsLAYG/5vPycjIoE2bNjRq1Ijp06ezZcsWJk6cSHp6OpMmTQJAURTefvttdu7ciZ+fH3Xq1GHr1q0EBARw48YNZs2apdenHTt28P333zNo0CBKlSpF7dq1WbBgAZ9++imdO3emS5cuALi7uwM5G5/Hde/eHVdXV0JDQzl+/DiLFy/G3t6ezz//XM0TEhJCcHAwTZo0YdKkSRgbG3Po0CF27NhB69atgZz//gjxylKEEEIUGhEREQqQ7UtRFOX+/fuKtbW10q9fP71ycXFxipWVlV56SkpKlvpXr16tAMru3bvVtC+++EIBlCtXrujlvXLligIoERERWeoBlIkTJ6rbEydOVADl/fff18t39epVxdDQUJk6dape+unTp5VixYplSX/a+Xi8b+XLl1cAZf/+/Wra1q1bFUAxNTVV/vzzTzX966+/VgBl586dalqvXr0UQBk8eLCaptPplPbt2yvGxsbK7du3FUVRlA0bNiiAMmXKFL0+vfPOO4pGo1EuXryodz4MDAyUM2fO6OW9fft2lnOVKafjk3luP/74Y728nTt3VmxtbdXtCxcuKAYGBkrnzp2VjIwMvbw6nU5RlNz9/gjxqpJlCUIIUQjNnz+f6OhovRc8mu27d+8e77//Pnfu3FFfhoaGNGzYkJ07d6p1mJqaqj8/fPiQO3fu0KhRIwCOHz/+Qvo9YMAAve1169ah0+no3r27Xn8dHR2pXLmyXn9zo3r16jRu3FjdbtiwIQAtWrSgXLlyWdIvX76cpY5BgwapP2cuK0hLS2Pbtm0AREVFYWhoyJAhQ/TKjRgxAkVR2Lx5s166l5cX1atXz/Ex5HZ8njy3zZo1459//iEpKQmADRs2oNPpCAoK0pulzjw+yN3vjxCvKlmWIIQQhVCDBg2yvaHswoULwKMgLjuWlpbqz3fv3iUkJIQ1a9YQHx+vly8xMTEfe/s/Tz7h4cKFCyiKQuXKlbPNb2RklKd2Hg9gAaysrABwdnbONj0hIUEv3cDAgAoVKuilValSBUBd3/vnn3/i5OSEhYWFXr5q1aqp+x/35LE/T27H58ljLlmyJPDo2CwtLbl06RIGBgbPDLBz8/sjxKtKglshhHiF6HQ64NG6SUdHxyz7ixX739t69+7d2b9/PwEBAdSpUwdzc3N0Oh1t2rRR63mWJ9d8ZsrIyHhqmcdnIzP7q9Fo2Lx5c7ZPPTA3N39uP7LztCcoPC1deeIGsBfhyWN/ntyOT34cW25+f4R4VclvsRBCvEIqVqwIgL29PT4+Pk/Nl5CQwPbt2wkJCSEoKEhNz5y5e9zTgtjMmcEnv9zhyRnL5/VXURRcXV3VmdHCQKfTcfnyZb0+nT9/HkC9oap8+fJs27aN+/fv683enjt3Tt3/PE87t7kZn5yqWLEiOp2Os2fPUqdOnafmgef//gjxKpM1t0II8Qrx9fXF0tKSadOmodVqs+zPfMJB5izfk7N64eHhWcpkPov2ySDW0tKSUqVKsXv3br30r776Ksf97dKlC4aGhoSEhGTpi6IoWR579TLNmzdPry/z5s3DyMiIli1bAtCuXTsyMjL08gHMmjULjUZD27Ztn9tGiRIlgKznNjfjk1OdOnXCwMCASZMmZZn5zWwnp78/QrzKZOZWCCFeIZaWlixYsICPPvqIN954g/feew87OzuuXbvGL7/8QtOmTZk3bx6WlpY0b96c6dOno9VqKVOmDL/++itXrlzJUmfdunUBGDduHO+99x5GRkZ06NABMzMz+vbtS1hYGH379qVevXrs3r1bneHMiYoVKzJlyhQCAwO5evUqnTp1wsLCgitXrrB+/Xr69+/PyJEj8+385FTx4sXZsmULvXr1omHDhmzevJlffvmFsWPHqs+m7dChA2+++Sbjxo3j6tWr1K5dm19//ZWffvoJf39/dRb0WUxNTalevTrfffcdVapUwcbGhpo1a1KzZs0cj09OVapUiXHjxjF58mSaNWtGly5dMDEx4ciRIzg5OREaGprj3x8hXmkF9JQGIYQQ2ch89NWRI0eemW/nzp2Kr6+vYmVlpRQvXlypWLGi0rt3b+Xo0aNqnr/++kvp3LmzYm1trVhZWSndunVTbt68me2jqSZPnqyUKVNGMTAw0Hv0VkpKiuLn56dYWVkpFhYWSvfu3ZX4+PinPgos8zFaT1q7dq3i6empmJmZKWZmZoqbm5sycOBAJTY2Nkfn48lHgbVv3z5LXkAZOHCgXlrm48y++OILNa1Xr16KmZmZcunSJaV169ZKiRIlFAcHB2XixIlZHqF1//59ZdiwYYqTk5NiZGSkVK5cWfniiy/UR2s9q+1M+/fvV+rWrasYGxvrnbecjs/Tzm1250ZRFGXp0qWKh4eHYmJiopQsWVLx8vJSoqOj9fLk5PdHiFeVRlFewip7IYQQopDo3bs3P/74I8nJyQXdFSHECyBrboUQQgghRJEhwa0QQgghhCgyJLgVQgghhBBFhqy5FUIIIYQQRYbM3AohhBBCiCJDglshhBBCCFFkyJc4iNeOTqfj5s2bWFhYPPWrMYUQQghRuCiKwv3793FycsLA4OnzsxLcitfOzZs3cXZ2LuhuCCGEECIPrl+/TtmyZZ+6X4Jb8dqxsLAA4MqVK9jY2BRwb8STtFotv/76K61bt8bIyKiguyOeIONTuMn4FH4yRnmXlJSEs7Oz+jn+NBLcitdO5lIECwsLLC0tC7g34klarZYSJUpgaWkpb/yFkIxP4SbjU/jJGP13z1tSKDeUCSGEEEKIIkOCWyGEEEIIUWRIcCuEEEIIIYoMCW6FEEIIIUSRIcGtEEIIIYQoMiS4FUIIIYQQRYYEt0IIIYQQosiQ4FYIIYQQQhQZEtwKIYQQQogiQ4JbIYQQQghRZEhwK4QQQgghigwJboUQQgghRJEhwa0QQgghhCgyJLgVQgghhBBFhgS3QgghhBCvqYyMDCZMmICrqyumpqZUrFiRyZMnoyiKXr4//viDt99+GysrK8zMzKhfvz7Xrl1T93t7e6PRaPReAwYMeGbbiqIQFBRE6dKlMTU1xcfHhwsXLvznYyr2n2sQQgghhBCvpM8//5wFCxawbNkyatSowdGjR+nTpw9WVlYMGTIEgEuXLuHp6Ymfnx8hISFYWlpy5swZihcvrldXv379mDRpkrpdokSJZ7Y9ffp05syZw7Jly3B1dWXChAn4+vpy9uzZLHXnxms/c+vt7Y2/v39Bd+OFCw4Opk6dOgXdDQBOnTrF+++/j7OzM6amplSrVo3Zs2cXdLeEEEKI187+/fvp2LEj7du3x8XFhXfeeYfWrVtz+PBhNc+4ceNo164d06dPx8PDg4oVK/L2229jb2+vV1eJEiVwdHRUX5aWlk9tV1EUwsPDGT9+PB07dsTd3Z3ly5dz8+ZNNmzY8J+O6bUPbl91aWlpL7U9RVFIT0//T3UcO3YMe3t7vv32W86cOcO4ceMIDAxk3rx5+dRLIYQQQuREkyZN2L59O+fPnwceTUDt3buXtm3bAqDT6fjll1+oUqUKvr6+2Nvb07Bhw2wD0JUrV1KqVClq1qxJYGAgKSkpT233ypUrxMXF4ePjo6ZZWVnRsGFDDhw48J+OSaM8uajiNdK7d2+WLVuml3blyhWSk5MJCAhgz549mJmZ0bp1a2bNmkWpUqWAR7O9tWrVwtDQkGXLlmFsbMyUKVP44IMPGDRoED/++CMODg7MnTtX/eWIiYnhzTffZNOmTQQGBnL+/Hnq1KnD4sWLqVmzptr+3r17CQwM5OjRo5QqVYrOnTsTGhqKmZkZAC4uLvj5+XHhwgU2bNhAly5diIyMZPTo0axfv56//voLR0dHevToQVBQEEZGRkRGRtKnTx+944yIiMDb2xtXV1dOnDihzureu3ePkiVLsnPnTry9vdV+R0VFMX78eE6fPs2vv/5K8+bN+fzzz1m0aBFxcXFUqVKFCRMm8M477+RpLAYOHMgff/zBjh07gEczzRs2bGDIkCEEBwdz9+5devbsydy5c5k5cyZffvklOp2OoUOHMm7cuFy1lZSUhJWVFRVHfEd6MbM89Ve8OCaGCtMbZDDqsCGpGZqC7o54goxP4SbjU/gVljG6GtYeeBS8jh07lunTp2NoaEhGRgZTp04lMDAQgLi4OEqXLk2JEiWYMmUKb775Jlu2bGHs2LHs3LkTLy8vABYtWkT58uVxcnLit99+Y/To0TRo0IB169Zl2/7+/ftp2rQpN2/epHTp0mp69+7d0Wg0fPfdd1nKZH5+JyYmPnNW+LVeczt79mzOnz9PzZo11TUiRkZGNGjQgL59+zJr1iz+/fdfRo8eTffu3dXAC2DZsmWMGjWKw4cP89133/Hpp5+yfv16OnfuzNixY5k1axYfffQR165d01tzEhAQwOzZs3F0dGTs2LF06NCB8+fPY2RkxKVLl2jTpg1Tpkxh6dKl3L59m0GDBjFo0CAiIiLUOmbMmEFQUBATJ05U0ywsLIiMjMTJyYnTp0/Tr18/LCwsGDVqFO+++y6///47W7ZsYdu2bcCjv47+/vvvHJ+rMWPGMGPGDCpUqEDJkiUJDQ3l22+/ZeHChVSuXJndu3fz4YcfYmdnp/6i50ZiYiI2NjZ6aZcuXWLz5s1s2bKFS5cu8c4773D58mWqVKnCrl272L9/Px9//DE+Pj40bNjwqXWnpqaSmpqqbiclJQFgYqBgaPja/m1XaJkYKHr/isJFxqdwk/Ep/ArLGGm1WgC+++47Vq5cyfLly6levTqnTp1i5MiR2Nvb07NnT/Xzs0OHDgwaNAiAGjVqsHfvXr766iuaNGkCoDeJ5ubmhp2dHb6+vpw7d46KFStmaT/zKrBWq1X7Ao+CbY1Go5f2ZJ+f57UObq2srDA2NlbXiABMmTIFDw8Ppk2bpuZbunQpzs7OnD9/nipVqgBQu3Ztxo8fD0BgYCBhYWGUKlWKfv36ARAUFMSCBQv47bffaNSokVrXxIkTadWqFfAoQC5btizr16+ne/fuhIaG0qNHD3UNcOXKlZkzZw5eXl4sWLBAXVzdokULRowYoXcsmX2BR7O7I0eOZM2aNYwaNQpTU1PMzc0pVqyYepy5NWnSJLXfqampTJs2jW3bttG4cWMAKlSowN69e/n6669zHdzu37+f7777jl9++UUvXafTsXTpUiwsLKhevTpvvvkmsbGxREVFYWBgQNWqVfn888/ZuXPnM4Pb0NBQQkJCsqSP99BRokRGrvoqXp7J9XQF3QXxDDI+hZuMT+FX0GMUFRUFgL+/P127dsXCwoLr169jY2NDmzZtmDhxIqVKlUKr1WJoaIihoaFaBsDY2JjffvtNL+1xDx8+BGDNmjV4eHhk2R8XFwfA2rVrqVChgpp+7tw5XF1ds633WcscHvdaB7fZOXXqFDt37sTc3DzLvkuXLqnBrbu7u5puaGiIra0ttWrVUtMcHBwAiI+P16sjMxgEsLGxoWrVqvzxxx9q27/99hsrV65U8yiKgk6n48qVK1SrVg2AevXqZenbd999x5w5c7h06RLJycmkp6c/c8o+tx5v8+LFi6SkpKjBbqa0tLRsf4Gf5ffff6djx45MnDiR1q1b6+1zcXHBwsJC3XZwcMDQ0BADAwO9tCfP8ZMCAwMZPny4up2UlISzszNTThiQbmSYq/6KF8/EQGFyPR0TjhqQqpPLqoWNjE/hJuNT+BWWMfo92Bd4FGfUqlWLdu3aqftOnz7N4cOH1bT69esD6OVZunQptWvX1kt73P79+4FHM76Px0yZFEUhODgYrVar1pGUlMTFixcZM2ZMtvVmXnl9Hglun5CcnEyHDh34/PPPs+x7fE2IkZGR3j6NRqOXptE8+oXV6XL+l1lycjKffPKJ+uiNx5UrV079OXP9baYDBw7Qo0cPQkJC8PX1xcrKijVr1jBz5sxntpcZJD6+7PppU/6Pt5mcnAzAL7/8QpkyZfTymZiYPLPNx509e5aWLVvSv39/vZnnTM87x5lpzzvHJiYm2fYrVachXdakFVqpOo2sGSzEZHwKNxmfwq+gxyjz87RDhw6EhYXh6upKjRo1OHHiBLNnz+bjjz9W82QucfT29lbX3P7yyy/ExMSoyypXrVpFu3btsLW15bfffmPYsGE0b96cunXrqm26ubkRGhpK586dgUezxqGhobi5uamPAnNycuKdd97J8nn/eJ+f57UPbo2NjcnI+N+l6TfeeIO1a9fi4uJCsWL5f3oOHjyoBqoJCQmcP39enZF94403OHv2LJUqVcpVnfv376d8+fJ6N1b9+eefenmePE4AOzs7AG7duqXOuJ48efK57VWvXh0TExOuXbuWp/W1AGfOnKFFixb06tWLqVOn5qmO/+pQYEtsbW0LpG3xdFqtlqioKH4P9s3xG5l4eWR8CjcZn8KvsI3R3LlzmTBhAp999hnx8fE4OTnxySefEBQUpObp3LkzCxcuJDQ0lCFDhlC1alXWrl2Lp6cn8CjG2LZtG+Hh4Tx48ABnZ2e6du2aZeIqNjaWxMREdXvUqFE8ePCA/v37c+/ePTw9PdmyZct/esYtSHCLi4sLhw4d4urVq5ibmzNw4EC++eYb3n//fUaNGoWNjQ0XL15kzZo1LF68GEPD/3YZe9KkSdja2uLg4MC4ceMoVaoUnTp1AmD06NE0atSIQYMG0bdvX8zMzDh79izR0dHPfExW5cqVuXbtGmvWrKF+/fr88ssvrF+/PstxXrlyhZMnT1K2bFksLCwwNTWlUaNG6l9s8fHx2c6gPsnCwoKRI0cybNgwdDodnp6eJCYmsm/fPiwtLenVq9czy//++++0aNECX19fhg8frq67MTQ0VANuIYQQQrx4FhYWhIeHEx4e/sx8H3/8MR9//HG2+5ydndm1a9dz23ryAV0ajYZJkybpffFDfnjtn3M7cuRIDA0NqV69OnZ2dqSlpbFv3z4yMjJo3bo1tWrVwt/fH2tra721nnkVFhbG0KFDqVu3LnFxcWzcuBFjY2Pg0TreXbt2cf78eZo1a4aHhwdBQUE4OTk9s863336bYcOGMWjQIOrUqcP+/fuZMGGCXp6uXbvSpk0b3nzzTezs7Fi9ejXwaM1Meno6devWxd/fnylTpuToOCZPnsyECRMIDQ2lWrVqtGnThl9++QVXV9fnlv3xxx+5ffs23377LaVLl1ZfmWt6hBBCCCHy6rV+zu3LlPm82ISEBKytrQu6O6+1zOfk3blzR5YlFEKZl+zatWtXKC7ZCX0yPoWbjE/hJ2OUdzl9zu1rP3MrhBBCCCGKDgluRb4bMGAA5ubm2b4GDBhQ0N0TQgghRBH22t9Q9rJ4e3tnWUhdVE2aNImRI0dmuy8/n70rhBBCCPEkCW5FvrO3t8fe3r6guyGEEEKI15AsSxBCCCGEEEWGBLdCCCGEEKLIkOBWCCGEEEIUGRLcCiGEEEKIIkOCWyGEEEIIUWRIcCuEEEIIIYoMCW6FEEIIIUSRIcGtKHDe3t74+/sXdDeEEEKIF8bFxQWNRoOxsTGdOnXC2NgYjUbDwIEDAbh06RKdO3fGzs4OS0tLunfvzt9//62Wv3r1Kn5+fri6umJqakrFihWZOHEiaWlpz2z34cOHDBw4EFtbW8zNzenatatevUWRBLdCCCGEEC/YkSNHuHXrFteuXSMiIoLNmzcD0K1bNx48eEDr1q3RaDTs2LGDffv2kZaWRocOHdDpdACcO3cOnU7H119/zZkzZ5g1axYLFy5k7Nixz2x32LBhbNy4kR9++IFdu3Zx8+ZNunTp8sKPtyDJN5QJIYQQQrxgdnZ2AGi1WkqWLElUVBQVK1bEy8uL6Ohorl69yokTJ9SvqV+2bBklS5Zkx44d+Pj40KZNG9q0aaPWV6FCBWJjY1mwYAEzZszIts3ExESWLFnCqlWraNGiBQARERFUq1aNgwcP0qhRoxd81AVDglvxUj148IBPP/2UdevWYWFhwciRI/X2r1ixgtmzZxMbG4uZmRktWrQgPDwce3t7FEWhcuXKDBgwQK/cyZMn8fDw4MKFC1SqVCnHfWkYup30Ymb5dmwif5gYKkxvADWDt5KaoSno7ognyPgUbjI+hc/VsPZZ0rRaLatWrWL48OFoNBpSU1PRaDSYmJioeYoXL46BgQF79+7Fx8cn27oTExOxsbF5atvHjh1Dq9XqlXdzc6NcuXIcOHBAglsh8kNAQAC7du3ip59+wt7enrFjx3L8+HHq1KkDPPoPP3nyZKpWrUp8fDzDhw+nd+/eREVFodFo+Pjjj4mIiNALbiMiImjevPlTA9vU1FRSU1PV7aSkJABMDBQMDZUXd7AiT0wMFL1/ReEi41O4yfgUPlqtNsv2oUOHuHfvHj169ECr1VK3bl3MzMwICAhg8uTJKIrCuHHjyMjI4MaNG1nqALh48SJz587l888/z3Y/wF9//YWxsTFmZmZ6eezt7Z9ab2GW0/5qFEWR/wHipUhOTsbW1pZvv/2Wbt26AXD37l3Kli