Spaces:
Sleeping
Sleeping
File size: 149,960 Bytes
3f3b665 c135c5e d988e19 c135c5e 74e9e3e 8ade2e2 74e9e3e 5e93f20 74e9e3e c135c5e 5e93f20 d988e19 c135c5e 8145b83 c135c5e d988e19 c135c5e 8ade2e2 c135c5e d988e19 c135c5e 5e93f20 c135c5e 8145b83 c135c5e 8dd0ac2 8145b83 8dd0ac2 b47dba5 8dd0ac2 c135c5e d988e19 c135c5e d988e19 c135c5e 0974d3a c135c5e 8145b83 c135c5e 0974d3a c135c5e 1f6629c 795bc0f c135c5e e5f0117 66accd2 0974d3a d988e19 5e93f20 0974d3a c135c5e 8145b83 c135c5e d988e19 795bc0f 9162fb4 1f6629c c135c5e 72e66c8 b47dba5 72e66c8 1f7f732 b47dba5 1f7f732 9162fb4 66accd2 9162fb4 a130c8d 9162fb4 a130c8d 9162fb4 a130c8d 9162fb4 a130c8d 66accd2 9162fb4 a130c8d 9162fb4 8145b83 a130c8d 9162fb4 a130c8d 9162fb4 a130c8d 5e93f20 a130c8d 9162fb4 a130c8d 5e93f20 a130c8d 9162fb4 a130c8d 9162fb4 a130c8d 8145b83 9162fb4 a130c8d 9162fb4 a130c8d 9162fb4 a130c8d 9162fb4 66accd2 a130c8d 9162fb4 b47dba5 9162fb4 1f7f732 72e66c8 5e93f20 795bc0f 72e66c8 e5f0117 6db58a0 e5f0117 d988e19 e5f0117 d988e19 e5f0117 5e93f20 e5f0117 54e965b b47dba5 54e965b b47dba5 54e965b b47dba5 5e93f20 795bc0f b47dba5 54e965b 795bc0f c135c5e ee58110 0974d3a 5e93f20 d988e19 5e93f20 d988e19 5e93f20 0974d3a d988e19 ee58110 3f3b665 b47dba5 3f3b665 f88fed1 b47dba5 8145b83 a130c8d f88fed1 ee58110 5e93f20 795bc0f ee58110 e5f0117 b47dba5 e5f0117 f88fed1 b47dba5 f88fed1 b47dba5 66accd2 8145b83 f88fed1 e5f0117 5e93f20 da57cd2 e5f0117 da57cd2 54e965b 840b77e d988e19 b47dba5 d988e19 840b77e b47dba5 840b77e 1f6629c 840b77e d988e19 66accd2 840b77e b47dba5 840b77e d988e19 da57cd2 840b77e b47dba5 840b77e d988e19 da57cd2 d988e19 da57cd2 840b77e b47dba5 840b77e f88fed1 66accd2 f88fed1 b47dba5 f88fed1 a130c8d b47dba5 a130c8d b47dba5 a130c8d f88fed1 b47dba5 a130c8d b47dba5 a130c8d b47dba5 8145b83 f88fed1 b47dba5 5e93f20 a130c8d b47dba5 a130c8d b47dba5 a130c8d b47dba5 f88fed1 b47dba5 a130c8d b47dba5 f88fed1 b47dba5 f88fed1 a130c8d b47dba5 8145b83 a130c8d b47dba5 8145b83 f88fed1 8145b83 b47dba5 8145b83 b47dba5 8145b83 b47dba5 f88fed1 b47dba5 f88fed1 840b77e 66accd2 840b77e b47dba5 840b77e f88fed1 b47dba5 f88fed1 b47dba5 f88fed1 8ade2e2 d988e19 840b77e 6d8dc9d d988e19 6d8dc9d 5e93f20 8ade2e2 f62fe9f b47dba5 8ade2e2 5e93f20 840b77e 66accd2 5e93f20 840b77e b47dba5 840b77e f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 8145b83 f88fed1 b47dba5 f88fed1 840b77e 8ade2e2 6d8dc9d d988e19 6d8dc9d 8ade2e2 b47dba5 1f7f732 5e93f20 da57cd2 1f7f732 b47dba5 1f7f732 f88fed1 b47dba5 f88fed1 1f7f732 5e93f20 d988e19 5e93f20 d988e19 5e93f20 8ade2e2 66accd2 b47dba5 8ade2e2 66accd2 b47dba5 66accd2 8ade2e2 d988e19 66accd2 5e93f20 66accd2 5e93f20 66accd2 5e93f20 66accd2 5e93f20 66accd2 f62fe9f b47dba5 f62fe9f 66accd2 b47dba5 66accd2 d988e19 66accd2 f62fe9f 5e93f20 d988e19 f62fe9f b47dba5 f62fe9f 8ade2e2 f62fe9f 5e93f20 66accd2 f62fe9f b47dba5 f62fe9f 66accd2 d988e19 66accd2 f62fe9f 66accd2 d988e19 b47dba5 d988e19 f62fe9f b47dba5 da57cd2 d988e19 66accd2 5e93f20 66accd2 da57cd2 b47dba5 e5f0117 66accd2 d988e19 66accd2 5e93f20 66accd2 b47dba5 66accd2 f88fed1 66accd2 f88fed1 b47dba5 f88fed1 e5f0117 d988e19 66accd2 e5f0117 a7674fc 45b89de b47dba5 8ade2e2 a7674fc d988e19 66accd2 5e93f20 66accd2 5e93f20 66accd2 a7674fc b47dba5 a7674fc f88fed1 66accd2 b47dba5 66accd2 f88fed1 b47dba5 a130c8d b47dba5 f88fed1 b47dba5 f88fed1 b47dba5 f88fed1 b47dba5 f88fed1 45b89de d988e19 1f6629c 54e965b e5f0117 ebef497 e5f0117 3f3b665 c135c5e 3f3b665 c135c5e b47dba5 3f3b665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# <span style=\"font-width:bold; font-size: 3rem; color:#2656a3;\">**Msc. BDS Module - Data Engineering and Machine Learning Operations in Business (MLOPs)** </span> <span style=\"font-width:bold; font-size: 3rem; color:#333;\">- Part 03: Training Pipeline</span>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style='color:#2656a3'> ποΈ This notebook is divided into the following sections:\n",
"1. Feature selection.\n",
"2. Creating a Feature View.\n",
"3. Training datasets creation - splitting into train and test sets.\n",
"4. Training the model.\n",
"5. Register the model to Hopsworks Model Registry."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style='color:#2656a3'> βοΈ Import of libraries and packages\n",
"We start with importing some of the necessary libraries needed for this notebook and warnings to avoid unnecessary distractions and keep output clean."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Importing the packages and libraries\n",
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"# Ignore warnings\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style=\"color:#2656a3;\"> π‘ Connecting to Hopsworks Feature Store\n",
"We connect to Hopsworks Feature Store so we can retrieve the Feature Groups and select features for training data."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connected. Call `.close()` to terminate connection gracefully.\n",
"\n",
"Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/550040\n",
"Connected. Call `.close()` to terminate connection gracefully.\n"
]
}
],
"source": [
"# Importing the hopsworks module for interacting with the Hopsworks platform\n",
"import hopsworks\n",
"\n",