1L//79CQ8Pz1Lm6NGj1K9fn/v372Nubs7NmzcpV64c+/fvp0GDBmi1WpycnJgxYwa9evXKtt3g4GBCQkKypK9atYoSJUrk6zEKIYQQzxMcHEyxYsUYP368mnbixAkWLlxIfHw8Go2GZs2acf36dapUqcKAAQP0yv/zzz+MGzeOmjVrMmjQoKe2s2vXLubOncuPP/6olx4QEEDNmjWf+rlZWKWkpPDBBx+QmJioLt/IjgS34qU5deoUderU4c8//6RcuXJquoeHB15eXoSHh3Ps2DGCg4M5deoUCQkJ6HQ6UlJSOHPmDNWrVwegY8eOlC5dmoULF7Ju3Tp69+5NXFzcUwPV7GZunZ2dqR6whnQjWZZQ2JgYKEyup2PCUQNSdXJZtbCR8SncZHwKn9+DffW2L126RI0aNVi9ejWdO3fOkv/OnTsUK1YMa2trnJ2d8ff3Z8SIEer+mzdv4uPjQ8OGDVmyZAkGBk9/NsDOnTvx9fUlPj4ea2trNb1SpUoMHjyYoUOH/vcDfImSkpIoVarUc4NbWZYgCo0HDx7g6+uLr68vK1euxM7OjmvXruHr66v3qJO+ffvy0UcfMWvWLCIiInj33XefOQNrYmKit44pU6pOQ7qsSSu0UnUaWTNYiMn4FG4yPoWHkZGR3vbKlSuxsrKiQ4cOWfYBlC5dGoAdO3YQHx9P586d1Xw3btygVatW1KtXj2XLlmFoaPjMths2bIiRkRG7d++ma9euAMTGxnLt2jU8PT2zbb8wy2l/JbgVL03FihUxMjLi0KFD6sxtQkIC58+fx8vLi3PnzvHPP/8QFhaGs7Mz8GhZwpPatWuHmZkZCxYsYMuWLezevTtP/TkU2BJbW9u8H5B4IbRaLVFRUfwe7PvKvfG+DmR8CjcZn8JNp9OxfPly3nzzTYoV0w/BMp9iYGdnx4EDBxg6dCjDhg2jatWqwKPA1tvbm/LlyzNjxgxu376tlnV0dFTztGzZkuXLl9OgQQOsrKzw8/Nj+PDh2NjYYGlpyeDBg2ncuHGRvZkMJLgVL5G5uTl+fn4EBARga2uLvb0948aNUy+plCtXDmNjY+bOncuAAQP4/fffmTx5cpZ6DA0N6d27N4GBgVSuXJnGjRu/7EMRQgghcm3btm1cu3aN0aNHZ9kXGxtLYGAgd+/excXFhXHjxjFs2DB1f3R0NBcvXuTixYuULVtWr2zmClOtVktsbCwpKSnqvlmzZmFgYEDXrl1JTU3F19eXr7766gUdYeEgX+IgXqovvviCZs2a0aFDB3x8fPD09KRu3brAo2cARkZG8sMPP1C9enXCwsKe+uw+Pz8/0tLS6NOnz8vsvhBCCJFnrVu3Ji0tjTJlymTZFxYWRlxcHGlpaZw/f159TFim3r17oyhKtq9MLi4uKIqCt7e3mla8eHHmz5/P3bt3efDgAevWrVNneosqmbkVL5W5uTkrVqxgxYoValpAQID68/vvv8/777+vVya7ex5v3LiBkZERPXv2fHGdFUIIIcQrR4Jb8UpJTU3l9u3bBAcH061bNxwcHAq6S0IIIYQoRGRZgnilrF69mvLly3Pv3j2mT59e0N0RQgghRCEjwa14pfTu3ZuMjAyOHTuW7ZolIYQQQrzeJLgVQgghhBBFhgS3QgghhBCiyJDgVgghhBBCFBkS3AohhBBCiCJDglshhBBCCFFkSHArhBBCCCGKDAluhRBCCCFEkSHBrRBCCCGEKDIkuBX5ztvbG39//4LuhhBCiJfsxo0bfPjhh9ja2mJqakqtWrU4evSour93795oNBq9V5s2bbKtKzU1lTp16qDRaDh58uQz23348CEDBw7E1tYWc3Nzunbtyt9//52fhyZeIRLcCiGEEOI/S0hIoGnTphgZGbF582bOnj3LzJkzKVmypF6+Nm3acOvWLfW1evXqbOsbNWoUTk5OOWp72LBhbNy4kR9++IFdu3Zx8+ZNunTp8p+PSbyaihV0B4TID2lpaRgbGxd0N4QQ4rX1+eef4+zsTEREhJrm6uqaJZ+JiQmOjo7PrGvz5s38+uuvrF27ls2bNz8zb2JiIkuWLGHVqlW0aNECgIiICKpVq8bBgwdp1KhRHo5GvMokuBUvhE6nY9SoUSxevBhjY2MGDBhAcHAwANeuXWPw4MFs374dAwMD2rRpw9y5c3FwcAAeXba6d+8eGzZsUOvz9/fn5MmTxMTEAI+WPtSsWZNixYrx7bffUqtWLXbu3JmrPjYM3U56MbP8OFyRj0wMFaY3gJrBW0nN0BR0d8QTZHwKt4IYn6th7QH4+eef8fX1pVu3buzatYsyZcrw2Wef0a9fP738MTEx2NvbU7JkSVq0aMGUKVOwtbVV9//999/069ePDRs2UKJEiee2f+zYMbRaLT4+Pmqam5sb5cqV48CBAxLcvoYkuBUvxLJlyxg+fDiHDh3iwIED9O7dm6ZNm9KyZUs6duyIubk5u3btIj09nYEDB/Luu++qgWtu2vj000/Zt2/fM/OlpqaSmpqqbiclJQFgYqBgaKjk+tjEi2VioOj9KwoXGZ/CrSDGR6vVAnD58mUWLFjA0KFDCQgI4NixYwwZMgQDAwN69uwJgI+PD2+//TYuLi5cvnyZCRMm0KZNG/bs2YOhoSGKotCrVy/69etH7dq1uXr1qtpGZjtP+uuvvzA2NsbMzEwvj729PTdu3HhquYKS2Z/C1q9XQU7PmQS34oVwd3dn4sSJAFSuXJl58+axfft2AE6fPs2VK1dwdnYGYPny5dSoUYMjR45Qv379HLdRuXJlpk+f/tx8oaGhhISEZEkf76GjRImMHLcnXq7J9XQF3QXxDDI+hdvLHJ+oqCgAMjIyqFixIk2aNOHWrVs4OTnRsmVLvvjiC0qVKgWAhYUFANevX8fIyAh/f38GDBjA9OnTqV27Nps2beLatWv079+fqKgo9aawvXv3cvPmzWzbP3nyJDqdTu1HpsTERC5fvpwlvbCIjo4u6C68clJSUnKUT4Jb8UK4u7vrbZcuXZr4+Hj++OMPnJ2d1cAWoHr16lhbW/PHH3/kKritW7dujvIFBgYyfPhwdTspKQlnZ2emnDAg3cgwx+2Jl8PEQGFyPR0TjhqQqpPL3oWNjE/hVhDj83uwLwBOTk40adKEdu3aqfuuX79OaGioXtqTxo8fT6lSpWjXrh1LliwhNjaW7t276+UJCAjg/fffZ+nSpVnKm5qaMmvWLJo0aYK1tbWaPmTIkCz9KQy0Wi3R0dG0atUKIyOjgu7OKyXzyuvzSHArXogn/8NqNBp0upzNJBgYGKAo+pfUsrsUYWaWs/WyJiYmmJiYZElP1WlIlzWDhVaqTiNrOgsxGZ/C7WWOT+b7fdOmTblw4YLe+/+lS5coX778U4O4v/76i3/++YeyZctiZGTEvHnzmDZtmrr/5s2b+Pr68t1339GwYcNs68lM3717N127dgUgNjaWa9eu4enpWWgDSCMjo0Lbt8Iqp+dLglvxUlWrVo3r169z/fp1dfb27Nmz3Lt3j+rVqwNgZ2fH77//rlfu5MmT+f4mcCiwpd5NDKJw0Gq1REVF8Xuwr7zxF0IyPoVbQY7PsGHDaNKkCdOmTaN79+4cPnyYRYsWsWjRIgCSk5MJCQmha9euODo6cunSJUaNGkWlSpXw9X00+1uuXDm9Os3NzQGoWLEiZcuWBR49S7dly5YsX76cBg0aYGVlhZ+fH8OHD8fGxgZLS0sGDx5M48aN5Way15Q851a8VD4+PtSqVYsePXpw/PhxDh8+TM+ePfHy8qJevXoAtGjRgqNHj7J8+XIuXLjAxIkTswS7QgghCpf69euzfv16Vq9eTc2aNZk8eTLh4eH06NEDAENDQ3777TfefvttqlSpgp+fH3Xr1mXPnj3ZXl17Gq1WS2xsrN76y1mzZvHWW2/RtWtXmjdvjqOjI+vWrcv3YxSvBpm5FS+VRqPhp59+YvDgwTRv3lzvUWCZfH19mTBhAqNGjeLhw4d8/PHH9OzZk9OnTxdgz4UQQjzPW2+9xVtvvZXtPlNTU7Zu3Zqr+lxcXLIsU8surXjx4syfP5/58+fnrsOiSJLgVuS77B7p9fgza8uVK8dPP/30zDpCQkKyfcLBs9oQQgghhJBlCUIIIYQQosiQ4FYIIYQQQhQZEtwKIYQQQogiQ4JbIYQQQghRZEhwK4QQQgghigwJboUQQgghRJEhwa0QQgghhCgyJLgVQgghhBBFhgS3QgghhBCiyJDgVgghhBBCFBkS3AohhBBCiCJDglvxyggODqZOnToF3Q0hhChUgoOD0Wg0aDQajI2N6dSpEzVr1lT3x8XF8dFHH+Ho6IiZmRlvvPEGa9eu1avj+PHjtGrVCmtra2xtbenfvz/JycnPbFdRFIKCgihdujSmpqb4+Phw4cKFF3KMQuSGBLeiUNJoNGzYsKGguyGEEK+EGjVqcOvWLa5du0ZERAQxMTHqvp49exIbG8vPP//M6dOn6dKlC927d+fEiRMA3Lx5Ex8fHypVqsShQ4fYsmULZ86coXfv3s9sc/r06cyZM4eFCxdy6NAhzMzM8PX15eHDhy/wSIV4PgluhRBCiFdcsWLFcHR0xNHRkZIlS1KqVCl13/79+xk8eDANGjSgQoUKjB8/Hmtra44dOwbApk2bMDIyYv78+VStWpX69euzcOFC1q5dy8WLF7NtT1EUwsPDGT9+PB07dsTd3Z3ly5dz8+ZNmZgQBa5YQXdAFG7e3t7UqlULQ0NDli1bhrGxMVOmTOGDDz5g0KBB/Pjjjzg4ODB37lzatm0LwK5duwgICODUqVPY2NjQq1cvpkyZQrFixdQ63d3dKV68OIsXL8bY2JgBAwYQHBwMgIuLCwCdO3cGoHz58ly9elXt04oVK5gwYQIJCQm0bduWb775BgsLi1wfW8PQ7aQXM8v7yREvhImhwvQGUDN4K6kZmoLujniCjE/hcjWsPQAXLlzAycmJ4sWL4+zsTM2aNalYsSIATZo04bvvvqN9+/ZYW1vz/fff8/DhQ7y9vQFITU3F2NgYA4P/zXeZmpoCsHfvXipVqpSl3StXrhAXF4ePj4+aZmVlRcOGDTlw4ADvvffeizpkIZ5LZm7Fcy1btoxSpUpx+PBhBg8ezKeffkq3bt1o0qQJx48fp3Xr1nz00UekpKRw48YN2rVrR/369Tl16hQLFixgyZIlTJkyJUudZmZmHDp0iOnTpzNp0iSio6MBOHLkCAARERHcunVL3Qa4dOkSGzZsYNOmTWzatIldu3YRFhb28k6GEEIUMg0bNiQyMpItW7Ywd+5c/v77b1q0aMH9+/cB+P7779Fqtdja2mJiYsInn3zC+vXr1aC1RYsWxMXF8cUXX5CWlkZCQgJjxowB4NatW9m2GRcXB4CDg4NeuoODg7pPiIIiM7fiuWrXrs348eMBCAwMJCwsjFKlStGvXz8AgoKCWLBgAb/99hsbN27E2dmZefPmodFocHNz4+bNm4wePZqgoCB1ZsDd3Z2JEycCULlyZebNm8f27dtp1aoVdnZ2AFhbW+Po6KjXF51OR2RkpDpT+9FHH7F9+3amTp361P6npqaSmpqqbiclJQFgYqBgaKjkxykS+cjEQNH7VxQuMj6Fi1ar1Zs9rVSpEhMmTOCzzz5j9erV9OnTh3HjxpGQkMCWLVuwtbXl559/pnv37uzYsYNatWpRpUoVlixZwqhRowgMDMTQ0JBBgwbh4OCAoihotdos7aanp6vtP75fp9Oh0WiyLSMeyTw3co5yL6fnTIJb8Vzu7u7qz4aGhtja2lKrVi01LfMv9/j4eP744w8aN26MRvO/y5VNmzYlOTmZv/76i3LlymWpE6B06dLEx8c/ty8uLi56SxByUi40NJSQkJAs6eM9dJQokfHcNkXBmFxPV9BdEM8g41M4REVFZUkzNzfH3t6eX3/9FZ1Ox1dffcWcOXN4+PAhN27coG7dupQvX56xY8fy6aefAo+WFHz99dfcu3cPExMTNBoN4eHh3Lt3L9s2Mmdn165dS4UKFdT0c+fO4erqmm0ZoS/zaqXIuZSUlBzlk+BWPJeRkZHetkaj0UvLDGR1upx/2GVXZ07K56VcYGAgw4cPV7eTkpJwdnZmygkD0o0Mc9xn8XKYGChMrqdjwlEDUnWyprOwkfEpXH4P9tXb1mq1/Pzzz/zzzz80bdqUBg0aAODl5UW1atXUfPPnz6ds2bK0a9cu23ojIyMpXrw4AQEBWFtbZ9mvKArBwcFotVq1jqSkJC5evMiYMWOeWq94NEbR0dG0atUqy2eaeLbMK6/PI8GtyFfVqlVj7dq1KIqiBr379u3DwsKCsmXL5rgeIyMjMjLyZ1bVxMQEExOTLOm7R/tga2ubL22I/KPVaomKiuJYUBt54y+EZHwKn5EjR9KhQwfKly/PtWvXCAsLw9DQkA8//BBra2sqVarEoEGDmDFjBra2tmzYsIFt27apT0kAmDdvHk2aNMHc3Jzo6GgCAgIICwtTl4kBuLm5ERoaqt7s6+/vT2hoKG5ubri6ujJhwgScnJx455135HcjB4yMjOQ85VJOz5cEtyJfffbZZ4SHhzN48GAGDRpEbGwsEydOZPjw4Xp34j6Pi4sL27dvp2nTppiYmFCyZMkX2GshhHh1/fXXX7z//vv8888/2NnZ4erqyp49e9TANCoqijFjxtChQweSk5OpVKkSy5Yt05tdPXz4MBMnTiQ5ORk3Nze+/vprPvroI712YmNjSUxMVLdHjRrFgwcP6N+/P/fu3cPT05MtW7ZQvHjxl3PgQjyFBLciX5UpU4aoqCgCAgKoXbs2NjY2+Pn5qTek5dTMmTMZPnw433zzDWXKlNF7FJgQQoj/WbNmjfpz5sx65mPA4NFNu09+I9mTli9f/tx2FEX/JkKNRsOkSZOYNGlSLnssxIulUZ78bRWiiEtKSsLKyoo7d+7IsoRCKPPDuV27dnLJrhCS8SncZHwKPxmjvMv8/E5MTMTS0vKp+eQ5t0IIIYQQosiQ4FYIIYQQQhQZEtwKIYQQQogiQ4JbIYQQQghRZEhwK4QQQgghigwJboUQQgghRJEhwa0QQgghhCgyJLgVQgghhBBFhgS3QgghhBCiyJDgVgghhBBCFBkS3AohhBBCiCLjlQtuvb298ff3LzT15MTVq1fRaDScPHnypbSX27ZjYmLQaDTcu3cPgMjISKytrV9K/4QQojAICwtDo9HofS5cunSJzp07Y2dnh6WlJd27d+fvv//WKzd16lSaNGlCiRIlcvy+qSgKQUFBlC5dGlNTU3x8fLhw4UI+Ho0Qr7dXLrjNrScDt0zr1q1j8uTJBdOpl8jZ2Zlbt25Rs2bNHJd59913OX/+vLodHBxMnTp18rVfoaGh1K9fHwsLC+zt7enUqROxsbH52oYQQuTEkSNH+Prrr3F3d1fTHjx4QOvWrdFoNOzYsYN9+/aRlpZGhw4d0Ol0ar60tDS6devGp59+muP2pk+fzpw5c1i4cCGHDh3CzMwMX19fHj58mK/HJcTrqlAFt2lpaS+tLRsbGywsLF5aewXF0NAQR0dHihUrluMypqam2Nvbv8Bewa5duxg4cCAHDx4kOjoarVZL69atefDgwQttVwghHpecnEyPHj345ptvKFmypJq+b98+rl69SmRkJLVq1aJWrVosW7aMo0ePsmPHDjVfSEgIw4YNo1atWjlqT1EUwsPDGT9+PB07dsTd3Z3ly5dz8+ZNNmzYkN+HJ8RrKecRzwvg7e1NzZo1KVasGN9++y21atVi7ty5BAQEsGfPHszMzGjdujWzZs2iVKlS2daxYsUKZs+eTWxsLGZmZrRo0YLw8HDs7e25evUqb775JoD6ptWrVy8iIyPx9vamTp06hIeHM3bsWLZv386hQ4f06q5duzZdu3YlKCgIgMWLFzNz5kyuXLmCi4sLQ4YM4bPPPsvx8V6+fJlhw4Zx6NAhKleuzMKFC2ncuDHwaHZ0w4YNessHwsPDCQ8P5+rVqwD07t2be/fu0aBBA2bPnk1qairDhw9n7NixBAYGsmTJEkqUKMHkyZPp06cP8GhZgqurKydOnFBnX6OiovD39+f69es0atSIXr166fUzMjISf39/7t27R2RkJCEhIQBoNBoAIiIi2L17N/Hx8WzatEktp9VqKVOmDKGhofj5+T3zXGzZsiVLm/b29hw7dozmzZur7S1cuJCNGzeyY8cOypcvz9KlS7Gzs6Nv374cOXKE2rVrs2LFCipWrJjjccjUMHQ76cXMcl1OvFgmhgrTG0DN4K2kZmgKujviCa/6+FwNa6+3PXDgQNq3b4+Pjw9TpkxR01NTU9FoNJiYmKhpxYsXx8DAgL179+Lj45On9q9cuUJcXJxeeSsrKxo2bMiBAwd477338lSvEOJ/CnzmdtmyZRgbG7Nv3z7CwsJo0aIFHh4eHD16lC1btvD333/TvXv3p5bXarVMnjyZU6dOsWHDBq5evUrv3r2BR5fk165dC0BsbCy3bt1i9uzZWero0aMHhw8f5tKlS2ramTNn+O233/jggw8AWLlyJUFBQUydOpU//viDadOmMWHCBJYtW5bjYx03bhwjR47k5MmTVKlShffff5/09PQclwfYsWMHN2/eZPfu3Xz55ZdMnDiRt956i5IlS3Lo0CEGDBjAJ598wl9//ZVt+evXr9OlSxc6dOjAyZMn6du3L2PGjHlqe++++y4jRoygRo0a3Lp1i1u3bvHuu+/St29ftmzZwq1bt9S8mzZtIiUlhXfffTdXxwSQmJgIPJpRf9zkyZPp2bMnJ0+exM3NjQ8++IBPPvmEwMBAjh49iqIoDBo0KNftCSHEmjVrOH78OKGhoVn2NWrUCDMzM0aPHk1KSgoPHjxg5MiRZGRk6L3v5VZcXBwADg4OeukODg7qPiHEf1OgM7cAlStXZvr06QBMmTIFDw8Ppk2bpu5funQpzs7OnD9/nipVqmQp//HHH6s/V6hQgTlz5lC/fn2Sk5MxNzdXgyV7e/unLvavUaMGtWvXZtWqVUyYMAF4FMw2bNiQSpUqATBx4kRmzpxJly5dAHB1deXs2bN8/fXXWWY+n2bkyJG0b/9o1iAkJIQaNWpw8eJF3NzcclQeHgV/c+bMwcDAgKpVqzJ9+nRSUlIYO3YsAIGBgYSFhbF3795sZwAWLFhAxYoVmTlzJgBVq1bl9OnTfP7559m2Z2pqirm5OcWKFcPR0VFNb9KkCVWrVmXFihWMGjUKeDSj261bN8zNzXN8PAA6nQ5/f3+aNm2aZW1wnz591D9uRo8eTePGjZkwYQK+vr4ADB06VJ2lfprU1FRSU1PV7aSkJABMDBQMDZVc9VW8eCYGit6/onB51cdHq9UCj/7QHzp0KFFRURgaGqLValEUBZ1Oh1arxdramtWrVzN48GD1Pffdd9/Fw8NDr55MGRkZ2aY/KXNCQ6vV6uXV6XRoNJrnls/p8f3XesSLI2OUdzk9ZwUe3NatW1f9+dSpU+zcuTPb4OjSpUvZBrfHjh0jODiYU6dOkZCQoC70v3btGtWrV89xP3r06MHSpUuZMGECiqKwevVqhg8fDjy6seDSpUv4+fnRr18/tUx6ejpWVlY5buPxmxVKly4NQHx8fK6C2xo1amBg8L8JdwcHB72A0NDQEFtbW+Lj47Mt/8cff9CwYUO9tMylEbnVt29fFi1axKhRo/j777/ZvHmz3lq0nBo4cCC///47e/fuzbLv8XOWOdPx+No2BwcHHj58SFJSEpaWltnWHxoaqi6teNx4Dx0lSmTkur/i5ZhcT/f8TKLAvKrjExUVBcDBgweJj4+nQYMG6j6dTseePXuYP38+P/zwA4aGhnz55ZckJSVhYGCAubk5vXv3xt3dXa0n06lTp9BqtVnSn5Q5O7t27VoqVKigpp87dw5XV9fnls+p6OjofKlHvDgyRrmXkpKSo3wFHtyamf1vzWNycjIdOnTIdhYxMxh83IMHD/D19cXX15eVK1diZ2fHtWvX8PX1zfXNae+//z6jR4/m+PHj/Pvvv1y/fl29vJ6cnAzAN998kyUwNDQ0zHEbRkZG6s+Z61czg3EDAwMURX8mJLu/UB6vI7Oe7NIev5v3RenZsydjxozhwIED7N+/H1dXV5o1a5arOgYNGsSmTZvYvXs3ZcuWzbI/u3P2rPOYncDAQPUPFXg0c+vs7MyUEwakG+V8/MTLYWKgMLmejglHDUjVvXprOou6V318fg9+dNWnWbNmWZa89evXj6pVqzJy5MhsnzCzc+dOEhMTGTlyJFWrVtXbd+fOHYyMjGjXrt0z21cUheDgYLRarZo3KSmJixcvMmbMmOeWfx6tVkt0dDStWrXK8tkgCgcZo7zLvPL6PAUe3D7ujTfeYO3atbi4uOTo7v5z587xzz//EBYWhrOzMwBHjx7Vy2NsbAz875LR05QtWxYvLy9WrlzJv//+S6tWrdQnBjg4OODk5MTly5fp0aNHXg7tuezs7IiLi0NRFDVgexHPxa1WrRo///yzXtrBgwefWcbY2Djb82dra0unTp2IiIjgwIEDz10e8DhFURg8eDDr168nJiYGV1fXHJfNLRMTE72bQjLtHu2Dra3tC2tX5E3m7NexoDbyxl8IFZXxsbGxybLG39zcHDs7O3XpQUREBNWqVcPOzo4DBw4wdOhQhg0bphf4Xrt2jbt373Ljxg0yMjI4c+YMAJUqVVKvQrq5uREaGkrnzp0B8Pf3JzQ0FDc3N1xdXZkwYQJOTk688847+XZOjYyMXunxeR3IGOVeTs9XoQpuBw4cyDfffMP777/PqFGjsLGx4eLFi6xZs4bFixdnmSUtV64cxsbGzJ07lwEDBvD7779neXZt+fLl0Wg0bNq0iXbt2qlrSLPTo0cPJk6cSFpaGrNmzdLbFxISwpAhQ7CysqJNmzakpqZy9OhREhIS9GYF88rb25vbt28zffp03nnnHbZs2cLmzZufeqk9rwYMGMDMmTMJCAigb9++HDt2jMjIyGeWcXFx4cqVK5w8eZKyZctiYWGhBot9+/blrbfeIiMjI8drj+HRWK9atYqffvoJCwsL9VKdlZUVpqameT4+IYTIL7GxsQQGBnL37l1cXFwYN24cw4YN08sTFBSkd2NxZmC8c+dOvL291Xoyb5oFGDVqFA8ePKB///7cu3cPT09PtmzZQvHixV/8QQnxGijwpyU8zsnJiX379pGRkUHr1q2pVasW/v7+WFtb660zzWRnZ0dkZCQ//PAD1atXJywsjBkzZujlKVOmDCEhIYwZMwYHB4dn3ln/zjvv8M8//5CSkkKnTp309vXt25fFixcTERFBrVq18PLyIjIyMt9mHKtVq8ZXX33F/PnzqV27NocPH2bkyJH5UvfjypUrx9q1a9mwYQO1a9dm4cKFejfwZadr1660adOGN998Ezs7O1avXq3u8/HxoXTp0vj6+uLk5JTjfixYsIDExES8vb0pXbq0+vruu+/yfGxCCPFfxMTEEB4erm6HhYURFxdHWloa58+fZ/jw4eqVtUyRkZEoipLllRnYwqMrVZlP8YFHy6kmTZpEXFwcDx8+ZNu2bdneUyKEyBuN8uRCTyFyITk5mTJlyhAREaE+SaKwS0pKwsrKijt37siyhEIo87J3u3bt5JJdISTjU7jJ+BR+MkZ5l/n5nZiY+Mwr24VqWYJ4deh0Ou7cucPMmTOxtrbm7bffLuguCSGEEEIUrmUJr6pp06Zhbm6e7att27YF3b0X4tq1azg4OLBq1SqWLl2qdwPgtWvXnno+zM3NuXbtWgH2XAghhBBFmczc5oMBAwY89VvUiurNUS4uLlkeXZbJycnpmU96yM3aXCGEEEKI3JDgNh9k90iZ11mxYsXUb3YTQgghhHiZZFmCEEIIIYQoMiS4FUIIIYQQRYYEt0IIIYQQosiQ4FYIIYQQQhQZEtwKIYQQQogiQ4JbIYQQQghRZEhwK4QQQgghigwJboUQQhR5YWFhaDQa/P39Abh69SoajSbb1w8//KBXNjIyEnd3d4oXL469vT0DBw58ZlsPHz5k4MCB2NraYm5uTteuXfn7779f1KEJIZ4gwe1zREZGYm1t/Z/r8fb2Vt9UX1UuLi6Eh4cXdDeEECJXjhw5wtdff427u7ua5uzszK1bt/ReISEhWb42/csvv2TcuHGMGTOGM2fOsG3bNnx9fZ/Z3rBhw9i4cSM//PADu3bt4ubNm3Tp0uWFHZ8QQp8Et8/x7rvvcv78+YLuxitn0aJFeHt7Y2lpiUaj4d69e1ny3L17lx49emBpaYm1tTV+fn4kJye//M4KIYqs5ORkevTowTfffEPJkiXVdENDQxwdHfVe69evp3v37pibmwOQkJDA+PHjWb58OR988AEVK1bE3d2dt99++6ntJSYmsmTJEr788ktatGhB3bp1iYiIYP/+/Rw8ePCFH68QQr5+97lMTU0xNTUt6G68clJSUmjTpg1t2rQhMDAw2zw9evTg1q1bREdHo9Vq6dOnD/3792fVqlUvpY8NQ7eTXszspbQlcs7EUGF6A6gZvJXUDE1Bd0c84VUYn6th7dWfBw4cSPv27fHx8WHKlClPLXPs2DFOnjzJ/Pnz1bTo6Gh0Oh03btygWrVq3L9/nyZNmjBz5kycnZ2fWo9Wq8XHx0dNc3Nzo1y5chw4cIBGjRrlwxEKIZ7ltZy53bRpE9bW1mRkZABw8uRJNBoNY8aMUfP07duXDz/8MMuyhODgYOrUqcOKFStwcXHBysqK9957j/v376t5Hjx4QM+ePTE3N6d06dLMnDkzV/376quvqFy5MsWLF8fBwYF33nlH3eft7c2gQYMYNGgQVlZWlCpVigkTJqAoiponNTWVkSNHUqZMGczMzGjYsCExMTF6bezdu5dmzZphamqKs7MzQ4YM4cGDB+r++Ph4OnTogKmpKa6urqxcuTJXx+Dv78+YMWOe+kb+xx9/sGXLFhYvXkzDhg3x9PRk7ty5rFmzhps3bwL/WxKyadMmqlatSokSJXjnnXdISUlh2bJluLi4ULJkSYYMGaKOpRBCZFqzZg3Hjx8nNDT0uXmXLFlCtWrVaNKkiZp2+fJldDod06ZNIzw8nB9//JG7d+/SqlUr0tLSsq0nLi4OY2PjLMvZHBwciIuL+0/HI4TImddy5rZZs2bcv3+fEydOUK9ePXbt2kWpUqX0AsBdu3YxevTobMtfunSJDRs2sGnTJhISEujevTthYWFMnToVgICAAHbt2sVPP/2Evb09Y8eO5fjx49SpU+e5fTt69ChDhgxhxYoVNGnShLt377Jnzx69PMuWLcPPz4/Dhw9z9OhR+vfvT7ly5ejXrx8AgwYN4uzZs6xZswYnJyfWr19PmzZtOH36NJUrV+bSpUu0adOGKVOmsHTpUm7fvq0GzBEREQD07t2bmzdvsnPnToyMjBgyZAjx8fF5ONvZO3DgANbW1tSrV09N8/HxwcDAgEOHDtG5c2fg0QzwnDlzWLNmDffv36dLly507twZa2troqKiuHz5Ml27dqVp06a8++672baVmppKamqqup2UlASAiYGCoaGSbRlRcEwMFL1/ReHyKoyPVqvl+vXrDB06lKioKAwNDdFqtSiKgk6nQ6vV6uX/999/WbVqFWPHjtXbp9Vq0Wq16hIDgOXLl+Ps7Ex0dDStW7fO0nZ6erpa9nGKopCRkZElPb9l1v+i2xF5J2OUdzk9Z69lcGtlZUWdOnWIiYmhXr16xMTEMGzYMEJCQkhOTiYxMZGLFy/i5eXFvn37spTX6XRERkZiYWEBwEcffcT27duZOnUqycnJLFmyhG+//ZaWLVsCj4LRsmXL5qhv165dw8zMjLfeegsLCwvKly+Ph4eHXh5nZ2dmzZqFRqOhatWqnD59mlmzZtGvXz+uXbtGREQE165dw8nJCYCRI0eyZcsWIiIimDZtGqGhofTo0UO9wa1y5crMmTMHLy8vFixYwLVr19i8eTOHDx+mfv36wP9mNfJLXFwc9vb2emnFihXDxsZGb3ZDq9WyYMECKlasCMA777zDihUr+PvvvzE3N6d69eq8+eab7Ny586nBbWhoKCEhIVnSx3voKFFCZnwLq8n1dAXdBfEMhXl8oqKiOHjwIPHx8TRo0EBN1+l07Nmzh/nz5/PDDz9gaGgIwM6dO3nw4AGOjo5ERUWp+W/fvg3ArVu39NItLCyIiopSA9nH/fnnn6SlpfH999+ra3cz0xMSEvTqeZGio6NfSjsi72SMci8lJSVH+V7L4BbAy8uLmJgYRowYwZ49ewgNDeX7779n79693L17FycnJypXrpxtcOvi4qIGtgClS5dWZzUvXbpEWloaDRs2VPfb2NhQtWrVHPWrVatWlC9fngoVKqhrVjt37kyJEiXUPI0aNUKj+d9at8aNGzNz5kwyMjI4ffo0GRkZVKlSRa/e1NRUbG1tATh16hS//fab3lKDzBmNK1eucP78eYoVK0bdunXV/W5ubvny1IjcKlGihBrYwqNLey4uLnofGg4ODs+cVQ4MDGT48OHqdlJSEs7Ozkw5YUC6keGL6bjIMxMDhcn1dEw4akCqrnCu6XydvQrj83uwL82aNaN79+566f369aNq1aqMHDmSmjVrqulffvklHTp04P3339fLX6lSJebOnUvZsmXVmdu7d+9y//592rdvT6tWrbK03bRpUyZPnkyxYsVo164dALGxsdy+fZs+ffrofTa8CFqtlujoaFq1aoWRkdELbUvkjYxR3mVeeX2e1za49fb2ZunSpZw6dQojIyPc3Nzw9vYmJiaGhIQEvLy8nlr2yV9GjUaDTpc/sxgWFhYcP36cmJgYfv31V4KCgggODubIkSM5Ci6Tk5MxNDTk2LFj6qxEpsyAMDk5mU8++YQhQ4ZkKV+uXLmX8nQIR0fHLAFpeno6d+/exdHRUU3L7lzn9vybmJhgYmKSJX33aB814BeFh1arJSoqimNBbeSNvxB6VcbHxsYGGxsbvTRzc3Ps7Oz0roZdvHiRPXv2EBUVleV4atSoQceOHRkxYgSLFi3C0tKSwMBA3Nzc1MDkxo0btGzZkuXLl9OgQQNKlSqFn58fo0aNwt7eHktLSwYPHkzjxo3x9PR8KccOj947C/P4CBmjvMjp+XotbyiD/627nTVrlhrIZga3MTExeHt756neihUrYmRkxKFDh9S0hISEXAWMxYoVw8fHh+nTp/Pbb79x9epVduzYoe5/vG6AgwcPUrlyZQwNDfHw8CAjI4P4+HgqVaqk98oMGt944w3Onj2bZX+lSpUwNjbGzc2N9PR0jh07prYRGxub7eO88qpx48bcu3dPr40dO3ag0+le+MyGEEJkWrp0KWXLls12/Sw8WmPbsGFD2rdvj5eXF0ZGRmzZskX9kNVqtcTGxupdLp01axZvvfUWXbt2pXnz5jg6OrJu3bqXcjxCiNd45rZkyZK4u7uzcuVK5s2bB0Dz5s3p3r07Wq32mTO3z2Jubo6fnx8BAQHY2tpib2/PuHHjMDDI2d8RmzZt4vLlyzRv3pySJUsSFRWFTqfTW9Zw7do1hg8fzieffMLx48eZO3eu+kSGKlWq0KNHD3r27MnMmTPx8PDg9u3bbN++HXd3d9q3b8/o0aNp1KgRgwYNom/fvpiZmXH27Fmio6OZN28eVatWpU2bNnzyyScsWLCAYsWK4e/vn6tHosXFxREXF8fFixcBOH36NBYWFpQrVw4bGxuqVatGmzZt6NevHwsXLkSr1TJo0CDee+89da2wEELkpyefGgMwbdo0pk2b9tQylpaWLFmyhCVLlmS738XFRe9pNQDFixdn/vz5eo8VE0K8PK/tzC08WnebkZGhztLa2NhQvXp1HB0dc7xGNjtffPEFzZo1o0OHDvj4+ODp6am3fvVZrK2tWbduHS1atKBatWosXLiQ1atXU6NGDTVPz549+ffff2nQoAEDBw5k6NCh9O/fX90fERFBz549GTFiBFWrVqVTp04cOXKEcuXKAeDu7s6uXbs4f/48zZo1w8PDg6CgIL2gMiIiAicnJ7y8vOjSpQv9+/fPcgPYsyxcuBAPDw/1CQ7NmzfHw8ODn3/+Wc2zcuVK3NzcaNmyJe3atcPT05NFixbluA0hhBBCiCdplCf/5BSFmre3N3Xq1JGvwf0PkpKSsLKy4s6dO7LmthDKXNPZrl07WY9WCMn4FG4yPoWfjFHeZX5+JyYmYmlp+dR8r/XMrRBCCCGEKFokuH3J9uzZg7m5+VNfr4KVK1c+tf+PL58QQgghhHjZXtsbygpKvXr1OHnyZJ7LZ3dDxMv29ttvP/WJBnKJRQghhBAFSYLbl8zU1JRKlSoVdDf+EwsLC70vsRBCCCGEKCxkWYIQQgghhCgyJLgVQgghhBBFhgS3QgghhBCiyJDgVgghhBBCFBkS3AohhBBCiCJDglshhBBCCFFkSHArhBDihQgLC0Oj0eDv76+mLVq0CG9vbywtLdFoNNy7dy9Lubt379KjRw8sLS2xtrbGz8+P5OTkZ7b18OFDBg4ciK2tLebm5nTt2pW///47n49ICPEqkOA2lyIjI7G2tv7P9Xh7e+u94QshRFFy5MgRvv76a9zd3fXSU1JSaNOmDWPHjn1q2R49enDmzBmio6PZtGkTu3fvpn///s9sb9iwYWzcuJEffviBXbt2cfPmTbp06ZIvxyKEeLXkW3Cb3V/fRdG7777L+fPnC7ob+erq1atoNJr/9M1pj7t16xYffPABVapUwcDA4KlB/A8//ICbmxvFixenVq1aREVF5Uv7QoiClZycTI8ePfjmm28oWbKk3j5/f3/GjBlDo0aNsi37xx9/sGXLFhYvXkzDhg3x9PRk7ty5rFmzhps3b2ZbJjExkSVLlvDll1/SokUL6tatS0REBPv37+fgwYP5fnxCiMItT8Ht559/znfffadud+/eHVtbW8qUKcOpU6fyrXOFkampKfb29gXdjUItNTUVOzs7xo8