"# Logging into the Hopsworks project\n",
"project = hopsworks.login()\n",
"\n",
"# Getting the feature store from the project\n",
"fs = project.get_feature_store() "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Retrieve the feature groups\n",
"electricity_fg = fs.get_feature_group(\n",
" name='electricity_prices',\n",
" version=1,\n",
")\n",
"\n",
"weather_fg = fs.get_feature_group(\n",
" name='weather_measurements',\n",
" version=1,\n",
")\n",
"\n",
"danish_calendar_fg = fs.get_feature_group(\n",
" name='dk_calendar',\n",
" version=1,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style=\"color:#2656a3;\"> π Feature View Creation and Retrieving </span>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We first select the features that we want to include for model training.\n",
"\n",
"Since we specified `primary_key`as `date` and `timestamp` in `1_feature_backfill` we can now join them together for the `electricity_fg`, `weather_fg` and `danish_holiday_fg`.\n",
"\n",
"`join_type` specifies the type of join to perform. An inner join refers to only retaining the rows based on the keys present in all joined DataFrames."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Select features for training data and join them together and except duplicate columns\n",
"selected_features_training = electricity_fg.select_all()\\\n",
" .join(weather_fg.select_except([\"timestamp\", \"datetime\", \"hour\"]), join_type=\"inner\")\\\n",
" .join(danish_calendar_fg.select_all(), join_type=\"inner\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Finished: Reading data from Hopsworks, using ArrowFlight (3.20s) \n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>timestamp</th>\n",
" <th>datetime</th>\n",
" <th>date</th>\n",
" <th>hour</th>\n",
" <th>dk1_spotpricedkk_kwh</th>\n",
" <th>temperature_2m</th>\n",
" <th>relative_humidity_2m</th>\n",
" <th>precipitation</th>\n",
" <th>rain</th>\n",
" <th>snowfall</th>\n",
" <th>weather_code</th>\n",
" <th>cloud_cover</th>\n",
" <th>wind_speed_10m</th>\n",
" <th>wind_gusts_10m</th>\n",
" <th>dayofweek</th>\n",
" <th>day</th>\n",
" <th>month</th>\n",
" <th>year</th>\n",
" <th>workday</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1682280000000</td>\n",
" <td>2023-04-23 20:00:00+00:00</td>\n",
" <td>2023-04-23</td>\n",
" <td>20</td>\n",
" <td>1.02178</td>\n",
" <td>10.4</td>\n",
" <td>74.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>7.6</td>\n",
" <td>10.1</td>\n",
" <td>6</td>\n",
" <td>23</td>\n",
" <td>4</td>\n",
" <td>2023</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1678816800000</td>\n",
" <td>2023-03-14 18:00:00+00:00</td>\n",
" <td>2023-03-14</td>\n",
" <td>18</td>\n",
" <td>0.77461</td>\n",
" <td>0.5</td>\n",
" <td>88.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>11.6</td>\n",
" <td>22.7</td>\n",
" <td>1</td>\n",
" <td>14</td>\n",
" <td>3</td>\n",
" <td>2023</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1697259600000</td>\n",
" <td>2023-10-14 05:00:00+00:00</td>\n",
" <td>2023-10-14</td>\n",
" <td>5</td>\n",
" <td>-0.01551</td>\n",
" <td>9.8</td>\n",
" <td>71.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>23.0</td>\n",
" <td>29.5</td>\n",
" <td>54.7</td>\n",
" <td>5</td>\n",
" <td>14</td>\n",
" <td>10</td>\n",
" <td>2023</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1657170000000</td>\n",
" <td>2022-07-07 05:00:00+00:00</td>\n",
" <td>2022-07-07</td>\n",
" <td>5</td>\n",
" <td>1.15795</td>\n",
" <td>15.0</td>\n",
" <td>90.0</td>\n",
" <td>0.1</td>\n",
" <td>0.1</td>\n",
" <td>0.0</td>\n",
" <td>51.0</td>\n",
" <td>59.0</td>\n",
" <td>16.6</td>\n",
" <td>31.3</td>\n",
" <td>3</td>\n",
" <td>7</td>\n",
" <td>7</td>\n",
" <td>2022</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1647597600000</td>\n",
" <td>2022-03-18 10:00:00+00:00</td>\n",
" <td>2022-03-18</td>\n",
" <td>10</td>\n",
" <td>1.48754</td>\n",
" <td>8.4</td>\n",
" <td>60.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>21.9</td>\n",
" <td>45.4</td>\n",
" <td>4</td>\n",
" <td>18</td>\n",
" <td>3</td>\n",
" <td>2022</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" timestamp datetime date hour \\\n",
"0 1682280000000 2023-04-23 20:00:00+00:00 2023-04-23 20 \n",
"1 1678816800000 2023-03-14 18:00:00+00:00 2023-03-14 18 \n",
"2 1697259600000 2023-10-14 05:00:00+00:00 2023-10-14 5 \n",
"3 1657170000000 2022-07-07 05:00:00+00:00 2022-07-07 5 \n",
"4 1647597600000 2022-03-18 10:00:00+00:00 2022-03-18 10 \n",
"\n",
" dk1_spotpricedkk_kwh temperature_2m relative_humidity_2m precipitation \\\n",
"0 1.02178 10.4 74.0 0.0 \n",
"1 0.77461 0.5 88.0 0.0 \n",
"2 -0.01551 9.8 71.0 0.0 \n",
"3 1.15795 15.0 90.0 0.1 \n",
"4 1.48754 8.4 60.0 0.0 \n",
"\n",
" rain snowfall weather_code cloud_cover wind_speed_10m wind_gusts_10m \\\n",
"0 0.0 0.0 3.0 100.0 7.6 10.1 \n",
"1 0.0 0.0 0.0 0.0 11.6 22.7 \n",
"2 0.0 0.0 1.0 23.0 29.5 54.7 \n",
"3 0.1 0.0 51.0 59.0 16.6 31.3 \n",
"4 0.0 0.0 0.0 0.0 21.9 45.4 \n",
"\n",
" dayofweek day month year workday \n",
"0 6 23 4 2023 0 \n",
"1 1 14 3 2023 1 \n",
"2 5 14 10 2023 0 \n",
"3 3 7 7 2022 1 \n",
"4 4 18 3 2022 1 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the first 5 rows of the selected features\n",
"selected_features_training.show(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A `Feature View` stands between the **Feature Groups** and **Training Dataset**. Π‘ombining **Feature Groups** we can create a **Feature View** which stores a metadata of our data. Having the **Feature View** we can create a **Training Dataset**.\n",
"\n",
"In order to create Feature View we can use `fs.get_or_create_feature_view()` method.\n",
"\n",
"We can specify parameters:\n",
"\n",
"- `name` - Name of the feature view to create.\n",
"- `version` - Version of the feature view to create.\n",
"- `query` - Query object with the data."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Feature view created successfully, explore it at \n",
"https://c.app.hopsworks.ai:443/p/550040/fs/545863/fv/dk1_electricity_training_feature_view/version/1\n"
]
}
],
"source": [
"# Getting or creating a feature view named 'dk1_electricity_training_feature_view'\n",
"version = 1\n",
"feature_view_training = fs.get_or_create_feature_view(\n",
" name='dk1_electricity_training_feature_view',\n",
" version=version,\n",
" query=selected_features_training,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style=\"color:#2656a3;\"> ποΈ Training Dataset Creation</span>\n",
"\n",
"In Hopsworks, a training dataset is generated from a query defined by the parent FeatureView, which determines the set of features.\n",
"\n",
"**Training Dataset may contain splits such as:** \n",
"* Training set: This subset of the training data is utilized for model training.\n",
"* Validation set: Used for evaluating hyperparameters during model training. *(We have not included a validation set for this project)*\n",
"* Test set: Reserved as a holdout subset of training data for evaluating a trained model's performance.\n",
"\n",
"Training dataset is created using `fs.training_data()` method."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Finished: Reading data from Hopsworks, using ArrowFlight (5.01s) \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"VersionWarning: Incremented version to `2`.\n"
]
}
],
"source": [
"# Retrieve training data from the feature view 'feature_view_training', assigning the features to 'X'.\n",
"X, _ = feature_view_training.training_data(\n",
" description = 'Electricity Prices Training Dataset',\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 20530 entries, 0 to 20529\n",
"Data columns (total 19 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 timestamp 20530 non-null int64 \n",
" 1 datetime 20530 non-null object \n",
" 2 date 20530 non-null object \n",
" 3 hour 20530 non-null int64 \n",
" 4 dk1_spotpricedkk_kwh 20530 non-null float64\n",
" 5 temperature_2m 20530 non-null float64\n",
" 6 relative_humidity_2m 20530 non-null float64\n",
" 7 precipitation 20530 non-null float64\n",
" 8 rain 20530 non-null float64\n",
" 9 snowfall 20530 non-null float64\n",
" 10 weather_code 20530 non-null float64\n",
" 11 cloud_cover 20530 non-null float64\n",
" 12 wind_speed_10m 20530 non-null float64\n",
" 13 wind_gusts_10m 20530 non-null float64\n",
" 14 dayofweek 20530 non-null int64 \n",
" 15 day 20530 non-null int64 \n",
" 16 month 20530 non-null int64 \n",
" 17 year 20530 non-null int64 \n",
" 18 workday 20530 non-null int64 \n",
"dtypes: float64(10), int64(7), object(2)\n",
"memory usage: 3.0+ MB\n"
]
}
],
"source": [
"# Show the information for the training data\n",
"X.info()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### <span style=\"color:#2656a3;\"> β³οΈ Dataset with train and test splits</span>\n",
"\n",
"Here we define our train and test splits for traning the model."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# Importing function for splitting the data into training and testing sets\n",
"from sklearn.model_selection import train_test_split"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# Drop the columns 'date', 'datetime', and 'timestamp' from the DataFrame 'X' which contain the features\n",
"X = X.drop(columns=['date', 'datetime', 'timestamp'])"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"# Remove the dependent variable 'dk1_spotpricedkk_kwh' from the DataFrame 'X' and assign it to the variable 'y'\n",
"y = X.pop('dk1_spotpricedkk_kwh')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# Split the features and the dependent variable into training and testing sets using the train_test_split function\n",
"# This splits the data randomly into 80% training and 20% testing sets. We set the random_state to 42 to ensure reproducibility.\n",
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X, \n",
" y, \n",
" test_size=0.2, \n",
" random_state=42,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>hour</th>\n",
" <th>temperature_2m</th>\n",
" <th>relative_humidity_2m</th>\n",
" <th>precipitation</th>\n",
" <th>rain</th>\n",
" <th>snowfall</th>\n",
" <th>weather_code</th>\n",
" <th>cloud_cover</th>\n",
" <th>wind_speed_10m</th>\n",
" <th>wind_gusts_10m</th>\n",
" <th>dayofweek</th>\n",
" <th>day</th>\n",
" <th>month</th>\n",
" <th>year</th>\n",
" <th>workday</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>16085</th>\n",