fT+3atbPNs3//ft5//338/Pw4ceIEnTp1olOnTvz+++8vubdCiPw2cOBA2rdvj4+PT67LHjhwAGtra+rVq6em+fj4YGBgwKFDh7Itc+zYMbRarV57bm5ulCtXjgMHDuT+AIQQr7Q8ff3uwoULWblyJQDR0dFER0ezefNmvv/+ewICAvj111/ztZMv2qZNm/jwww/5559/MDQ05OTJk3h4eDB69GjCwsIA6Nu3Lw8fPsTHxwd/f391pjo4OJgNGzYwYsQIJkyYQEJCAm3btuWbb75Rv6L2wYMHfPrpp6xbtw4LCwtGjhyZq/7dunWLvn37smPHDhwdHZk6dSpjx47F398ff39/rl69iqurKydOnKBOnTrAo5n0kiVLsnPnTry9vUlISGDQoEH8+uuvJCcnU7ZsWcaOHUufPn1wdXUFwMPDAwAvLy9iYmKIiYlh1KhRnDlzBiMjI2rUqMGqVasoX778M/vr4uLC7NmzAVi6dGm2eWbPnk2bNm0ICAgAYPLkyURHRzNv3jwWLlyo1tO3b1/Onz/PunXrsLW1Ze7cuTRu3Ji+ffuyfft2KlSowNKlS/U+CHOqYeh20ouZ5bqceLFMDBWmN4CawVtJzdAUdHfEE542PlfD2gOwZs0ajh8/zpEjR/JUf1xcXJYJhGLFimFjY0NcXNxTyxgbG2dZMubg4PDUMkKIoitPwW1cXBzOzs7Ao8Cwe/futG7dGhcXFxo2bJivHXwZmjVrxv379zlx4gT16tVj165dlCpVipiYGDXPrl27GD16dLblL126xIYNG9i0aRMJCQl0796dsLAwpk6dCkBAQAC7du3ip59+wt7enrFjx3L8+HE1EH2enj17cufOHWJiYjAyMmL48OHEx8fn6hgnTJjA2bNn2bx5M6VKleLixYv8+++/ABw+fJgGDRqwbds2atSogbGxMenp6XTq1Il+/fqxevVq0tLSOHz4MBpN/gQbBw4cYPjw4Xppvr6+bNiwQS9t1qxZTJs2jQkTJjBr1iw++ugjmjRpwscff8wXX3zB6NGj6dmzJ2fOnHlq31JTU0lNTVW3k5KSADAxUDA0VPLleET+MTFQ9P4VhcvTxker1XL9+nWGDh1KVFQUhoaGaLVaFEVBp9Oh1Wr18qenp6vlHt+XkZGBoihZ8mfuyy798boepyjKU8sUVZnH+jod86tGxijvcnrO8hTclixZkuvXr+Ps7MyWLVuYMmUK8L83kleNlZUVderUISYmhnr16hETE8OwYcMICQkhOTmZxMRELl68iJeXF/v27ctSXqfTERkZqc7UfvTRR2zfvp2pU6eSnJzMkiVL+Pbbb2nZsiUAy5Yto2zZsjnq27lz59i2bRtHjhxRZycXL15M5cqVc3WM165dw8PDQ63DxcVF3WdnZweAra0tjo6OwKO7lRMTE3nrrbeoWLEiANWqVctVm88SFxeHg4ODXlp2syzt2rXjk08+ASAoKIgFCxZQv359unXrBsDo0aNp3Lgxf//9t9r3J4WGhhISEpIlfbyHjhIlXr3f19fF5Hq6gu6CeIYnxycqKoqDBw8SHx9PgwYN1HSdTseePXuYP38+P/zwA4aGhgCcPn0agF9//RVzc3M1f3x8PDdv3tRbg5+RkcE///zDjRs3sl2b/+eff5KWlsb333+vV9eff/5JQkLCa7mePzo6uqC7IJ5Dxij3UlJScpQvT8Ftly5d+OCDD6hcuTL//PMPbdu2BeDEiRNUqlQpL1UWuMxL8SNGjGDPnj2Ehoby/fffs3fvXu7evYuTkxOVK1fONrh1cXFRA1uA0qVLqzOrly5dIi0tTW9G28bGhqpVq+aoX7GxsRQrVow33nhDTatUqVKWmzSe59NPP6Vr164cP36c1q1b06lTJ5o0afLU/DY2NvTu3RtfX19atWqFj48P3bt3p3Tp0rlq9796/E7rzGC4Vq1aWdLi4+OfGtwGBgbqzRInJSXh7OzMlBMGpBsZvohui//AxEBhcj0dE44akKqTZQmFzdPG5/dgX5o1a0b37t318vfr14+qVasycuRIatasqaabmT1aEtS6dWu95QSurq7MmzcPR0dH9X0vOjoaRVEYMGAATk5OWfrUtGlTJk+eTLFixWjXrh3w6L3z9u3b9OnT55W8ophXWq2W6OhoWrVqhZGRUUF3R2RDxijvMq+8Pk+egttZs2bh4uLC9evXmT59uvqX8q1bt/jss8/yUmWB8/b2ZunSpZw6dQojIyPc3Nzw9vYmJiaGhIQEvLy8nlr2yV9OjUaDTvfyZp0MDB7dF6go/7tM+OTUfdu2bfnzzz+JiooiOjqali1bMnDgQGbMmPHUeiMiIhgyZAhbtmzhu+++Y/z48URHRz/1LufccHR0zPIMyuxmXx8/t5nLDrJLe9b5NjExwcTEJEv67tE+2Nra5r7z4oXSarVERUVxLKiNvPEXQs8aHxsbG2xsbPTSzM3NsbOzU9f0x8XFERcXx9WrV4FHV6csLCwoV64cNjY2uLu706ZNGz799FMWLlyIVqvF39+f9957T13vf+PGDVq2bMny5ctp0KABpUqVws/Pj1GjRmFvb4+lpSWDBw+mcePGeHp6vviTUggZGRnJ/59CTsYo93J6vvL0tAQjIyNGjhzJ7Nmz1TcsePScwb59++alygKXue521qxZaiCbGdzGxMTg7e2dp3orVqyIkZGR3l2+CQkJOX6cWNWqVUlPT+fEiRNq2sWLF0lISFC3M5cV3Lp1S03L7rFednZ29OrVi2+//Zbw8HAWLVoEgLGxMUC2S0o8PDwIDAxk//791KxZk1WrVuWo38/TuHFjtm/frpcWHR1N48aN86V+IUThtHDhQjw8POjXrx8AzZs3x8PDg59//lnNs3LlStzc3GjZsiXt2rXD09NTfb+CRwF2bGys3iXKWbNm8dZbb9G1a1eaN2+Oo6Mj69ate3kHJoQoNPI0cwuwYsUKvv76ay5fvsyBAwcoX7484eHhuLq60rFjx/zs40tRsmRJ3N3dWblyJfPmzQMevel2794drVb7zJnbZzE3N8fPz4+AgABsbW2xt7dn3Lhx6mzr87i5ueHj40P//v1ZsGABRkZGjBgxAlNTU3XW0tTUlEaNGhEWFoarqyvx8fGMHz9er56goCDq1q1LjRo1SE1NZdOmTeoaWnt7e0xNTdmyZQtly5alePHi3L17l0WLFvH222/j5OREbGwsFy5coGfPnjnqd2ZwnZyczO3btzl58iTGxsZUr14dgKFDh+Ll5cXMmTNp3749a9as4ejRo3ofYEKIV9/jN+bCoyfMBAcHP7OMjY3NM/+QdnFx0btSBVC8eHHmz5/P/Pnz89pVIUQRkaeZ2wULFjB8+HDatm3LvXv31Bk/a2trwsPD87N/L5WXlxcZGRnqLK2NjQ3Vq1fH0dExx2tks/PFF1/QrFkzOnTogI+PD56entStWzfH5ZcvX46DgwPNmzenc+fO9OvXDwsLC4oXL67mWbp0Kenp6dStWxd/f3/1Jr9MxsbGBAYG4u7uTvPmzTE0NGTNmjXAo8fszJkzh6+//honJyc6duxIiRIlOHfuHF27dqVKlSr079+fgQMHqjd3PY+HhwceHh4cO3aMVatW4eHhoa6FA2jSpAmrVq1i0aJF1K5dmx9//JENGzborckTQgghhMgtjfLkn785UL16daZNm0anTp2wsLDg1KlTVKhQgd9//x1vb2/u3LnzIvoq/t9ff/2Fs7Mz27ZtU5/AIHIuKSkJKysr7ty5I2tuC6HMNZ3t2rWT9WiFkIxP4SbjU/jJGOVd5ud3YmIilpaWT82Xp2UJV65c0Vtrm8nExIQHDx7kpUrxDDt27CA5OZlatWpx69YtRo0ahYuLC82bNy/orgkhhBBCFCp5Wpbg6uqa7Q1LW7Zsyddnob4O9uzZg7m5+VNf8OivvLFjx1KjRg06d+6MnZ2d+oUOBaFGjRpP7W/mN9cJIYQQQhSEPM3cDh8+nIEDB/Lw4UMUReHw4cOsXr2a0NBQFi9enN99LNLq1auX7R8Kj/P19cXX1/fldCgHoqKinvotIU9+MYMQQgghxMuUp+C2b9++mJqaMn78eFJSUvjggw9wcnJi9uzZvPfee/ndxyLN1NT0lfvii8xnTQohhBBCFDa5Dm7T09NZtWoVvr6+9OjRg5SUFJKTk7G3t38R/RNCCCGEECLHcr3mtlixYgwYMICHDx8CUKJECQlshRBCCCFEoZCnG8oaNGig941ZQgghhBBCFAZ5WnP72WefMWLECP766y/q1q2LmZmZ3n53d/d86ZwQQgghhBC5kafgNvOmsSFDhqhpGo0GRVHQaDTqN5YJIYQQQgjxMuX5SxyEEEIIIYQobPK05rZ8+fLPfAkhhHi1LFiwAHd3dywtLbG0tKRx48Zs3rwZgKtXr6LRaNBoNBgbG9OpUyeMjY3RaDT88MMPevVERkbi7u5O8eLFsbe3Z+DAgc9s9+HDhwwcOBBbW1vMzc3p2rUrf//99ws7TiFE0Zenmdvly5c/c3/Pnj3z1BkhhBAFo2zZsoSFhVG5cmUURWHZsmV07NiREydO4Obmxq1bt4BH35i4fft2rly5wpdffknbtm3VOr788ktmzpzJF198QcOGDXnw4AFXr159ZrvDhg3jl19+4YcffsDKyopBgwbRpUsX9u3b9yIPVwhRhOUpuB06dKjetlarJSUlBWNjY0qUKCHBrRBCvGI6dOigtz116lQWLFjAwYMHqVGjBo6OjsCj9/uSJUsSHh5O9+7d1a8JT0hIYPz48WzcuJGWLVuq9TzrBuPExESWLFnCqlWraNGiBQARERFUq1aNgwcP0qhRo/w+TCHEayBPyxISEhL0XsnJycTGxuLp6cnq1avzu49CPFdGRgY6na6guyFEkZCRkcGaNWt48OABjRs3zrL/4sWLnDp1Cj8/PzUtOjoanU7HjRs3qFatGmXLlqV79+5cv379qe0cO3YMrVaLj4+Pmubm5ka5cuU4cOBA/h6UEOK1kaeZ2+xUrlyZsLAwPvzwQ86dO5df1YpX0PLlyxk2bBg3b97ExMRETe/UqRMWFhasWLGCn376iZCQEM6ePYuTkxO9evVi3LhxFCv26Ffyyy+/JCIigsuXL2NjY0OHDh2YPn26OksUGRmJv78/y5cvZ8yYMZw/f56LFy/i4uKS4342DN1OejGz52cUL5WJocL0BlAzeCupGZqC7s5r4WpYewBOnz5N48aNefjwIebm5qxfv57q1atnyb9t2zbc3Nxo0qSJmnb58mV0Oh3Tpk1j9uzZWFlZMX78eFq1asVvv/2GsbFxlnri4uIwNjbG2tpaL93BwYG4uLj8PUghxGsj34JbePTtZTdv3szPKsUrqFu3bgwZMoSff/6Zbt26ARAfH88vv/zCr7/+yp49e+jZsydz5syhWbNmXLp0if79+wMwceJEAAwMDJgzZw6urq5cvnyZzz77jFGjRvHVV1+p7aSkpPD555+zePFibG1tn/pNeampqaSmpqrbSUlJAJgYKBgaKi/kHIi8MzFQ9P4VL55WqwWgQoUKHDlyhKSkJNauXUuvXr3Ytm2bXoCblJTE7t27GT9+vFousw6tVsuXX36pLjFYvnw5zs7OREdH07p16yztpqen67WfSVEUMjIysqSL58s8Z3LuCi8Zo7zL6TnLU3D7888/620risKtW7eYN28eTZs2zUuVoggxNTXlgw8+ICIiQg1uv/32W8qVK4e3tzetWrVizJgx9OrVC3j0gTp58mRGjRqlBrf+/v5qfS4uLkyZMoUBAwboBbdarZavvvqK2rVrP7M/oaGhhISEZEkf76GjRAl5JnNhNbmeLDN5WaKiorKkNW3alK1btzJq1Cg+++wzNX3nzp2kpaVRpkwZvXK3b98G4NatW3rpFhYWREVFqYHs4/7880/S0tL4/vvv1asymekJCQnZ9kvkTHR0dEF3QTyHjFHupaSk5CifRlGUXE+PGBjoL9XVaDTY2dnRokULZs6cSenSpXNbpShiTpw4Qf369fnzzz8pU6YM7u7udOvWjQkTJmBnZ0dycjKGhoZq/oyMDB4+fMiDBw8oUaIE27ZtIzQ0lHPnzpGUlER6erre/sjISD755BMePnyIRvPsS9fZzdw6OztTPWAN6UayLKGwMTFQmFxPx4SjBqTqZFnCy/B7sG+26a1bt8bZ2ZklS5aoaS1btiQ9PZ1t27ZhZGSkpp8/f56aNWuyZcsWdeb27t27ODk5sXHjRlq1apWl/sTERJycnFixYgVdunQBIDY2llq1arFnzx4aNmyYn4f5WtBqtURHR9OqVSu98RGFh4xR3iUlJVGqVCkSExOxtLR8ar48zdzKjTvieTw8PKhduzbLly+ndevWnDlzhl9++QWA5ORkQkJC1A+zxxUvXpyrV6/y1ltv8emnnzJ16lRsbGzYu3cvfn5+pKWlUaJECeDRDPHzAlsAExMTvbW/mXaP9sHW1vY/HqnIb1qtlqioKI4FtZE3/pcoMDCQtm3bUq5cOe7fv8+qVavYtWsXW7duVcfh4sWL7N27lwkTJmBkZKQ3PjVq1KBjx46MGDGCRYsWYWlpSWBgIG5ubuqH+I0bN2jZsiXLly+nQYMGlCpVCj8/P0aNGoW9vT2WlpYMHjyYxo0b4+npWVCnokh4cnxE4SNjlHs5PV95Cm4nTZrEyJEj1SAj07///ssXX3xBUFBQXqoVRUzfvn0JDw/nxo0b+Pj44OzsDMAbb7xBbGwslSpVyrbcsWPH0Ol0zJw5U71K8P3337+0fgvxOoqPj6dnz57cunULKysr3N3d2bp1q96M69KlSylbtix16tTJto7Mm0nbt2+PgYEBXl5ebNmyRf1A0mq1xMbG6l1anDVrFgYGBnTt2pXU1FR8fX31lh8JIURu5WlZgqGhIbdu3cpyA88///yDvb09GRmyjlH875Jjeno6y5cv59133wVg69atvPXWW4wfP5533nkHAwMDTp06xe+//86UKVM4deoUderUITw8nA4dOrBv3z4CAwO5ceMGCQkJWFtbq09LuHfvXq77lZSUhJWVFXfu3JGZ20Ioc+a2Xbt2MqtRCMn4FG4yPoWfjFHeZX5+P29ZQp6ec6soSraXg0+dOoWNjU1eqhRFkJWVFV27dsXc3JxOnTqp6b6+vmzatIlff/2V+vXr06hRI2bNmqV+dXPt2rX58ssv+fzzz6lZsyYrV64kNDS0gI5CCCGEEK+SXC1LKFmypPr94lWqVNELcDMyMkhOTmbAgAH53knx6rpx4wY9evTIsubV19cXX9/sb2KBR1/JOWzYML20jz76SP25d+/e9O7dO1/7KoQQQohXX66C2/DwcBRF4eOPPyYkJAQrKyt1n7GxMS4uLtl+m414/SQkJBATE0NMTIysnxNCCCHES5Or4DbzuaSurq40adJE1oqIp/Lw8CAhIYHPP/+cqlWrFnR3hBBCCPGayNPTEry8vNSfHz58SFpamt7+Zy3yFa+Hq1evFnQXhBBCCPEaytMNZSkpKQwaNAh7e3vMzMwoWbKk3ksIIYQQQoiCkKfgNiAggB07drBgwQJMTExYvHgxISEhODk5sXz58vzuoxBCCCGEEDmSp2UJGzduZPny5Xh7e9OnTx+aNWtGpUqVKF++PCtXrqRHjx753U8hhBBCCCGeK08zt3fv3qVChQrAo/W1d+/eBcDT05Pdu3fnX++EEEIIIYTIhTwFtxUqVODKlSsAuLm5qV+NunHjRqytrfOtc0IIIYQQQuRGnoLbPn36cOrUKQDGjBnD/PnzKV68OMOGDSMgICBfOyiEEEIIIURO5WnN7ePfHOXj48O5c+c4duwYlSpVwt3dPd86J4QQQgghRG7kaeb2cQ8fPqR8+fJ06dJFAlshhHhFLFiwAHd3dywtLbG0tKRx48Zs3rxZL8+BAwdo0aIFZmZmWFpa0rx5c/799191//nz5+nYsSOlSpXC0tIST09Pdu7c+cx2FUUhKCiI0qVLY2pqio+PDxcuXHghxyiEeD3lKbjNyMhg8uTJlClTBnNzcy5fvgzAhAkTWLJkSb52UDydt7c3/v7+L7XNRYsW4ezsjIGBAeHh4S+1bYDIyEhZ1y1EPihbtixhYWEcO3aMo0eP0qJFCzp27MiZM2eAR4FtmzZtaN26NYcPH+bIkSMMGjQIA4P/fWy89dZbpKens2PHDo4dO0bt2rV56623iIuLe2q706dPZ86cOSxcuJBDhw5hZmaGr68vDx8+fOHHLIR4PeQpuJ06dSqRkZFMnz4dY2NjNb1mzZosXrw43zonCpekpCQGDRrE6NGjuXHjBv379y/oLgkh8qhDhw60a9eOypUrU6VKFaZOnYq5uTkHDx4EHi0/GzJkCGPGjKFGjRpUrVqV7t27Y2JiAsCdO3e4cOECY8aMwd3dncqVKxMWFkZKSgq///57tm0qikJ4eDjjx4+nY8eOuLu7s3z5cm7evMmGDRte1qELIYq4PAW3y5cvZ9GiRfTo0QNDQ0M1vXbt2pw7dy7fOicKl2vXrqHVamnfvj2lS5emRIkSBd0lIUQ+yMjIYM2aNTx48IDGjRsTHx/PoUOHsLe3p0mTJjg4OODl5cXevXvVMra2tlStWpXly5fz4MED0tPT+frrr7G3t6du3brZtnPlyhXi4uLw8fFR06ysrGjYsCEHDhx44ccphHg95OmGshs3blCpUqUs6TqdDq1W+587JbJ68OABn376KevWrcPCwoKRI0fq7V+xYgWzZ88mNjYWMzMzWrRoQXh4OPb29iiKQuXKlRkwYIBeuZMnT+Lh4cGFCxeoVKkS165dY/DgwWzfvh0DAwPatGnD3LlzcXBwIDIykj59+gCozzieO3cu48eP559//sHQ0FCtb/To0YSFhQHQt29fHj58yLfffgvA3r17CQwM5OjRo5QqVYrOnTsTGhqKmZkZAKmpqYwbN47Vq1dz7949atasyeeff463t3e25+X27du0bdsWZ2dn1qxZo84q5UTD0O2kFzPLcX7xcpgYKkxvADWDt5KaoSno7hQ5V8Paqz+fPn2axo0b8/DhQ8zNzVm/fj3Vq1dXZ2+Dg4OZMWMGderUYfny5bRs2ZITJ04AoNFo2LZtG506dcLCwgIDAwPs7e3ZsmXLU7+GPXO5goODg166g4PDM5cyCCFEbuQpuK1evTp79uyhfPnyeuk//vgjHh4e+dIxoS8gIIBdu3bx008/YW9vz9ixYzl+/Dh16tQBQKvVMnnyZKpWrUp8fDzDhw+nd+/eREVFodFo+Pjjj4mIiNALbiMiImjevDmVKlVCp9PRsWNHzM3N2bVrF+np6QwcOJB3332XmJgY3n33XZydnfHx8eHw4cM4OztjamrK0KFDOXHiBPXq1WPXrl2UKlWKmJgYtY1du3YxevRoAC5dukSbNm2YMmUKS5cu5fbt2wwaNIhBgwYREREBwKBBgzh79ixr1qzBycmJ9evX06ZNG06fPk3lypX1zsn169dp1aoVjRo1YsmSJXpXER6XmppKamqqup2UlASAiYGCoaHyn8dG5C8TA0XvX5G/Hp+AqFChAkeOHCEpKYm1a9fSq1cvtm3bRlpaGvDoj9MPP/wQeLRWdtu2bSxdupRmzZqRlpbGp59+ip2dHTt37sTU1JSlS5fSoUMH9u/fT+nSpbO0nZ6ervbh8X7odDo0Go1MjuSDzHMo57LwkjHKu5yeszwFt0FBQfTq1YsbN26g0+lYt24dsbGxLF++nE2bNuWlSvEMycnJLFmyhG+//ZaWLVsCsGzZMsqWLavm+fjjj9WfK1SowJw5c6hfvz7JycmYm5vTu3dvgoKCOHz4MA0aNECr1bJq1SpmzJgBwPbt2zl9+jRXrlzB2dkZeLT8pEaNGhw5coT69etja2sLgJ2dHY6OjgDUqVOHmJgY6tWrR0xMDMOGDSMkJITk5GQSExO5ePEiXl5eAISGhtKjRw/1JrjKlSszZ84cvLy8WLBgAfHx8URERHDt2jWcnJwAGDlyJFu2bCEiIoJp06apxxgbG0urVq3o3Lkz4eHhaDRPn+ELDQ0lJCQkS/p4Dx0lSmTkbjDESzO5nq6gu1AkRUVFZZvetGlTtm7dyqhRo+jatSsAaWlpevmtrKw4cuQIzZo1Y+bMmURFRfHtt99y79497t27R9u2bfn5558ZP368WsfjMmdn165dq14BAjh37hyurq5P7ZvIvejo6ILugngOGaPcS0lJyVG+XAW3ly9fxtXVlY4dO7Jx40YmTZqEmZkZQUFBvPHGG2zcuJFWrVrlqcPi6S5dukRaWhoNGzZU02xsbKhataq6fezYMYKDgzl16hQJCQnodI8Cg2vXrlG9enWcnJxo3749S5cupUGDBmzcuJHU1FS6desGwB9//IGzs7Ma2MKjGXpra2v++OMP6tevn23fvLy8iImJYcSIEezZs4fQ0FC+//579u7dy927d3FyclJnXE+dOsVvv/3GypUr1fKKoqDT6bhy5QqXL18mIyODKlWq6LWRmpqqBtYA//77L82aNeODDz7I0RMbAgMDGT58uLqdlJSEs7MzU04YkG6U/WyvKDgmBgqT6+mYcNSAVJ0sS8hvvwf7PnVfeHg4Dg4O9O7dm5CQEExNTWnXrp26f+LEiep7fPXq1QFo06YN5ubmah5zc3MqV66sVy6ToigEBwej1WrV/UlJSVy8eJExY8ZkW0bkjlarJTo6mlatWmFkZFTQ3RHZkDHKu8wrr8+Tq+C2cuXK3Lp1C3t7e5o1a4aNjQ2nT5/Osn5KvFwPHjzA19cXX19fVq5ciZ2dHdeuXcPX11e9vAiPLjF+9NFHzJo1i4iICN59993/fFOYt7c3S5cu5dSpUxgZGeHm5oa3tzcxMTEkJCSos7bwaAb6k08+YciQIVnqKVeuHL/99huGhoYcO3YsyxKDxz88TUxM8PHxYdOmTQQEBFCmTJln9tHExCTbtbi7R/voBc2icNBqtURFRXEsqI288b9AgYGBtG3blnLlynH//n1WrVrFrl272Lp1K8bGxgQEBDBx4kTeeOMN6tSpw7Jly4iNjWXNmjXExsbStGlTSpYsSd++fQkKCsLU1JRvvvmGq1ev8vbbb6tj5+bmRmhoKJ07dwbA39+f0NBQ3NzccHV1ZcKECTg5OfHOO+/IeOcjIyMjOZ+FnIxR7uX0fOUquFUU/TVwmzdv5sGDB7mpQuRBxYoVMTIy4tChQ5QrVw6AhIQEzp8/j5eXF+fOneOff/4hLCxMnXk9evRolnratWuHmZkZCxYsYMuWLezevVvdV61aNa5fv87169fVOs6ePcu9e/fUGZrsNGvWjPv37zNr1iw1kPX29iYsLIyEhARGjBih5n3jjTc4e/ZstjcjAnh4eJCRkUF8fDzNmjV7apsGBgasWLGCDz74gDfffJOYmBh1GYMQImfi4+Pp2bMnt27dwsrKCnd3d7Zu3arOzPr7+/Pw4UOGDRvG3bt3qV27NtHR0VSsWJHY2FhKlSrFli1bGDduHC1atECr1VKjRg1++uknateurbYTGxtLYmKiuj1q1CgePHhA//79uXfvHp6enmzZsoXixYu/9HMghCiilFzQaDTK33//rW6bm5srly5dyk0VIo8GDBiglC9fXtm+fbty+vRp5e2331bMzc2VoUOHKvHx8YqxsbESEBCgXLp0Sfnpp5+UKlWqKIBy4sQJvXrGjh2rGBsbK9WqVdNL1+l0Sp06dZRmzZopx44dUw4dOqTUrVtX8fLyUvOcOHFCAZQrV67ola1Tp45iaGioLFiwQFEURfnnn38UIyMjBVDOnTun5jt16pRiamqqDBw4UDlx4oRy/vx5ZcOGDcrAgQPVPD169FBcXFyUtWvXKpcvX1YOHTqkTJs2Tdm0aZOiKIoSERGhWFlZKYqiKFqtVnnnnXeUqlWrKrdu3crxuUxMTFQA5c6dOzkuI16etLQ0ZcOGDUpaWlpBd0VkQ8ancJPxKfxkjPIu8/M7MTHxmfly9ZxbjUaT5cadZ93II/LPF198QbNmzejQoQM+Pj54enqqz5K0s7MjMjKSH374gerVqxMWFqbeKPYkPz8/0tLS1Md6ZdJoNPz000+ULFmS5s2b4+PjQ4UKFfjuu++e2zcvLy8yMjLUx3XZ2NhQvXp1HB0d9dYFu7u7s2vXLs6fP0+zZs3w8PAgKChIb9Y1IiKCnj17MmLECKpWrUqnTp04cuSIOmP9uGLFirF69Wpq1KhBixYtiI+Pf25fhRBCCFG0aRRFyfHzdgwMDGjbtq26fnHjxo3q944/bt26dfnbS5Fv9uzZQ8uWLbl+/fpru1Y6KSkJKysr7ty5I2tuC6HMNbft2rWT9WiFkIxP4SbjU/jJGOVd5ud3YmIilpaWT82XqzW3vXr10tvOfP6hKPxSU1O5ffs2wcHBdOvW7bUNbIUQQghRtOUquM180L549axevRo/Pz/1m4aEEEIIIYqiXK25Fa+u3r17k5GRwbFjx5776CwhhBBCiFeVBLdCCCGEEKLIkOBWCCGEEEIUGRLcCiGEEEKIIkOCWyGEEEIIUWRIcCuEEEIIIYoMCW6FEEIIIUSRIcGtEEIIIYQoMiS4FUKIl2DBggW4u7tjaWmJpaUljRs3ZvPmzer+hw8fMnDgQGxtbTE3N6dr1678/fffenVcu3aN9u3bU6JECezt7QkICCA9Pf2Z7d69e5cePXpgaWmJtbU1fn5+JCcnv5BjFEKIwkCC20Lu6tWraDQaTp48+cLb0mg0bNiw4YW3I8TrqGzZsoSFhXHs2DGOHj1KixYt6NixI2fOnAFg2LBhbNy4kR9++IFdu3Zx8+ZNunTpopbPyMigffv2pKWlsX//fpYtW0ZkZCRBQUHPbLdHjx6cOXOG6OhoNm3axO7du+nfv/8LPVYhhChIufr6XSGEEHnToUMHve2pU6eyYMECDh48SNmyZVmyZAmrVq2iRYsWwKOvO69WrRoHDx6kUaNG/Prrr5w9e5Zt27bh4OBAnTp1mDx5MqNHjyY4OBhjY+Msbf7xxx9s2bKFI0eOUK9ePQDmzp1Lu3btmDFjBk5OTi/+wIUQ4iWTmVtRJCiK8tzLs0IUFhkZGaxZs4YHDx7QuHFjjh07hlarxcfHR83j5uZGuXLlOHDgAAAHDhygVq1aODg4qHl8fX1JSkpSZ3+fdODAAaytrdXAFsDHxwcDAwMOHTr0go5OCCEKlszcFhI6nY4ZM2awaNEirl+/joODA5988gk9evTIknfXrl0EBARw6tQpbGxs6NWrF1OmTKFYsUfD6eLigr+/P/7+/mqZOnXq0KlTJ4KDgwG4cOECfn5+HD58mAoVKjB79uxc9fevv/4iICCArVu3kpqaSrVq1Zg/fz4NGzYEHq0vnDFjBtevX8fV1ZXx48fz0UcfAfDBBx+QkZHBd999p9an1WopXbo0X375JT179kSn0/H555+zaNEi4uLiqFKlChMmTOCdd94BICYmhjfffJOoqCjGjx/P6dOn+fXXX/H29s7xMTQM3U56MbNcHbd48UwMFaY3gJrBW0nN0BR0d/LF1bD2AJw+fZrGjRvz8OFDzM3NWb9+PdWrV+fkyZMYGxtjbW2tV87BwYG4uDgA4uLi9ALbzP2Z+7ITFxeHvb29XlqxYsWwsbF5ahkhhHjVSXBbSAQGBvLNN98wa9YsPD09uXXrFufOncuS78aNG7Rr147evXuzfPlyzp07R79+/ShevLgauD6PTqejS5cuODg4cOjQIRITE/UC4edJTk7Gy8uLMmXK8PPPP+Po6Mjx48fR6XQArF+/nqFDhxIeHo6Pjw+bNm2iT58+lC1bljfffJMePXrQrVs3kpOTMTc3B2Dr1q2kpKTQuXNnAEJDQ/n2229ZuHAhlStXZvfu3Xz44YfY2dnh5eWl9mXMmDHMmDGDChUqULJkyWz7m5qaSmpqqrqdlJQEgImBgqGhkuPjFi+HiYGi929RoNVqAahQoQJHjhwhKSmJtWvX0qtXL7Zt26ZedcjMl0lRFDIyMtBqteh0OhRF0cuT+XN6enqWsvBohvjJMo/vyy49p8eSl7LixZPxKfxkjPIup+dMgttC4P79+8yePZt58+bRq1cvACpWrIinpydXr17Vy/vVV1/h7OzMvHnz0Gg0uLm5cfPmTUaPHk1QUBAGBs9fabJt2zbOnTvH1q1b1TV306ZNo23btjnq76pVq7h9+zZHjhzBxsYGgEqVKqn7Z8yYQe/evfnss88AGD58OAcPHmTGjBm8+eab+Pr6YmZmxvr169XZ3FWrVvH2229jYWFBamoq06ZNY9u2bTRu3Bh4FBTs3buXr7/+Wi+4nTRpEq1atXpmf0NDQwkJCcmSPt5DR4kSGTk6ZvHyTa6nK+gu5JuoqKgsaU2bNmXr1q2MGjUKT09P0tLS+P7779U/+AD+/PNPEhISiIqK4v79+1y4cEGvrsynKVy8eDHbNuLj47l586bevoyMDP755x9u3LiRbZmcio6OznNZ8eLJ+BR+Mka5l5KSkqN8EtwWAn/88Qepqam0bNkyR3kbN26MRvO/y7VNmzYlOTmZv/76i3LlyuWoDmdnZ72bSTKDyJw4efIkHh4eamCbXf1P3o3dtGlTdelDsWLF6N69OytXruSjjz7iwYMH/PTTT6xZswZ49EGdkpKSJWhNS0vDw8NDL+3xtYRPExgYyPDhw9XtpKQknJ2dmXLCgHQjw+cfsHipTAwUJtfTMeGoAam6orEs4fdg32zTw8PDcXBw4NNPP2Xy5MkUK1aMdu3aARAbG8vt27fp06cPDRs2xMDAgB9//JF69eqpSw0WL16MpaUl/fr1w8TEJEv9rq6uzJs3D0dHR9544w3g0QeqoigMGDAgTzeUabVaoqOjadWqFUZGRrkuL14sGZ/CT8Yo7zKvvD6PBLeFgKmpab7WZ2BggKLoX9LNz8sf+dHfHj164OXlRXx8PNHR0ZiamtKmTRsA9Rmcv/zyC2XKlNEr9+QHuJnZ89fMmpiYZPvBv3u0D7a2tnk9BPGCaLVaoqKiOBbUpki98QcGBtK2bVvKlSvH/fv3WbVqFbt27WLr1q2UKlUKPz8/Ro0ahb29PZaWlgwePJjGjRvj6ekJQLt27ahevToff/wx06dPJy4ujokTJzJw4EB1tvfw4cP07NmT7du3U6ZMGdzd3WnTpg2ffvopCxcuRKvV4u/vz3vvvUf58uX/0/EYGRkVqfEpamR8Cj8Zo9zL6fmSpyUUApUrV8bU1JTt27c/N2+1atU4cOCAXvC6b98+LCwsKFu2LAB2dnbcunVL3Z+UlMSVK1f06rh+/bpenoMHD+a4v+7u7pw8eZK7d+8+tY/79u3TS9u3bx/Vq1dXt5s0aYKzszPfffcdK1eupFu3buovbfXq1TExMeHatWtUqlRJ7+Xs7JzjfgpRmMTHx9OzZ0+qVq1Ky5YtOXLkCFu3blWvUMyaNYu33nqLrl270rx5cxwdHVm3bp1a3tDQkE2bNmFoaEjjxo358MMP6dmzJ5MmTVLzpKSkEBsbq/fH7MqVK3Fzc6Nly5a0a9cOT09PFi1a9PIOXAghXjKZuS0EihcvzujRoxk1ahTGxsY0bdqU27dvc+bMmSxLFT777DPCw8MZPHgwgwYNIjY2lokTJzJ8+HB1vW2LFi2IjIykQ4cOWFtbExQUhKHh/y6/+/j4UKVKFXr16sUXX3xBUlIS48aNy3F/33//faZNm0anTp0IDQ2ldOnSnDhxAicnJxo3bkxAQADdu3fHw8MDHx8fNm7cyLp169i2bZtePR988AELFy7k/Pnz7Ny5U023sLBg5MiRDBs2DJ1Oh6enJ4mJiezbtw9LS0t1XbIQr5IlS5Y8c3/x4sWZP38+8+fPf2qe8uXLP3OdrLe3d5arNjY2NqxatSp3nRVCiFeYBLeFxIQJEyhWrBhBQUHcvHmT0qVLM2DAgCz5ypQpQ1RUFAEBAdSuXRsbGxv8/PwYP368micwMJArV67w1ltvYWVlxeTJk/Vmbg0MDFi/fj1+fn40aNAAFxcX5syZoy4LeB5jY2N+/fVXRowYQbt27UhPT6d69erqh3KnTp2YPXs2M2bMYOjQobi6uhIREZHlMV09evRg6tSplC9fnqZNm+rtmzx5MnZ2doSGhnL58mWsra154403GDt2bE5PqRBCCCFeQxrlyT/zhSjikpKSsLKy4s6dO7LmthDKXHPbrl07WY9WCMn4FG4yPoWfjFHeZX5+JyYmYmlp+dR8suZWCCGEEEIUGRLciiymTZuGubl5tq+cPgtXCCGEEKIgyJpbkcWAAQPo3r17tvvy+7FlQgghhBD5SYJbkYWNjc1Tv6BBCCGEEKIwk2UJQgghhBCiyJDgVgghhBBCFBkS3AohhBBCiCJDglshhBBCCFFkSHArhBBCCCGKDAluhRBCCCFEkSHBrRBF3O7du+nQoQNOTk5oNBo2bNigt3/dunW0bt0aW1tbNBoNJ0+ezFLHw4cPGThwILa2tpibm9O1a1f+/vvvZ7arKApBQUGULl0aU1NTfHx8uHDhQj4emRBCCJGVBLeviZiYGDQaDffu3ctxmeDgYOrUqfPC+pRdoCXy34MHD6hduzbz589/6n5PT08+//zzp9YxbNgwNm7cyA8//MCuXbu4efMmXbp0eWa706dPZ86cOSxcuJBDhw5hZmaGr68vDx8+/E/HI4QQQjyLfInDa6JJkybcunULKyurHJcZOXIkgwcPVrd79+7NvXv3ch2QBgcHs2HDhiwzgrdu3aJkyZK5qkvkXtu2bZ/5tckfffQRAFevXs12f2JiIkuWLGHVqlW0aNECgIiICKpVq8bBgwdp1KhRljKKohAeHs748ePp2LEjAMuXL8fBwYENGzbw3nvv/cejEkIIIbInM7evgLS0tP9ch7GxMY6Ojmg0mhyXMTc3x9bW9j+3/TSOjo6YmJi8sPpF/jh27BharRYfHx81zc3NjXLlynHgwIFsy1y5coW4uDi9MlZWVjRs2PCpZYQQQoj8IDO3BcDb25uaNWsCsGLFCoyMjPj000+ZNGkSGo0GFxcX/Pz8uHDhAhs2bKBLly5ERkayd+9eAgMDOXr0KKVKlaJz586EhoZiZmYGQGpqKkFBQaxatYr4+HicnZ0JDAzEz8+PmJgY3nzzTRISErC2tiYyMhJ/f38iIyMJCAjg+vXreHl5sXjxYpydnQH9Gdfg4GCWLVsGoAbIO3fuxNvbm9GjR7N+/Xr++usvHB0d6dGjB0FBQRgZGREZGUlISIheuYiICHr37o1Go2H9+vV06tQJgNOnTzN06FAOHDhAiRIl6Nq1K19++SXm5ubA/2aOPT09mTlzJmlpabz33nuEh4djZGSU63FoGLqd9GJmeRzFwu9qWPt8qScuLg5jY2Osra310h0cHIiLi3tqmcw8OS0jhBBC5AcJbgvIsmXL8PPz4/Dhwxw9epT+/ftTrlw5+vXrB8CMGTMICgpi4sSJAFy6dIk2bdowZcoUli5dyu3btxk0aBCDBg0iIiICgJ49e3LgwAHmzJlD7dq1uXLlCnfu3HlqH1JSUpg6dSrLly/H2NiYzz77jPfee499+/ZlyTty5Ej++OMPkpKS1PZsbGwAsLCwIDIyEicnJ06fPk2/fv2wsLBg1KhRvPvuu/z+++9s2bKFbdu2AWS7NOLBgwf4+vrSuHFjjhw5Qnx8PH379mXQoEFERkaq+Xbu3Enp0v/X3t3H1Xz//wN/nOroUqWki63UJsqkWqlZKGSRmWFjPm3KyGcUkcu2IcNq8wlzsTGfD9mXDZsxX5rPGmpKishlQrRsq9HQUU2dOq/fH369v84qF43OcXrcb7dzu/V+XbzP6/V+cnr26vV+Z48DBw7g4sWLGDVqFLy8vKTr1pjq6mpUV1dLxwqFAgBgqCegry+a7PekUyqVjZbX1tY2WldfplQq1epra2sbPZ8QAnV1dY2e6+4+d9erVCrIZLImx/bXcZD2YXy0G+Oj/Rij5nvQa8bkVkMcHR2xbNkyyGQydOnSBadOncKyZcukJK1fv36YPn261H78+PEICwvD1KlTAQCurq5YsWIFAgMD8dlnn6G4uBjbtm1Damqq9KvgZ5555p5jUCqVWLVqFfz9/QHcSbjd3d2Rk5MDPz8/tbZmZmYwNjZGdXU17Ozs1Oref/996WtnZ2fMmDEDW7ZswaxZs2BsbAwzMzMYGBg06He3L7/8Erdv38YXX3whrUSvWrUKQ4YMwUcffSStALZr1w6rVq2Cvr4+3NzcMHjwYOzbt++eyW1CQoK0eqw2bm8VTEzq7nmNnmQpKSmNlufm5ja60l3/9IOMjAz89ttvUvnPP/+MmpoabNu2TVpFry+/ceNGo+9Tvzq7fft2tX+H586dg4uLS5Nju1tqaup925DmMD7ajfHRfozRw6uqqnqgdkxuNeSFF15Q2//as2dPJCUloa7uTrLl6+ur1v7EiRM4efIkNm/eLJUJIaBSqXD58mWcOnUK+vr6CAwMfOAxGBgYoEePHtKxm5sbLC0tkZ+f3yC5vZetW7dixYoVKCwsREVFBWpra2Fubv7A/QEgPz8fnp6eUmILAAEBAVCpVCgoKJCS2+eeew76+vpSG3t7e5w6deqe546Li0NsbKx0rFAo4OjoiEXH9VAr179Hzyfb6fiQRst9fHwQGhraoLz+hrJevXqpPSUjICAACxcuhIGBgdSvoKAA165dw9ixY6Ufju4mhEB8fDyUSqXUR6FQ4OLFi5gzZ06j719PqVQiNTUVAwYMaNZ2E3q8GB/txvhoP8ao+ep/83o/TG611N1JHgBUVFTgn//8J6ZMmdKgrZOTEy5evNhSQ1OTlZWFsLAwLFiwACEhIbCwsMCWLVuQlJT0WN7vrx8EMpkMKpXqnn0MDQ0bvXGtWiVDbd2D32D3pKm/VhUVFWr/Pq5cuYIzZ87AysoKTk5OuH79OoqLi6XV2kuXLkEul8POzg52dnZo3749xo0bh1mzZqFDhw4wNzfH5MmT0bNnT/Tq1Us6r5ubGxISEjBs2DAAwNSpU5GQkAA3Nze4uLhg7ty5cHBwwGuvvfZAH+hyuZwf/FqM8dFujI/2Y4we3oNeLya3GpKdna12fPjwYbi6uqqtSt7t+eefx9mzZ9GpU6dG6z08PKBSqZCenq52h/q91NbW4ujRo9IqbUFBAW7evAl3d/dG27dp00ZaWa536NAhdOzYEe+9955U9vPPP9+331+5u7sjOTkZlZWVUmKfmZkJPT09dOnS5YHm87Cy4/o/1qdBaIujR4+ib9++0nH9KnZ4eDiSk5Oxa9cujB07Vqqvf0zX/PnzER8fDwBYtmwZ9PT0MGLECFRXVyMkJASffvqp2vsUFBSgvLxcOp41axYqKysxYcIE6UbAvXv3wsjI6HFNlYiIiI8C05Ti4mLExsaioKAAX331FVauXImYmJgm28+ePRuHDh1CdHQ08vLycOHCBXz33XeIjo4GcGeva3h4ON5++23s3LkTly9fRlpaGrZt29bkOeVyOSZPnozs7Gzk5uYiIiICL7zwQpNbEpydnXHy5EkUFBSgrKwMSqUSrq6uKC4uxpYtW1BYWIgVK1Zgx44dDfpdvnwZeXl5KCsrU7u5q15YWBiMjIwQHh6O06dP48CBA5g8eTLeeuutBnfc08MJCgqCEKLBq/5GvYiIiEbr6xNbADAyMsLq1atx/fp1VFZW4ttvv22wh1oIgYiICOlYJpPhgw8+QGlpKW7fvo0ff/wRnTt3boEZExFRa8bkVkPGjBmDP//8E35+foiKikJMTAwmTJjQZPvu3bsjPT0d58+fR+/eveHt7Y158+bBwcFBavPZZ5/htddew6RJk+Dm5obIyEhUVlY2eU4TExPMnj0b//jHPxAQEAAzMzNs3bq1yfaRkZHo0qULfH19YWNjg8zMTLzyyiuYNm0aoqOj4eXlhUOHDmHu3Llq/UaMGIGBAweib9++sLGxwVdffdXoWP773//i+vXr6NGjB1577TX0798fq1atutdlJCIiIlIjE0Lo7rOQtFRQUBC8vLywfPlyjY2h/jm3D/PneHWFQqGAhYUFysrKWsW2hCeNUqlESkoKQkNDuR9NCzE+2o3x0X6MUfPVf/8uLy+/543rXLklIiIiIp3B5JaIiIiIdAaflqABaWlpmh4CIiIi1G7+ISIiItIFXLklIiIiIp3B5JaIiIiIdAaTWyIiIiLSGUxuiYiIiEhnMLklIiIiIp3B5JaIiIiIdAaTWyIiIiLSGUxuiYiIiEhnMLmlR6KoqAgymQx5eXkP1U8mk2Hnzp2PZUza7tdff8Wbb74Ja2trGBsbw8PDA0ePHpXqhRCYN28e7O3tYWxsjODgYFy4cOG+5129ejWcnZ1hZGQEf39/5OTkPM5pEBERaRUmt0QacOPGDQQEBEAul+P777/H2bNnkZSUhHbt2kltPv74Y6xYsQJr1qxBdnY2TE1NERISgtu3bzd53q1btyI2Nhbz58/HsWPH4OnpiZCQEFy9erUlpkVERKRxTG7pb6upqdH0EJ44H330ERwdHbFhwwb4+fnBxcUFL730Ep599lkAd1Ztly9fjvfffx9Dhw5F9+7d8cUXX+C3336750r30qVLERkZibFjx6Jr165Ys2YNTExMsH79+haaGRERkWYZaHoA9Pjt3r0bb775Jv744w/o6+sjLy8P3t7emD17NhITEwEA48ePx+3bt7Fp0yZs374d8+bNw8WLF2Fvb4/Jkydj+vTp0vmcnZ0xbtw4XLhwATt37sTw4cMRHx+v9p51dXWIjIzEoUOH8MMPP8DJyQkXLlzAuHHjkJOTg2eeeQaffPJJg7HOnj0bO3bswC+//AI7OzuEhYVh3rx5kMvlKCoqwjPPPIOcnBz4+vpKfZYvX45ly5bh8uXL0NN78J/X/BP2odbA9CGv5t9XlDgYu3btQkhICF5//XWkp6fjqaeewqRJkxAZGQkAuHz5MkpLSxEcHCz1s7CwgL+/P7KysvDGG280OG9NTQ1yc3MRFxcnlenp6SE4OBhZWVmPf2JERERagMltK9C7d2/cunULx48fh6+vL9LT09G+fXukpaVJbdLT0zF79mzk5uZi5MiRiI+Px6hRo3Do0CFMmjQJ1tbWiIiIkNr/61//wrx58zB//vwG71ddXY3Ro0ejqKgIBw8ehI2NDVQqFYYPHw5bW1tkZ2ejvLwcU6dObdC3bdu2SE5OhoODA06dOoXIyEi0bdsWs2bNgrOzM4KDg7Fhwwa15HbDhg2IiIhoMrGtrq5GdXW1dKxQKAAAhnoC+vriIa/m36dUKnHp0iV89tlniImJwcyZM5Gbm4spU6ZAT08PY8aMwS+//AIAsLKyglKplPra2Njgt99+UyurV1JSgrq6OlhbW6vVt2/fHvn5+Y320Ub143xSxtvaMD7ajfHRfoxR8z3oNWNy2wpYWFjAy8sLaWlp8PX1RVpaGqZNm4YFCxagoqIC5eXluHjxIgIDAxEfH4/+/ftj7ty5AIDOnTvj7NmzWLJkiVpy269fP7XV3KKiIgBARUUFBg8ejOrqahw4cAAWFhYAgB9//BHnzp3Df//7Xzg4OAAAPvzwQwwaNEhtrO+//770tbOzM2bMmIEtW7Zg1qxZAO6sML/zzjtYunQpDA0NcezYMZw6dQrfffddk/NPSEjAggULGpS/762CiUndQ1zJRyMlJQV1dXV49tln8eKLL6KkpAQODg7o378/lixZgvbt2+PcuXMAgH379sHKykrqW1JSAplMhpSUlAbnvX79OgDg0KFD0tcAcOnSJdy8ebPRPtosNTVV00Oge2B8tBvjo/0Yo4dXVVX1QO2Y3LYSgYGBSEtLw/Tp03Hw4EEkJCRg27ZtyMjIwPXr1+Hg4ABXV1fk5+dj6NChan0DAgKwfPly1NXVQV9fHwDUVk7vNnr0aDz99NPYv38/jI2NpfL8/Hw4OjpKiS0A9OzZs0H/rVu3YsWKFSgsLERFRQVqa2thbm4u1b/66quIiorCjh078MYbbyA5ORl9+/aFs7Nzk3OPi4tDbGysdKxQKODo6IhFx/VQK9e/94V7DE7Hh8DBwQEvvvgiQkNDpfIrV64gISEBoaGhcHNzw5w5c9CtWzd4eXlJbZKSkuDp6anWr15NTQ0iIyPx7LPPqtV/88036NKlS6N9tJFSqURqaioGDBgAuVyu6eHQXzA+2o3x0X6MUfPV/+b1fpjcthJBQUFYv349Tpw4AblcDjc3NwQFBSEtLQ03btxAYGDgQ53P1LTxvaqhoaHYtGkTsrKy0K9fv4c6Z1ZWFsLCwrBgwQKEhITAwsICW7ZsQVJSktSmTZs2GDNmDDZs2IDhw4fjyy+/bHTv7t0MDQ1haGjYoLxaJUNtneyhxvgoyOVyBAQE4MKFC2ofbIWFhejYsSPkcjk6d+4MOzs7/PTTT+jRoweAO/+pc3JyMGnSpEY/EOVyOXx8fJCeno7XXnsNAKBSqXDgwAFER0c/cR+icrn8iRtza8L4aDfGR/sxRg/vQa8Xk9tWon7f7bJly6RENigoCImJibhx44a0xcDd3R2ZmZlqfTMzM9G5c2dp1fZeJk6ciG7duuGVV17Bnj17pPdyd3fHlStXUFJSAnt7ewDA4cOH1foeOnQIHTt2xHvvvSeV/fzzzw3eY/z48ejWrRs+/fRT1NbWYvjw4Q9xJf5Pdlx/WFtbN6vv3zVt2jS8+OKL+PDDDzFy5Ejk5OTg888/x+effw7gzvN/p06dikWLFsHV1RUuLi6YO3cuHBwc8Oqrr0rn6d+/P4YNG4bo6GgAQGxsLMLDw+Hr6ws/Pz8sX74clZWVGDt2rCamSURE1OKY3LYS7dq1Q/fu3bF582asWrUKANCnTx+MHDkSSqVSSkKnT5+OHj16YOHChRg1ahSysrKwatUqfPrppw/8XpMnT0ZdXR1efvllfP/99+jVqxeCg4PRuXNnhIeHY8mSJVAoFGpJLAC4urqiuLgYW7ZsQY8ePbBnzx7s2LGjwfnd3d3xwgsvYPbs2Xj77bfVtj88KXr06IEdO3YgLi4OH3zwAVxcXLB8+XKEhYVJbWbNmoXKykpMmDABN2/eRK9evbB3714YGRlJbQoLC1FWViYdjxo1CteuXcO8efNQWloKLy8v7N27F7a2ti06PyIiIo0R1GrExMQIACI/P18q8/T0FHZ2dmrtvvnmG9G1a1chl8uFk5OTWLJkiVp9x44dxbJly9TKLl++LACI48ePS2VJSUmibdu2IjMzUwghREFBgejVq5do06aN6Ny5s9i7d68AIHbs2CH1mTlzprC2thZmZmZi1KhRYtmyZcLCwqLBXP7zn/8IACInJ+ehr0N5ebkAIMrKyh66Lz1+NTU1YufOnaKmpkbTQ6FGMD7ajfHRfoxR89V//y4vL79nO5kQouWfhUT0Ny1cuBBff/01Tp48+dB9FQoFLCwsUFZWprFtCdQ0pVKJlJQUhIaGcj+aFmJ8tBvjo/0Yo+ar//5dXl6udrP5X/EvlNETpaKiAqdPn8aqVaswefJkTQ+HiIiItAyTW3qiREdHw8fHB0FBQXj77bc1PRwiIiLSMryhjJ4oycnJSE5O1vQwiIiISEtx5ZaIiIiIdAaTWyIiIiLSGUxuiYiIiEhnMLklIiIiIp3B5JaIiIiIdAaTWyIiIiLSGUxuiYiIiEhnMLklIiIiIp3B5FYHBQUFYerUqZoexiMRERGBV199VdPD+Nvi4+Mhk8nUXm5ublL9559/jqCgIJibm0Mmk+HmzZsPdN7Vq1fD2dkZRkZG8Pf3R05OzmOaARER0ZOBye0TLC0t7aESIdKs5557DiUlJdIrIyNDqquqqsLAgQPx7rvvPvD5tm7ditjYWMyfPx/Hjh2Dp6cnQkJCcPXq1ccxfCIioicC//wuPZCamhq0adNG08N4ohkYGMDOzq7RuvqV9rS0tAc+39KlSxEZGYmxY8cCANasWYM9e/Zg/fr1mDNnzt8dLhER0ROJK7eP0O7du2FpaYm6ujoAQF5eHmQymVqiMX78eLz55psAgIyMDPTu3RvGxsZwdHTElClTUFlZKbX9n//5H/j6+qJt27aws7PDP/7xD2lVrqioCH379gUAtGvXDjKZDBEREVJflUqFWbNmwcrKCnZ2doiPj1cb682bNzF+/HjY2NjA3Nwc/fr1w4kTJ6T6+Ph4eHl54d///jdcXFxgZGR03/mrVCp8/PHH6NSpEwwNDeHk5ITFixdL9adOnUK/fv1gbGwMa2trTJgwARUVFVJ9XV0dYmNjYWlpCWtra8yaNQtCiAbvkZCQABcXFxgbG8PT0xPffPPNfcfWGP+EfXCes+exvu524cIFODg44JlnnkFYWBiKi4ubNW7gzg8bubm5CA4Olsr09PQQHByMrKysZp+XiIjoSceV20eod+/euHXrFo4fPw5fX1+kp6ejffv2aqtx6enpmD17NgoLCzFw4EAsWrQI69evx7Vr1xAdHY3o6Ghs2LABAKBUKrFw4UJ06dIFV69eRWxsLCIiIpCSkgJHR0ds374dI0aMQEFBAczNzWFsbCy9z8aNGxEbG4vs7GxkZWUhIiICAQEBGDBgAADg9ddfh7GxMb7//ntYWFhg7dq16N+/P86fPw8rKysAwMWLF7F9+3Z8++230NfXv+/84+LisG7dOixbtgy9evVCSUkJzp07BwCorKxESEgIevbsiSNHjuDq1asYP348oqOjkZycDABISkpCcnIy1q9fD3d3dyQlJWHHjh3o16+f9B4JCQnYtGkT1qxZA1dXV/z000948803YWNjg8DAwEbHVV1djerqaulYoVAAAAz1BPT1RaN9HhWlUgkA8PHxwb///W907twZpaWlWLRoEXr37o3jx4+jbdu2Uvva2lqpX33fxpSUlKCurg7W1tZq7dq3b4/8/Px79tV29WN/kuegyxgf7cb4aD/GqPke9JrJxF+Xxuhv8fHxwejRozFjxgwMGzYMPXr0wIIFC/DHH3+gvLwcTz/9NM6fP4+PPvoI+vr6WLt2rdQ3IyMDgYGBqKysbHSl9OjRo+jRowdu3boFMzMzpKWloW/fvrhx4wYsLS2ldkFBQairq8PBgwelMj8/P/Tr1w+JiYnIyMjA4MGDcfXqVRgaGkptOnXqhFmzZmHChAmIj4/Hhx9+iF9//RU2Njb3nfetW7dgY2ODVatWYfz48Q3q161bh9mzZ+PKlSswNTUFAKSkpGDIkCH47bffYGtrCwcHB0ybNg0zZ84EcCfRc3FxgY+PD3bu3Inq6mpYWVnhxx9/RM+ePaVzjx8/HlVVVfjyyy8bHVt8fDwWLFjQoPzLL7+EiYnJfef2OFRUVGDChAkYO3as9AMHcGd1e+7cudi0aRPMzMya7H/9+nW8/fbbSExMVLsxLTk5GWfOnMGSJUse6/iJiIhaWlVVFf7xj3+gvLwc5ubmTbbjyu0jFhgYiLS0NEyfPh0HDx5EQkICtm3bhoyMDFy/fh0ODg5wdXXFiRMncPLkSWzevFnqK4SASqXC5cuX4e7ujtzcXMTHx+PEiRO4ceMGVCoVAKC4uBhdu3a95zi6d++udmxvby9taThx4gQqKipgbW2t1ubPP/9EYWGhdNyxY8cHSmwBID8/H9XV1ejfv3+T9Z6enlJiCwABAQFQqVQoKCiAkZERSkpK4O/vL9UbGBjA19dX2ppw8eJFVFVVqSWDwJ1f0Xt7ezc5tri4OMTGxkrHCoUCjo6OWHRcD7Xy+69I/x2n40OarFu2bBlMTEwQGhoqldVfn5deekntB5a/qqmpQWRkJJ599lm1/t988w26dOmiVvakUSqVSE1NxYABAyCXyzU9HPoLxke7MT7ajzFqvvrfvN4Pk9tHLCgoCOvXr8eJEycgl8vh5uaGoKAgpKWl4caNG9KvzisqKvDPf/4TU6ZMaXAOJycn6df4ISEh2Lx5M2xsbFBcXIyQkBDU1NTcdxx//Q8jk8mk5LiiogL29vaN3rx0d0J1dyJ6P3dviXhc6vfn7tmzB0899ZRa3d0r0H9laGjYaH21SobaOtmjHeRfNPXBVVFRgUuXLmHMmDFqbQwMDKR+9/rQk8vl8PHxQXp6Ol577TUAd/YjHzhwANHR0TrxgXm/a0CaxfhoN8ZH+zFGD+9BrxeT20esft/tsmXLpEQ2KCgIiYmJuHHjBqZPnw4AeP7553H27Fl06tSp0fOcOnUKf/zxBxITE+Ho6AjgzraEu9U/vaD+BrYH9fzzz6O0tBQGBgZwdnZ+qL5NcXV1hbGxMfbt29fotgR3d3ckJyejsrJSSpozMzOhp6eHLl26wMLCAvb29sjOzkafPn0A3NmWkJubi+effx4A0LVrVxgaGqK4uLjJ/bUPIzuuf4PV68dlxowZGDJkCDp27IjffvsN8+fPh76+PkaPHg0AKC0tRWlpKS5evAjgTvzbtm0LJycnaQ90//79MWzYMERHRwMAYmNjER4eDl9fX/j5+WH58uWorKyUnp5ARETUGvFpCY9Yu3bt0L17d2zevBlBQUEAgD59+uDYsWM4f/68lJTNnj0bhw4dQnR0NPLy8nDhwgV89913UuLi5OSENm3aYOXKlbh06RJ27dqFhQsXqr1Xx44dIZPJsHv3bly7dk3tyQP3EhwcjJ49e+LVV1/FDz/8gKKiIhw6dAjvvfdegwT6QRkZGWH27NmYNWsWvvjiCxQWFuLw4cP4z3/+AwAICwuDkZERwsPDcfr0aRw4cACTJ0/GW2+9BVtbWwBATEwMEhMTsXPnTpw7dw6TJk1Se4Zv27ZtMWPGDEybNg0bN25EYWEhjh07hpUrV2Ljxo3NGndL+eWXXzB69Gh06dIFI0eOhLW1NQ4fPixt+1izZg28vb0RGRkJ4M6/GW9vb+zatUs6R2FhIcrKyqTjUaNG4V//+hfmzZsHLy8v5OXlYe/evdL1JCIiapUEPXIxMTECgMjPz5fKPD09hZ2dnVq7nJwcMWDAAGFmZiZMTU1F9+7dxeLFi6X6L7/8Ujg7OwtDQ0PRs2dPsWvXLgFAHD9+XGrzwQcfCDs7OyGTyUR4eLgQQojAwEARExOj9l5Dhw6V6oUQQqFQiMmTJwsHBwchl8uFo6OjCAsLE8XFxUIIIebPny88PT0fat51dXVi0aJFomPHjkIulwsnJyfx4YcfSvUnT54Uffv2FUZGRsLKykpERkaKW7duSfVKpVLExMQIc3NzYWlpKWJjY8WYMWPE0KFDpTYqlUosX75cdOnSRcjlcmFjYyNCQkJEenr6A4+zvLxcABBlZWUPNT9qGTU1NWLnzp2ipqZG00OhRjA+2o3x0X6MUfPVf/8uLy+/Zzs+LYFaHYVCAQsLC5SVlbXYtgR6cEqlEikpKQgNDeV+NC3E+Gg3xkf7MUbNV//9+35PS+C2BCIiIiLSGUxu6YEUFxfDzMysydff+WtbRERERI8Kn5ZAD8TBwQF5eXn3rCciIiLSNCa39EAMDAyafGwZERERkbbgtgQiIiIi0hlMbomIiIhIZzC5JSIiIiKdweSWiIiIiHQGk1siIiIi0hlMbomIiIhIZzC5JSIiIiKdweSWtFZycjIsLS01PYxHKjExETKZDFOnTpXKCgsLMWzYMNjY2MDc3BwjR47E77//ft9zrV69Gs7OzjAyMoK/vz9ycnIe48iJiIieDExuSWuNGjUK58+f1/QwHpkjR45g7dq16N69u1RWWVmJl156CTKZDPv370dmZiZqamowZMgQqFSqJs+1detWxMbGYv78+Th27Bg8PT0REhKCq1evtsRUiIiItBaTW9KImpqa+7YxNjZGhw4dWmA0j19FRQXCwsKwbt06tGvXTirPzMxEUVERkpOT4eHhAQ8PD2zcuBFHjx7F/v37mzzf0qVLERkZibFjx6Jr165Ys2YNTExMsH79+paYDhERkdbin9+lFhEUFIRu3brBwMAAmzZtgoeHB4YMGYINGzbg0qVLsLKywpAhQ/Dxxx/DzMwMwJ1tCVOnTsXNmzcBAPHx8di5cyemT5+OuXPn4saNGxg0aBDWrVuHtm3bPvSY/BP2odbA9FFOU01R4mDp66ioKAwePBjBwcFYtGiRVF5dXQ2ZTAZDQ0OpzMjICHp6esjIyEBwcHCD89bU1CA3NxdxcXFSmZ6eHoKDg5GVlfWYZkNERPRk4MottZiNGzeiTZs2yMzMxJo1a6Cnp4cVK1bgzJkz2LhxI/bv349Zs2bd8xyFhYXYuXMndu/ejd27dyM9PR2JiYktNIPm2bJlC44dO4aEhIQGdS+88AJMTU0xe/ZsVFVVobKyEjNmzEBdXR1KSkoaPV9ZWRnq6upga2urVm5ra4vS0tLHMgciIqInBVduqcW4urri448/lo67dOkife3s7IxFixbhnXfewaefftrkOVQqFZKTk6WV2rfeegv79u3D4sWLm+xTXV2N6upq6VihUAAADPUE9PVFs+dzP0qlEleuXEFMTAxSUlKgr68PpVIJIQRUKhWUSiUsLS3x1VdfYfLkyVixYgX09PQwatQoeHt7S+do7LwAUFtbq1ZfV1cHIUSjfZ4k9eN/0uehqxgf7cb4aD/GqPke9JoxuaUW4+Pjo3b8448/IiEhAefOnYNCoUBtbS1u376NqqoqmJiYNHoOZ2dntS0I9vb2972JKiEhAQsWLGhQ/r63CiYmdc2YyYNJSUnB4cOHcfXqVfj5+UnlKpUKBw8exOrVq/H1119DX18fS5cuhUKhgJ6eHszMzBAREYHu3bsjJSWlwXmVSiX09PSQkpKC69evS+XHjx+HTCZrtM+TKDU1VdNDoHtgfLQb46P9GKOHV1VV9UDtmNxSizE1/b/9rUVFRXj55ZcxceJELF68GFZWVsjIyMC4ceNQU1PTZHIrl8vVjmUy2T2fKgAAcXFxiI2NlY4VCgUcHR2x6LgeauX6f2NG93Y6PgS9e/fGyJEj1cojIyPRpUsXzJgxA926dWvQ78CBAygvL8eMGTPUVrfv5uPjA4VCgdDQUAB3EuaoqChMnDhRKntSKZVKpKamYsCAAQ3iTZrH+Gg3xkf7MUbNV/+b1/thcksakZubC5VKhaSkJOjp3dn6vW3btsfyXoaGhmo3bNX7aXYwrK2tH8t71rOysoKVlZVamZmZGWxsbKStBxs2bIC7uztsbGyQlZWFmJgYTJs2TS3x7d+/P4YNG4bo6GgAwPTp0xEeHg4/Pz/4+flh+fLlqKysxPjx43Xmw1Iul+vMXHQR46PdGB/txxg9vAe9XkxuSSM6deoEpVKJlStXYsiQIdJNZq1RQUEB4uLicP36dTg7O+O9997DtGnT1NoUFhairKxMOh41ahSuXbuGefPmobS0FF5eXti7d2+Dm8yIiIhaGya3pBGenp5YunQpPvroI8TFxaFPnz5ISEjAmDFjND20xy4tLU3tODEx8b5PfCgqKmpQFh0dLa3kEhER0R0yIcTju12cSAspFApYWFigrKzssW9LoIenVCqRkpKC0NBQ/spOCzE+2o3x0X6MUfPVf/8uLy+Hubl5k+34nFsiIiIi0hlMbomIiIhIZzC5JSIiIiKdweSWiIiIiHQGk1siIiIi0hlMbomIiIhIZzC5JSIiIiKdweSWiIiIiHQGk1siIiIi0hlMbomIiIhIZzC5JSIiIiKdweSWNKa0tBQDBgyAqakpLC0tH6hPcnKyWtv4+Hh4eXk9lvEBwE8//YQhQ4bAwcEBMpkMO3fuVKuXyWSNvpYsWXLP865evRrOzs4wMjKCv78/cnJyHtsciIiIWhMmt6Qxy5YtQ0lJCfLy8nD+/HlND6dRlZWV8PT0xOrVqxutLykpUXutX78eMpkMI0aMaPKcW7duRWxsLObPn49jx47B09MTISEhuHr16uOaBhERUathoOkBUOtVWFgIHx8fuLq6anooTRo0aBAGDRrUZL2dnZ3a8XfffYe+ffvimWeeabLP0qVLERkZibFjxwIA1qxZgz179mD9+vWYM2fOoxk4ERFRK8WV21bmm2++gYeHB4yNjWFtbY3g4GBUVlYiIiICr776Kv71r3/B3t4e1tbWiIqKglKplPreuHEDY8aMQbt27WBiYoJBgwbhwoULAAAhBGxsbPDNN99I7b28vGBvby8dZ2RkwNDQEFVVVXB2dsb27dvxxRdfQCaTISIiAsCdxM/DwwOmpqZwdHTEpEmTUFFR8ViuhX/CPjjP2dPoqzl+//137NmzB+PGjWuyTU1NDXJzcxEcHCyV6enpITg4GFlZWc16XyIiIvo/TG5bkZKSEowePRpvv/028vPzkZaWhuHDh0MIAQA4cOAACgsLceDAAWzcuBHJyclITk6W+kdERODo0aPYtWsXsrKyIIRAaGgolEolZDIZ+vTpg7S0NAB3EuH8/Hz8+eefOHfuHAAgPT0dPXr0gImJCY4cOYKBAwdi5MiRKCkpwSeffALgTqK3YsUKnDlzBhs3bsT+/fsxa9asFr1OzbVx40a0bdsWw4cPb7JNWVkZ6urqYGtrq1Zua2uL0tLSxz1EIiIincdtCa1ISUkJamtrMXz4cHTs2BEA4OHhIdW3a9cOq1atgr6+Ptzc3DB48GDs27cPkZGRuHDhAnbt2oXMzEy8+OKLAIDNmzfD0dERO3fuxOuvv46goCCsXbsWwJ0bsby9vWFnZ4e0tDS4ubkhLS0NgYGBAAAbGxsYGhrC2NhY7Vf7U6dOlb52dnbGokWL8M477+DTTz9t9ryrq6tRXV0tHSsUCgCAoZ6Avr5otM/dK9Z3q62tbbLuP//5D0aPHg19ff0m29SX//U8dXV1EEI02a81qb8GvBbaifHRboyP9mOMmu9BrxmT21bE09MT/fv3h4eHB0JCQvDSSy/htddeQ7t27QAAzz33HPT19aX29vb2OHXqFAAgPz8fBgYG8Pf3l+qtra3RpUsX5OfnAwACAwMRExODa9euIT09HUFBQVJyO27cOBw6dOi+q7A//vgjEhIScO7cOSgUCtTW1uL27duoqqqCiYlJs+adkJCABQsWNCh/31sFE5O6RvukpKQ0Wp6bmwu5XN6g/MyZMzh//jwmTpzYZF/gzn9MPT09pKSk4Pr161L58ePHIZPJ7tm3tUlNTdX0EOgeGB/txvhoP8bo4VVVVT1QOya3rYi+vj5SU1Nx6NAh/PDDD1i5ciXee+89ZGdnA0CDpE0mk0GlUj3w+T08PGBlZYX09HSkp6dj8eLFsLOzw0cffYQjR45AqVRKq76NKSoqwssvv4yJEydi8eLFsLKyQkZGBsaNG4eamppmJ7dxcXGIjY2VjhUKBRwdHbHouB5q5fqN9jkdH9JouY+PD0JDQxuUb9++Hc8//zyioqLuOx4fHx8oFArpPCqVClFRUZg4cWKj525tlEolUlNTMWDAgEZ/kCDNYny0G+Oj/Rij5qv/zev9MLltZWQyGQICAhAQEIB58+ahY8eO2LFjx337ubu7o7a2FtnZ2VKC+scff6CgoABdu3aVzt27d2989913OHPmDHr16gUTExNUV1dj7dq18PX1hampaZPvkZubC5VKhaSkJOjp3dkOvm3btr89Z0NDQxgaGjYo/2l2MKytre/Zt6KiAhcvXpSOr1y5gjNnzsDKygpOTk4A7vxn2759O5KSkhr9oOrfvz+GDRuG6OhoAMD06dMRHh4OPz8/+Pn5Yfny5aisrMT48eP5QXcXuVzO66HFGB/txvhoP8bo4T3o9WJy24pkZ2dj3759eOmll9ChQwdkZ2fj2rVrcHd3x8mTJ+/Z19XVFUOHDkVkZCTWrl2Ltm3bYs6cOXjqqacwdOhQqV1QUBCmT58OX19fmJmZAQD69OmDzZs3Y+bMmfd8j06dOkGpVGLlypUYMmQIMjMzsWbNmr8/8b/h6NGj6Nu3r3RcvwIcHh4u3Wy3ZcsWCCEwevToRs9RWFiIsrIy6XjUqFG4du0a5s2bh9LSUnh5eWHv3r0NbjIjIiKih8enJbQi5ubm+OmnnxAaGorOnTvj/fffR1JS0j2f43q3DRs2wMfHBy+//DJ69uwJIQRSUlLUfpIKDAxEXV0dgoKCpLKgoKAGZY3x9PTE0qVL8dFHH6Fbt27YvHkzEhISmjPVRyYoKAhCiAavu58iMWHCBFRVVcHCwqLRcxQVFSE+Pl6tLDo6Gj///DOqq6uRnZ2ttpeZiIiImk8m6p8DRdRKKBQKWFhYoKys7L7bEqjlKZVKpKSkIDQ0lL+y00KMj3ZjfLQfY9R89d+/y8vLYW5u3mQ7rtwSERERkc5gcktEREREOoPJLRERERHpDCa3RERERKQzmNwSERERkc5gcktEREREOoPJLRERERHpDCa3RERERKQzmNwSERERkc5gcktEREREOoPJLRERERHpDCa3RERERKQzmNwSERERkc5gcktEREREOoPJLRERERHpDCa3RERERKQzDDQ9AKKWJoQAANy6dQtyuVzDo6G/UiqVqKqqgkKhYHy0EOOj3Rgf7ccYNZ9CoQDwf9/Hm8LkllqdP/74AwDg4uKi4ZEQERHRw7p16xYsLCyarGdyS62OlZUVAKC4uPie/zlIMxQKBRwdHXHlyhWYm5trejj0F4yPdmN8tB9j1HxCCNy6dQsODg73bMfkllodPb07W80tLCz4waLFzM3NGR8txvhoN8ZH+zFGzfMgi1K8oYyIiIiIdAaTWyIiIiLSGUxuqdUxNDTE/PnzYWhoqOmhUCMYH+3G+Gg3xkf7MUaPn0zc73kKRERERERPCK7cEhEREZHOYHJLRERERDqDyS0RERER6Qwmt0RERESkM5jcUquyevVqODs7w8jICP7+/sjJydH0kFqFhIQE9OjRA23btkWHDh3w6quvoqCgQK3N7du3ERUVBWtra5iZmWHEiBH4/fff1doUFxdj8ODBMDExQYcOHTBz5kzU1ta25FRahcTERMhkMkydOlUqY3w069dff8Wbb74Ja2trGBsbw8PDA0ePHpXqhRCYN28e7O3tYWxsjODgYFy4cEHtHNevX0dYWBjMzc1haWmJcePGoaKioqWnonPq6uowd+5cuLi4wNjYGM8++ywWLlyIu+/XZ3xamCBqJbZs2SLatGkj1q9fL86cOSMiIyOFpaWl+P333zU9NJ0XEhIiNmzYIE6fPi3y8vJEaGiocHJyEhUVFVKbd955Rzg6Oop9+/aJo0ePihdeeEG8+OKLUn1tba3o1q2bCA4OFsePHxcpKSmiffv2Ii4uThNT0lk5OTnC2dlZdO/eXcTExEjljI/mXL9+XXTs2FFERESI7OxscenSJfHf//5XXLx4UWqTmJgoLCwsxM6dO8WJEyfEK6+8IlxcXMSff/4ptRk4cKDw9PQUhw8fFgcPHhSdOnUSo0eP1sSUdMrixYuFtbW12L17t7h8+bL4+uuvhZmZmfjkk0+kNoxPy2JyS62Gn5+fiIqKko7r6uqEg4ODSEhI0OCoWqerV68KACI9PV0IIcTNmzeFXC4XX3/9tdQmPz9fABBZWVlCCCFSUlKEnp6eKC0tldp89tlnwtzcXFRXV7fsBHTUrVu3hKurq0hNTRWBgYFScsv4aNbs2bNFr169mqxXqVTCzs5OLFmyRCq7efOmMDQ0FF999ZUQQoizZ88KAOLIkSNSm++//17IZDLx66+/Pr7BtwKDBw8Wb7/9tlrZ8OHDRVhYmBCC8dEEbkugVqGmpga5ubkIDg6WyvT09BAcHIysrCwNjqx1Ki8vBwBYWVkBAHJzc6FUKtXi4+bmBicnJyk+WVlZ8PDwgK2trdQmJCQECoUCZ86cacHR666oqCgMHjxYLQ4A46Npu3btgq+vL15//XV06NAB3t7eWLdunVR/+fJllJaWqsXHwsIC/v7+avGxtLSEr6+v1CY4OBh6enrIzs5uucnooBdffBH79u3D+fPnAQAnTpxARkYGBg0aBIDx0QQDTQ+AqCWUlZWhrq5O7RsvANja2uLcuXMaGlXrpFKpMHXqVAQEBKBbt24AgNLSUrRp0waWlpZqbW1tbVFaWiq1aSx+9XX092zZsgXHjh3DkSNHGtQxPpp16dIlfPbZZ4iNjcW7776LI0eOYMqUKWjTpg3Cw8Ol69vY9b87Ph06dFCrNzAwgJWVFePzN82ZMwcKhQJubm7Q19dHXV0dFi9ejLCwMABgfDSAyS0RtaioqCicPn0aGRkZmh4K/X9XrlxBTEwMUlNTYWRkpOnh0F+oVCr4+vriww8/BAB4e3vj9OnTWLNmDcLDwzU8Otq2bRs2b96ML7/8Es899xzy8vIwdepUODg4MD4awm0J1Cq0b98e+vr6De7u/v3332FnZ6ehUbU+0dHR2L17Nw4cOICnn35aKrezs0NNTQ1u3ryp1v7u+NjZ2TUav/o6ar7c3FxcvXoVzz//PAwMDGBgYID09HSsWLECBgYGsLW1ZXw0yN7eHl27dlUrc3d3R3FxMYD/u773+nyzs7PD1atX1epra2tx/fp1xudvmjlzJubMmYM33ngDHh4eeOuttzBt2jQkJCQAYHw0gckttQpt2rSBj48P9u3bJ5WpVCrs27cPPXv21ODIWgchBKKjo7Fjxw7s378fLi4uavU+Pj6Qy+Vq8SkoKEBxcbEUn549e+LUqVNq3wBSU1Nhbm7e4Bs/PZz+/fvj1KlTyMvLk16+vr4ICwuTvmZ8NCcgIKDBo/POnz+Pjh07AgBcXFxgZ2enFh+FQoHs7Gy1+Ny8eRO5ublSm/3790OlUsHf378FZqG7qqqqoKennk7p6+tDpVIBYHw0QtN3tBG1lC1btghDQ0ORnJwszp49KyZMmCAsLS3V7u6mx2PixInCwsJCpKWliZKSEulVVVUltXnnnXeEk5OT2L9/vzh69Kjo2bOn6Nmzp1Rf/6ipl156SeTl5Ym9e/cKGxsbPmrqMbn7aQlCMD6alJOTIwwMDMTixYvFhQsXxObNm4WJiYnYtGmT1CYxMVFYWlqK7777Tpw8eVIMHTq00UdNeXt7i+zsbJGRkSFcXV35qKlHIDw8XDz11FPSo8C+/fZb0b59ezFr1iypDePTspjcUquycuVK4eTkJNq0aSP8/PzE4cOHNT2kVgFAo68NGzZIbf78808xadIk0a5dO2FiYiKGDRsmSkpK1M5TVFQkBg0aJIyNjUX79u3F9OnThVKpbOHZtA5/TW4ZH8363//9X9GtWzdhaGgo3NzcxOeff65Wr1KpxNy5c4Wtra0wNDQU/fv3FwUFBWpt/vjjDzF69GhhZmYmzM3NxdixY8WtW7dacho6SaFQiJiYGOHk5CSMjIzEM888I9577z21R+AxPi1LJsRdf0KDiIiIiOgJxj23RERERKQzmNwSERERkc5gcktEREREOoPJLRERERHpDCa3RERERKQzmNwSERERkc5gcktEREREOoPJLRERERHpDCa3RETUoiIiIiCTyRq8Ll68qOmhEZEOMND0AIiIqPUZOHAgNmzYoFZmY2OjodGoUyqVkMvlmh4GETUTV26JiKjFGRoaws7OTu2lr6/faNuff/4ZQ4YMQbt27WBqaornnnsOKSkpUv2ZM2fw8ssvw9zcHG3btkXv3r1RWFgIAFCpVPjggw/w9NNPw9DQEF5eXti7d6/Ut6ioCDKZDFu3bkVgYCCMjIywefNmAMC///1vuLu7w8jICG5ubvj0008f4xUhokeFK7dERKTVoqKiUFNTg59++gmmpqY4e/YszMzMAAC//vor+vTpg6CgIOzfvx/m5ubIzMxEbW0tAOCTTz5BUlIS1q5dC29vb6xfvx6vvPIKzpw5A1dXV+k95syZg6SkJHh7e0sJ7rx587Bq1Sp4e3vj+PHjiIyMhKmpKcLDwzVyHYjowciEEELTgyAiotYjIiICmzZtgpGRkVQ2aNAgfP3114227969O0aMGIH58+c3qHv33XexZcsWFBQUNLqV4KmnnkJUVBTeffddqczPzw89evTA6tWrUVRUBBcXFyxfvhwxMTFSm06dOmHhwoUYPXq0VLZo0SKkpKTg0KFDzZo3EbUMrtwSEVGL69u3Lz777DPp2NTUtMm2U6ZMwcSJE/HDDz8gODgYI0aMQPfu3QEAeXl56N27d6OJrUKhwG+//YaAgAC18oCAAJw4cUKtzNfXV/q6srIShYWFGDduHCIjI6Xy2tpaWFhYPNxEiajFMbklIqIWZ2pqik6dOj1Q2/HjxyMkJAR79uzBDz/8gISEBCQlJWHy5MkwNjZ+ZOOpV1FRAQBYt24d/P391do1tS+YiLQHbygjIiKt5+joiHfeeQfffvstpk+fjnXr1gG4s2Xh4MGDUCqVDfqYm5vDwcEBmZmZauWZmZno2rVrk+9la2sLBwcHXLp0CZ06dVJ7ubi4PNqJEdEjx5VbIiLSalOnTsWgQYPQuXNn3LhxAwcOHIC7uzsAIDo6GitXrsQbb7yBuLg4WFhY4PDhw/Dz80OXLl0wc+ZMzJ8/H88++yy8vLywYcMG5OXlSU9EaMqCBQswZcoUWFhYYODAgaiursbRo0dx48YNxMbGtsS0iaiZmNwSEZFWq6urQ1RUFH755ReYm5tj4MCBWLZsGQDA2toa+/fvx8yZMxEYGAh9fX14eXlJ+2ynTJmC8vJyTJ8+HVevXkXXrl2xa9cutSclNGb8+PEwMTHBkiVLMHPmTJiamsLDwwNTp0593NMlor+JT0sgIiIiIp3BPbdEREREpDOY3BIRERGRzmByS0REREQ6g8ktEREREekMJrdEREREpDOY3BIRERGRzmByS0REREQ6g8ktEREREekMJrdEREREpDOY3BIRERGRzmByS0REREQ6g8ktEREREemM/wctKfOaKKx62QAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Import the plot_importance function from XGBoost\n",
    "from xgboost import plot_importance\n",
    "\n",
    "# Plot feature importances using the plot_importance function from XGBoost\n",
    "plot_importance(\n",
    "    model, \n",
    "    max_num_features=25,  # Display the top 25 most important features\n",
    ")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As shown in the above feature importance plot features like `temperature`, `day`, `hour` and `month` are most important for predicting the dependent variable. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## <span style='color:#2656a3'>πŸ—„ Model Registry</span>\n",
    "\n",
    "The Model Registry in Hopsworks enable us to store the trained model. The model registry centralizes model management, enabling models to be securely accessed and governed. We can also save model metrics with the model, enabling the user to understand performance of the model on test (or unseen) data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Importing the libraries for saving the model\n",
    "from hsml.schema import Schema\n",
    "from hsml.model_schema import ModelSchema\n",
    "import joblib"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Connected. Call `.close()` to terminate connection gracefully.\n"
     ]
    }
   ],
   "source": [
    "# Retrieving the Model Registry from Hopsworks\n",
    "mr = project.get_model_registry()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### <span style=\"color:#ff5f27;\">βš™οΈ Model Schema</span>\n",
    "A model schema defines the structure and format of the input and output data that a machine learning model expects and produces, respectively. It serves as a **blueprint** for understanding how to interact with the model in terms of input features and output predictions. In the context of the Hopsworks platform, a model schema is typically defined using the Schema class, which specifies the features expected in the input data and the target variable in the output data. This schema helps ensure consistency and compatibility between the model and the data it operates on."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Imoprt the os library to interact with the operating system\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Specify the schema of the model's input and output using the features (X_train) and dependent variable (y_train)\n",
    "input_schema = Schema(X_train)\n",
    "output_schema = Schema(y_train)\n",
    "\n",
    "# Create a model schema using the input and output schemas\n",
    "model_schema = ModelSchema(input_schema, output_schema)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the directory path (folder path) where the trained model will be exported\n",
    "model_dir = \"model\"\n",
    "\n",
    "# Check if the directory already exists, if not create it\n",
    "if not os.path.isdir(model_dir):\n",
    "    os.mkdir(model_dir)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['model/dk_electricity_model.pkl']"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Save the XGBoost Regressor model as joblib file in the model directory\n",
    "joblib.dump(model, model_dir + \"/dk_electricity_model.pkl\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create an entry in the model registry with the specified details \n",
    "xgb_model = mr.python.create_model(\n",
    "    name=\"electricity_price_prediction_model\", # Name of the model\n",
    "    metrics={ # Evaluation metrics for the model\n",
    "        \"MSE\": mse,\n",
    "        \"R squared\": r2,\n",
    "        \"MAE\": mae,\n",
    "    },\n",
    "    model_schema=model_schema, # Schema defining the input and output data structure of the model\n",
    "    input_example=X_train.sample(), # Example input data for the model\n",
    "    description=\"DK1 Electricity Price Predictor\" # Description of the model\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Uploading: 100.000%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 455148/455148 elapsed<00:02 remaining<00:00  3.33it/s]\n",
      "Uploading input_example and model_schema:  33%|β–ˆβ–ˆβ–ˆβ–Ž      | 2/6 [00:02<00:05,  1.47s/it]DeprecationWarning: np.find_common_type is deprecated.  Please use `np.result_type` or `np.promote_types`.\n",
      "See https://numpy.org/devdocs/release/1.25.0-notes.html and the docs for more information.  (Deprecated NumPy 1.25)\n",
      "Uploading: 100.000%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 82/82 elapsed<00:01 remaining<00:00\n",
      "Uploading: 100.000%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1271/1271 elapsed<00:01 remaining<00:00\n",
      "Model export complete: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:11<00:00,  1.88s/it]                   "
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model created, explore it at https://c.app.hopsworks.ai:443/p/550040/models/electricity_price_prediction_model/1\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "Model(name: 'electricity_price_prediction_model', version: 1)"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Upload the model to Hopsworks\n",
    "xgb_model.save(model_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## <span style=\"color:#2656a3;\">⏭️ **Next:** Part 04: Batch Inference </span>\n",
    "\n",
    "Next notebook we will use the registered model to make predictions based on the batch data."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "bds-mlops",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}