" <td>20</td>\n",
" <td>2.6</td>\n",
" <td>90.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>9.0</td>\n",
" <td>16.9</td>\n",
" <td>4</td>\n",
" <td>18</td>\n",
" <td>3</td>\n",
" <td>2022</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6561</th>\n",
" <td>21</td>\n",
" <td>16.1</td>\n",
" <td>93.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>11.4</td>\n",
" <td>20.2</td>\n",
" <td>0</td>\n",
" <td>21</td>\n",
" <td>8</td>\n",
" <td>2023</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11568</th>\n",
" <td>2</td>\n",
" <td>12.7</td>\n",
" <td>80.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>10.0</td>\n",
" <td>19.7</td>\n",
" <td>40.0</td>\n",
" <td>2</td>\n",
" <td>27</td>\n",
" <td>7</td>\n",
" <td>2022</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7530</th>\n",
" <td>4</td>\n",
" <td>12.8</td>\n",
" <td>96.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>39.0</td>\n",
" <td>6.9</td>\n",
" <td>13.3</td>\n",
" <td>1</td>\n",
" <td>26</td>\n",
" <td>9</td>\n",
" <td>2023</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18489</th>\n",
" <td>4</td>\n",
" <td>6.5</td>\n",
" <td>93.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>23.2</td>\n",
" <td>44.3</td>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" <td>2022</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" hour temperature_2m relative_humidity_2m precipitation rain \\\n",
"16085 20 2.6 90.0 0.0 0.0 \n",
"6561 21 16.1 93.0 0.0 0.0 \n",
"11568 2 12.7 80.0 0.0 0.0 \n",
"7530 4 12.8 96.0 0.0 0.0 \n",
"18489 4 6.5 93.0 0.0 0.0 \n",
"\n",
" snowfall weather_code cloud_cover wind_speed_10m wind_gusts_10m \\\n",
"16085 0.0 0.0 0.0 9.0 16.9 \n",
"6561 0.0 0.0 1.0 11.4 20.2 \n",
"11568 0.0 0.0 10.0 19.7 40.0 \n",
"7530 0.0 1.0 39.0 6.9 13.3 \n",
"18489 0.0 3.0 100.0 23.2 44.3 \n",
"\n",
" dayofweek day month year workday \n",
"16085 4 18 3 2022 1 \n",
"6561 0 21 8 2023 1 \n",
"11568 2 27 7 2022 1 \n",
"7530 1 26 9 2023 1 \n",
"18489 4 4 2 2022 1 "
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the first 5 rows of the features in the training data\n",
"X_train.head()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"16085 1.86011\n",
"6561 1.23962\n",
"11568 1.02308\n",
"7530 0.77978\n",
"18489 0.85414\n",
"Name: dk1_spotpricedkk_kwh, dtype: float64"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the first 5 rows of the dependent variable in the training data\n",
"y_train.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style=\"color:#2656a3;\">𧬠Modeling</span>\n",
"\n",
"For Modeling we initialize the `XGBoost Regressor`.\n",
"\n",
"The XGBoost Regressor is a powerful and versatile algorithm known for its effectiveness in a wide range of regression tasks, including predictive modeling and time series forecasting. Specifically tailored for regression tasks, it aims to predict continuous numerical values. The algorithm constructs an ensemble of regression trees, optimizing them to minimize a specified loss function, commonly the mean squared error for regression tasks. Ultimately, the final prediction is derived by aggregating the predictions of individual trees."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# Importing the XGBoost Regressor\n",
"import xgboost as xgb\n",
"\n",
"# Initialize the XGBoost Regressor\n",
"model = xgb.XGBRegressor()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"DeprecationWarning: np.find_common_type is deprecated. Please use `np.result_type` or `np.promote_types`.\n",
"See https://numpy.org/devdocs/release/1.25.0-notes.html and the docs for more information. (Deprecated NumPy 1.25)\n"
]
},
{
"data": {
"text/html": [
"<style>#sk-container-id-1 {\n",
" /* Definition of color scheme common for light and dark mode */\n",
" --sklearn-color-text: black;\n",
" --sklearn-color-line: gray;\n",
" /* Definition of color scheme for unfitted estimators */\n",
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
" --sklearn-color-unfitted-level-3: chocolate;\n",
" /* Definition of color scheme for fitted estimators */\n",
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
" --sklearn-color-fitted-level-1: #d4ebff;\n",
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
"\n",
" /* Specific color for light theme */\n",
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
" --sklearn-color-icon: #696969;\n",
"\n",
" @media (prefers-color-scheme: dark) {\n",
" /* Redefinition of color scheme for dark theme */\n",
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
" --sklearn-color-icon: #878787;\n",
" }\n",
"}\n",
"\n",
"#sk-container-id-1 {\n",
" color: var(--sklearn-color-text);\n",
"}\n",
"\n",
"#sk-container-id-1 pre {\n",
" padding: 0;\n",
"}\n",
"\n",
"#sk-container-id-1 input.sk-hidden--visually {\n",
" border: 0;\n",
" clip: rect(1px 1px 1px 1px);\n",
" clip: rect(1px, 1px, 1px, 1px);\n",
" height: 1px;\n",
" margin: -1px;\n",
" overflow: hidden;\n",
" padding: 0;\n",
" position: absolute;\n",
" width: 1px;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-dashed-wrapped {\n",
" border: 1px dashed var(--sklearn-color-line);\n",
" margin: 0 0.4em 0.5em 0.4em;\n",
" box-sizing: border-box;\n",
" padding-bottom: 0.4em;\n",
" background-color: var(--sklearn-color-background);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-container {\n",
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
" so we also need the `!important` here to be able to override the\n",
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
" display: inline-block !important;\n",
" position: relative;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-text-repr-fallback {\n",
" display: none;\n",
"}\n",
"\n",
"div.sk-parallel-item,\n",
"div.sk-serial,\n",
"div.sk-item {\n",
" /* draw centered vertical line to link estimators */\n",
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
" background-size: 2px 100%;\n",
" background-repeat: no-repeat;\n",
" background-position: center center;\n",
"}\n",
"\n",
"/* Parallel-specific style estimator block */\n",
"\n",
"#sk-container-id-1 div.sk-parallel-item::after {\n",
" content: \"\";\n",
" width: 100%;\n",
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
" flex-grow: 1;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-parallel {\n",
" display: flex;\n",
" align-items: stretch;\n",
" justify-content: center;\n",
" background-color: var(--sklearn-color-background);\n",
" position: relative;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-parallel-item {\n",
" display: flex;\n",
" flex-direction: column;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
" align-self: flex-end;\n",
" width: 50%;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
" align-self: flex-start;\n",
" width: 50%;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
" width: 0;\n",
"}\n",
"\n",
"/* Serial-specific style estimator block */\n",
"\n",
"#sk-container-id-1 div.sk-serial {\n",
" display: flex;\n",
" flex-direction: column;\n",
" align-items: center;\n",
" background-color: var(--sklearn-color-background);\n",
" padding-right: 1em;\n",
" padding-left: 1em;\n",
"}\n",
"\n",
"\n",
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
"clickable and can be expanded/collapsed.\n",
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
"*/\n",
"\n",
"/* Pipeline and ColumnTransformer style (default) */\n",
"\n",
"#sk-container-id-1 div.sk-toggleable {\n",
" /* Default theme specific background. It is overwritten whether we have a\n",
" specific estimator or a Pipeline/ColumnTransformer */\n",
" background-color: var(--sklearn-color-background);\n",
"}\n",
"\n",
"/* Toggleable label */\n",
"#sk-container-id-1 label.sk-toggleable__label {\n",
" cursor: pointer;\n",
" display: block;\n",
" width: 100%;\n",
" margin-bottom: 0;\n",
" padding: 0.5em;\n",
" box-sizing: border-box;\n",
" text-align: center;\n",
"}\n",
"\n",
"#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
" /* Arrow on the left of the label */\n",
" content: \"βΈ\";\n",
" float: left;\n",
" margin-right: 0.25em;\n",
" color: var(--sklearn-color-icon);\n",
"}\n",
"\n",
"#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
" color: var(--sklearn-color-text);\n",
"}\n",
"\n",
"/* Toggleable content - dropdown */\n",
"\n",
"#sk-container-id-1 div.sk-toggleable__content {\n",
" max-height: 0;\n",
" max-width: 0;\n",
" overflow: hidden;\n",
" text-align: left;\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-toggleable__content pre {\n",
" margin: 0.2em;\n",
" border-radius: 0.25em;\n",
" color: var(--sklearn-color-text);\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
" /* Expand drop-down */\n",
" max-height: 200px;\n",
" max-width: 100%;\n",
" overflow: auto;\n",
"}\n",
"\n",
"#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
" content: \"βΎ\";\n",
"}\n",
"\n",
"/* Pipeline/ColumnTransformer-specific style */\n",
"\n",
"#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Estimator-specific style */\n",
"\n",
"/* Colorize estimator box */\n",
"#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
"#sk-container-id-1 div.sk-label label {\n",
" /* The background is the default theme color */\n",
" color: var(--sklearn-color-text-on-default-background);\n",
"}\n",
"\n",
"/* On hover, darken the color of the background */\n",
"#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"/* Label box, darken color on hover, fitted */\n",
"#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Estimator label */\n",
"\n",
"#sk-container-id-1 div.sk-label label {\n",
" font-family: monospace;\n",
" font-weight: bold;\n",
" display: inline-block;\n",
" line-height: 1.2em;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-label-container {\n",
" text-align: center;\n",
"}\n",
"\n",
"/* Estimator-specific */\n",
"#sk-container-id-1 div.sk-estimator {\n",
" font-family: monospace;\n",
" border: 1px dotted var(--sklearn-color-border-box);\n",
" border-radius: 0.25em;\n",
" box-sizing: border-box;\n",
" margin-bottom: 0.5em;\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-estimator.fitted {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"/* on hover */\n",
"#sk-container-id-1 div.sk-estimator:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
"\n",
"/* Common style for \"i\" and \"?\" */\n",
"\n",
".sk-estimator-doc-link,\n",
"a:link.sk-estimator-doc-link,\n",
"a:visited.sk-estimator-doc-link {\n",
" float: right;\n",
" font-size: smaller;\n",
" line-height: 1em;\n",
" font-family: monospace;\n",
" background-color: var(--sklearn-color-background);\n",
" border-radius: 1em;\n",
" height: 1em;\n",
" width: 1em;\n",
" text-decoration: none !important;\n",
" margin-left: 1ex;\n",
" /* unfitted */\n",
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-unfitted-level-1);\n",
"}\n",
"\n",
".sk-estimator-doc-link.fitted,\n",
"a:link.sk-estimator-doc-link.fitted,\n",
"a:visited.sk-estimator-doc-link.fitted {\n",
" /* fitted */\n",
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-fitted-level-1);\n",
"}\n",
"\n",
"/* On hover */\n",
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
".sk-estimator-doc-link:hover,\n",
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
".sk-estimator-doc-link:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
".sk-estimator-doc-link.fitted:hover,\n",
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
".sk-estimator-doc-link.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"/* Span, style for the box shown on hovering the info icon */\n",
".sk-estimator-doc-link span {\n",
" display: none;\n",
" z-index: 9999;\n",
" position: relative;\n",
" font-weight: normal;\n",
" right: .2ex;\n",
" padding: .5ex;\n",
" margin: .5ex;\n",
" width: min-content;\n",
" min-width: 20ex;\n",
" max-width: 50ex;\n",
" color: var(--sklearn-color-text);\n",
" box-shadow: 2pt 2pt 4pt #999;\n",
" /* unfitted */\n",
" background: var(--sklearn-color-unfitted-level-0);\n",
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
"}\n",
"\n",
".sk-estimator-doc-link.fitted span {\n",
" /* fitted */\n",
" background: var(--sklearn-color-fitted-level-0);\n",
" border: var(--sklearn-color-fitted-level-3);\n",
"}\n",
"\n",
".sk-estimator-doc-link:hover span {\n",
" display: block;\n",
"}\n",
"\n",
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
"\n",
"#sk-container-id-1 a.estimator_doc_link {\n",
" float: right;\n",
" font-size: 1rem;\n",
" line-height: 1em;\n",
" font-family: monospace;\n",
" background-color: var(--sklearn-color-background);\n",
" border-radius: 1rem;\n",
" height: 1rem;\n",
" width: 1rem;\n",
" text-decoration: none;\n",
" /* unfitted */\n",
" color: var(--sklearn-color-unfitted-level-1);\n",
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
"}\n",
"\n",
"#sk-container-id-1 a.estimator_doc_link.fitted {\n",
" /* fitted */\n",
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-fitted-level-1);\n",
"}\n",
"\n",
"/* On hover */\n",
"#sk-container-id-1 a.estimator_doc_link:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-3);\n",
"}\n",
"</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
" colsample_bylevel=None, colsample_bynode=None,\n",
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
" gamma=None, grow_policy=None, importance_type=None,\n",
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
" multi_strategy=None, n_estimators=None, n_jobs=None,\n",
" num_parallel_tree=None, random_state=None, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> XGBRegressor<span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
" colsample_bylevel=None, colsample_bynode=None,\n",
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
" gamma=None, grow_policy=None, importance_type=None,\n",
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
" multi_strategy=None, n_estimators=None, n_jobs=None,\n",
" num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div>"
],
"text/plain": [
"XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
" colsample_bylevel=None, colsample_bynode=None,\n",
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
" gamma=None, grow_policy=None, importance_type=None,\n",
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
" multi_strategy=None, n_estimators=None, n_jobs=None,\n",
" num_parallel_tree=None, random_state=None, ...)"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Train the model on the training data\n",
"model.fit(X_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style='color:#ff5f27'> βοΈ Model Validation\n",
"\n",
"After fitting the XGBoost Regressor, we evaluate the performance using the following validation metrics.\n",
"\n",
"**Mean Squared Error (MSE):**\n",
"- Measures the average squared difference between the actual and predicted values in a regression problem. \n",
"- It squares the differences between predicted and actual values to penalize larger errors more heavily.\n",
"- Lower MSE values indicate better model performance.\n",
"\n",
"**R-squared (RΒ²):**\n",
"- Measures the proportion of the variance in the dependent variable (target) that is predictable from the independent variables (features) in a regression model.\n",
"- R-squared values range from 0 to 1, where 0 indicates that the model does not explain any variability in the target variable, and 1 indicates that the model explains all the variability.\n",
"- R-squared is a useful metric for assessing how well the regression model fits the observed data. However, it does not provide information about the goodness of fit on new, unseen data.\n",
"\n",
"**Mean Absolute Error (MAE):**\n",
"- Measures the average absolute difference between the actual and predicted values.\n",
"- MAE is less sensitive to outliers compared to MSE because it does not square the errors.\n",
"- Like MSE and RMSE, lower MAE values indicate better model performance.\n",
"\n",
"MSE focus on the magnitude of errors, while R-squared provides insight into the proportion of variance explained by the model. MAE provides a measure of average error without considering the direction of errors."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"# Importing the model validation metric functions from the sklearn library\n",
"from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"β³οΈ MSE: 0.058650463336654024\n",
"β³οΈ R^2: 0.932941138051651\n",
"β³οΈ MAE: 0.1659344568393483\n"
]
}
],
"source": [
"# Predict target values on the test set\n",
"y_pred = model.predict(X_test)\n",
"\n",
"# Calculate Mean Squared Error (MSE) using sklearn\n",
"mse = mean_squared_error(y_test, y_pred)\n",
"print(\"β³οΈ MSE:\", mse)\n",
"\n",
"# Calculate R squared using sklearn\n",
"r2 = r2_score(y_test, y_pred)\n",
"print(\"β³οΈ R^2:\", r2)\n",
"\n",
"# Calculate Mean Absolute Error (MAE) using sklearn\n",
"mae = mean_absolute_error(y_test, y_pred)\n",
"print(\"β³οΈ MAE:\", mae)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this case, the `MSE` is 0.0546, which suggests that on average, the squared difference between the actual and predicted values is relatively low. An `R^2` value of 0.933 indicates that approximately 93.33% of the variance in the dependent variable is predictable from the feature variables in the model. This is a high value, suggesting that the model explains a significant portion of the variability in the data. A `MAE` of 0.1604 suggests that, on average, the model's predictions are off by approximately 0.1604 units from the actual values. Similar to MSE, a lower MAE indicates better accuracy of the model.\n",
"\n",
"In summary, based on these metrics, the model seems to perform quite well. It has relatively low error (both in terms of MSE and MAE), and a high percentage of the variance in the dependent variable is explained by the feature variables, as indicated by the high R-squared value."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABR30lEQVR4nO3deVhU9f4H8PewDSACKpssCor7goimmIoLiUuWuWRkguaWuZbXEsutuqLVdWshr5pUN3fTNPdcMzc0cc8tVG4uuAQIJArz/f3hZX6ODDADs5xz5v16nnmUM2fO+cxZ3+d7llEJIQSIiIiIZM7O2gUQERERmQJDDRERESkCQw0REREpAkMNERERKQJDDRERESkCQw0REREpAkMNERERKQJDDRERESkCQw0REREpAkMNScagQYMQHBxs7TKsLjk5GSqVCleuXNF269ChAzp06GC1mp6mr8aKuHLlClQqFZKTk00yPFMp73RXqVSYPn26yesxB6nWmpOTg6FDh8LPzw8qlQrjx4+3dkkkAww1FlK0EyjpdejQIWuXaJCzZ89i+vTpJtuZSVFwcLDOvPHx8UG7du2wbt06a5dmlLy8PEyfPh179uyxWg3Tp08vdbm/efOmReq4fv06pk+fjtTUVIuM72kHDhzA9OnTkZmZadLhdujQQWd6Vq1aFS1btsTXX38NjUZj0nFZ2syZM5GcnIyRI0fiu+++w8CBA61dkiQMGjRIZ567ubmhVq1a6Nu3L9auXat3vnfo0AGNGzcu1n3nzp1wdXVF8+bNce/ePQDA9u3bMWTIEDRu3Bj29vayO9B0sHYBtuaDDz5ASEhIse6hoaFWqMZ4Z8+exYwZM9ChQwfZLezGaNasGSZMmADg8Q5x4cKF6N27N5KSkvDGG29YvJ7t27cb/Zm8vDzMmDEDAKzeypOUlAQ3N7di3T09PS0y/uvXr2PGjBkIDg5Gs2bNDP5ceaY7APz9999wcPj/zeuBAwcwY8YMDBo0yOTfOTAwEImJiQCA27dv49tvv8WQIUNw4cIFzJo1y+hapWLXrl1o3bo1pk2bZu1SJEetVmPx4sUAHs+/q1evYuPGjejbty86dOiAH3/8Ee7u7qUOY9euXejZsyfq1auHn3/+GVWrVgUALFu2DCtXrkTz5s3h7+9v9u9iatJbkhWuW7duaNGihbXLoDIEBATgtdde0/4dFxeH0NBQzJ07t8RQU1BQAI1GAycnJ5PXY45hWlLfvn3h5eVl7TIMlpeXB1dX13JPd2dnZxNXVDIPDw+dZXXEiBGoV68ePv/8c3z44YdwdHQs9hmNRoOHDx/C2dnZorUaIyMjAw0bNjTZ8My1fgoh8ODBA7i4uJh0uKVxcHDQmecA8NFHH2HWrFlISEjAsGHDsHLlyhI/v3fvXvTs2RN169bVCTTA4xayRYsWwdHREc8//zxOnz5ttu9hDjz9JDHTpk2DnZ0ddu7cqdN9+PDhcHJywokTJwAAe/bsgUqlwsqVKzF58mT4+fmhUqVKeOGFF5Cenl5suIcPH0bXrl3h4eEBV1dXREVF4ddffy3W359//okhQ4bA398farUaISEhGDlyJB4+fIjk5GT069cPANCxY0dt8+eTpze2bNmCdu3aoVKlSqhcuTJ69OiBM2fOFBvP+vXr0bhxYzg7O6Nx48YGn9p5/vnnUatWLb3vRUZG6gTGHTt2oG3btvD09ISbmxvq1auHyZMnGzSep/n5+aFBgwZIS0sD8P/XgHz66aeYN28eateuDbVajbNnzwIAfv/9d/Tt2xdVq1aFs7MzWrRogQ0bNhQb7pkzZ9CpUye4uLggMDAQH330UYnNx0+3tjx48ADTp09H3bp14ezsjOrVq6N37964fPkyrly5Am9vbwDAjBkztPPqyWsnTF2jORhaY2ZmJt566y0EBwdDrVYjMDAQcXFxuHPnDvbs2YOWLVsCAAYPHqydFkXX7xQ1zR87dgzt27eHq6urdjkxdroXeXJaT58+HRMnTgQAhISEaMd/5coVREVFISwsTO93r1evHmJiYoyeZq6urmjdujVyc3Nx+/ZtbT2jR4/G999/j0aNGkGtVmPr1q3Fai1S2nbgyWk+fvx4BAUFQa1WIzQ0FLNnzy62bKxYsQIRERGoXLky3N3d0aRJE8yfP7/E+ou2bWlpadi0aZPO9AIeh50hQ4bA19cXzs7OCAsLwzfffKMzjLLWT32WLl2KTp06wcfHB2q1Gg0bNkRSUlKx/oKDg/H8889j27ZtaNGiBVxcXLBw4UKjpsmnn36KNm3aoFq1anBxcUFERATWrFlTYm2GmjRpErp06YLVq1fjwoULevv55Zdf0KNHD4SGhuLnn39GtWrVdN739/fXG4Tlgi01FpaVlYU7d+7odFOpVNoF6/3338fGjRsxZMgQnDp1CpUrV8a2bduwaNEifPjhh8U2gP/85z+hUqnw7rvvIiMjA/PmzUN0dDRSU1O1Rw67du1Ct27dEBERoQ1NRSvwL7/8gmeeeQbA4yb6Z555BpmZmRg+fDjq16+PP//8E2vWrEFeXh7at2+PsWPHYsGCBZg8eTIaNGgAANp/v/vuO8THxyMmJgazZ89GXl4ekpKS0LZtWxw/flx7umr79u3o06cPGjZsiMTERNy9exeDBw9GYGBgmdOvf//+iIuLQ0pKinZHBQBXr17FoUOH8MknnwB4vCN+/vnn0bRpU3zwwQdQq9W4dOmS3iBniEePHiE9Pb3YBmDp0qV48OABhg8fDrVajapVq+LMmTN49tlnERAQgEmTJqFSpUpYtWoVevXqhbVr1+Kll14CANy8eRMdO3ZEQUGBtr9///vfBh3xFRYW4vnnn8fOnTvxyiuvYNy4cbh//z527NiB06dPIzo6GklJSRg5ciReeukl9O7dGwDQtGlT7fQxd41PKjpf/yQHB4dST8UYWmNOTg7atWuHc+fO4fXXX0fz5s1x584dbNiwAf/973/RoEEDfPDBB5g6dSqGDx+Odu3aAQDatGmjHdfdu3fRrVs3vPLKK3jttdfg6+tbruleu3btYp/p3bs3Lly4gOXLl2Pu3LnaFitvb28MHDgQw4YNw+nTp3WueUhJScGFCxfw/vvvlz1x9fjjjz9gb2+vM3137dqFVatWYfTo0fDy8irx9HFZ2wEnJyfk5eUhKioKf/75J0aMGIEaNWrgwIEDSEhIwI0bNzBv3jwAjw8sYmNj0blzZ8yePRsAcO7cOfz6668YN26c3vE3aNAA3333Hd566y0EBgZqTwN7e3vj77//RocOHXDp0iWMHj0aISEhWL16NQYNGoTMzMxiw9S3fpYkKSkJjRo1wgsvvAAHBwds3LgRb775JjQaDUaNGqXT7/nz5xEbG4sRI0Zg2LBhqFevnsHTBADmz5+PF154AQMGDMDDhw+xYsUK9OvXDz/99BN69OhRYo2GGDhwILZv344dO3agbt26Ou/9+uuv6N69O0JCQrBz505ZtZ4aTJBFLF26VADQ+1Kr1Tr9njp1Sjg5OYmhQ4eKv/76SwQEBIgWLVqIR48eafvZvXu3ACACAgJEdna2tvuqVasEADF//nwhhBAajUbUqVNHxMTECI1Go+0vLy9PhISEiOeee07bLS4uTtjZ2YmUlJRi9Rd9dvXq1QKA2L17t8779+/fF56enmLYsGE63W/evCk8PDx0ujdr1kxUr15dZGZmartt375dABA1a9YsdTpmZWUJtVotJkyYoNP9448/FiqVSly9elUIIcTcuXMFAHH79u1Sh6dPzZo1RZcuXcTt27fF7du3xYkTJ8Qrr7wiAIgxY8YIIYRIS0sTAIS7u7vIyMjQ+Xznzp1FkyZNxIMHD7TdNBqNaNOmjahTp4622/jx4wUAcfjwYW23jIwM4eHhIQCItLQ0bfeoqCgRFRWl/fvrr78WAMScOXOK1V80r27fvi0AiGnTphXrxxw16jNt2rQSl/t69epp+yuankuXLjW6xqlTpwoA4ocffihxWqSkpBQbfpGoqCgBQHz11Vd63zN2ugshik33Tz75RO/0yszMFM7OzuLdd9/V6T527FhRqVIlkZOTU2w8T9dXv3597bJ67tw5MXbsWAFA9OzZU6ceOzs7cebMmWLDeLpWQ7YDH374oahUqZK4cOGCzvuTJk0S9vb24tq1a0IIIcaNGyfc3d1FQUFBqd9Dn5o1a4oePXrodJs3b54AIP7zn/9ouz18+FBERkYKNzc37bawtPWzJHl5ecW6xcTEiFq1ahWrC4DYunWrTndDp4m+cT18+FA0btxYdOrUqcw64+PjRaVKlUp8//jx4wKAeOutt7TdoqKiRNWqVUXlypVFo0aNDJ4mPXr0KHObLDU8/WRhX3zxBXbs2KHz2rJli04/jRs3xowZM7B48WLExMTgzp07+Oabb/RezBcXF4fKlStr/+7bty+qV6+OzZs3AwBSU1Nx8eJFvPrqq7h79y7u3LmDO3fuIDc3F507d8a+ffug0Wig0Wiwfv169OzZU+81PyqVqtTvtWPHDmRmZiI2NlY7jjt37sDe3h6tWrXC7t27AQA3btxAamoq4uPj4eHhof38c889Z9D5c3d3d3Tr1g2rVq2CEELbfeXKlWjdujVq1KgB4P8vQP3xxx/Ldapk+/bt8Pb2hre3N8LCwrB69WoMHDhQe7RZpE+fPtrTPMDjFoldu3bh5Zdfxv3797XT4e7du4iJicHFixfx559/AgA2b96M1q1ba1vKgMdHowMGDCizvrVr18LLywtjxowp9l5Z88pSNT5d79PL/dKlS01S49q1axEWFqZtuTFmWhRRq9UYPHiwQd+jvNNdHw8PD7z44otYvny5dnkuLCzEypUr0atXL1SqVKnMYfz+++/aZbVBgwb47LPP0KNHD3z99dc6/UVFRZW5jhm6HVi9ejXatWuHKlWq6Kzv0dHRKCwsxL59+wA8Xg9zc3OxY8cOg6ZHWTZv3gw/Pz/ExsZquzk6OmLs2LHIycnB3r17dfp/ev0szZOtj0Ut6lFRUfjjjz+QlZWl029ISEixU4OGTpOnx/XXX38hKysL7dq1w2+//WZQraUpuiD//v37Ot1zc3Nx//59+Pr6lnkRsZzx9JOFPfPMMwZdKDxx4kSsWLECR44cwcyZM0vcGNWpU0fnb5VKhdDQUO3554sXLwIA4uPjSxxXVlYWHj58iOzsbL23/RmiaDydOnXS+37RSnT16lW9dQOPryEwZKXu378/1q9fj4MHD6JNmza4fPkyjh07ptO8279/fyxevBhDhw7FpEmT0LlzZ/Tu3Rt9+/aFnV3ZWb5Vq1b46KOPoFKp4OrqigYNGug9VfL0nWyXLl2CEAJTpkzBlClT9A47IyMDAQEBuHr1Klq1alXs/Xr16pVZ3+XLl1GvXr1y3bViqRqf1L59e6Oauo2p8fLly+jTp49R9TwtICDAoAtIKzLdSxIXF4eVK1fil19+Qfv27fHzzz/j1q1bBt/CHBwcjEWLFkGlUsHZ2Rl16tSBj49Psf703XX5tNu3bxu0Hbh48SJOnjxZYmDIyMgAALz55ptYtWoVunXrhoCAAHTp0gUvv/wyunbtasA3K+7q1auoU6dOsXW46BR40faliCHfucivv/6KadOm4eDBg8jLy9N5LysrS+cgTN9wDZ0mAPDTTz/ho48+QmpqKvLz87XdyxOMn5aTkwMAOge7wOM7bOPi4vDuu+8iNjYWq1evhr29fYXHJzUMNRL1xx9/aIPCqVOnyj2colaKTz75pMRbWd3c3PRe81Ce8Xz33Xfw8/Mr9r4pdwI9e/aEq6srVq1ahTZt2mDVqlWws7PTXsQMPD4S2rdvH3bv3o1NmzZh69atWLlyJTp16oTt27eXuTJ7eXkhOjq6zFqevrakaDr84x//KPEiT2vfvs8ai7PknStPi4mJga+vL/7zn/+gffv2+M9//gM/Pz+Dlj8AqFSpUrmW1YrQaDR47rnn8M477+h9v+haDh8fH6SmpmLbtm3YsmULtmzZgqVLlyIuLq7Yxb3mYOh3vnz5Mjp37oz69etjzpw5CAoKgpOTEzZv3oy5c+cWa+3VN1xDp8kvv/yCF154Ae3bt8eXX36J6tWrw9HREUuXLsWyZcuM/IbFFd2tpG/9eOedd3D37l18/PHHGDZsGJYsWWKSICUlDDUSpNFoMGjQILi7u2P8+PGYOXMm+vbtq73Y80lFwaeIEAKXLl3SXhBadOGiu7t7qRs+b29vuLu7l3n7XkkrQNF4fHx8Sh1PzZo19dYNPL74zhCVKlXC888/j9WrV2POnDlYuXIl2rVrV+yZCnZ2dujcuTM6d+6MOXPmYObMmXjvvfewe/dug3cYxiq6M8vR0bHMcdSsWbPc06F27do4fPgwHj16VOKdCiXNK0vVWBHG1Fi7du1yL7fGMmS6Gzt+e3t7vPrqq0hOTsbs2bOxfv16DBs2zCpH0YZuB2rXro2cnByD1iMnJyf07NkTPXv2hEajwZtvvomFCxdiypQpRgfTmjVr4uTJk9BoNDqtNb///rv2/fLYuHEj8vPzsWHDBu0pbADa0+aGMHSarF27Fs7Ozti2bRvUarW2e2mnY43x3XffQaVS4bnnntP7/uzZs3Hv3j0sXrwYVapUwb/+9S+TjFcqeE2NBM2ZMwcHDhzAv//9b3z44Ydo06YNRo4cWeyuKQD49ttvdc6drlmzBjdu3EC3bt0AABEREahduzY+/fRTbbPkk4pu+bSzs0OvXr2wceNGHD16tFh/Ref7i87xP/1k1JiYGLi7u2PmzJl49OhRieOpXr06mjVrhm+++UbnPPWOHTtKvd3yaf3798f169exePFinDhxAv3799d5X1/LU1FL1ZPNvabm4+ODDh06YOHChbhx40ax94umAwB0794dhw4dwpEjR3Te//7778scT58+fXDnzh18/vnnxd4rmleurq4Ais8rS9VYEcbU2KdPH5w4cULvYwHKWm6NZch016es8Q8cOBB//fUXRowYgZycnGLPILEUQ7cDL7/8Mg4ePIht27YV6yczMxMFBQUAHt9V9vTwiw64yrMedu/eHTdv3tR5BktBQQE+++wzuLm5ISoqyuhhAtAGyCfnYVZWllFBw9BpYm9vD5VKhcLCQu37V65cwfr168tV+5NmzZqF7du3o3///npP8RdZuHAh+vbtizlz5uCjjz6q8HilhC01FrZlyxbtUcWT2rRpg1q1auHcuXOYMmUKBg0ahJ49ewJ4/BMLzZo1056fflLVqlXRtm1bDB48GLdu3cK8efMQGhqKYcOGAXi8EVm8eDG6deuGRo0aYfDgwQgICMCff/6J3bt3w93dHRs3bgTw+KFL27dvR1RUFIYPH44GDRrgxo0bWL16Nfbv3w9PT080a9YM9vb2mD17NrKysqBWq7XPdkhKSsLAgQPRvHlzvPLKK/D29sa1a9ewadMmPPvss9odQWJiInr06IG2bdvi9ddfx7179/DZZ5+hUaNGeoOXPt27d0flypXxj3/8A/b29sWuqfjggw+wb98+9OjRAzVr1kRGRga+/PJLBAYGom3btsbNNCN98cUXaNu2LZo0aYJhw4ahVq1auHXrFg4ePIj//ve/2mcNvfPOO/juu+/QtWtXjBs3Tnu7dNHRaGni4uLw7bff4u2338aRI0fQrl075Obm4ueff8abb76JF198ES4uLmjYsCFWrlyJunXromrVqmjcuDEaN25skRqftGbNGr1PFH7uuedKvH3a0BonTpyINWvWoF+/fnj99dcRERGBe/fuYcOGDfjqq68QFhaG2rVrw9PTE1999RUqV66MSpUqoVWrVkZdc2HodNcnIiICAPDee+/hlVdegaOjI3r27KkNO+Hh4WjcuDFWr16NBg0aoHnz5kbVZUqGbAcmTpyIDRs24Pnnn8egQYMQERGB3NxcnDp1CmvWrMGVK1fg5eWFoUOH4t69e+jUqRMCAwNx9epVfPbZZ2jWrJn2OhhjDB8+HAsXLsSgQYNw7NgxBAcHY82aNfj1118xb968YteRGKpLly7aFqWiYLlo0SL4+PjoDdX6GDpNevTogTlz5qBr16549dVXkZGRgS+++AKhoaEGr1MFBQX4z3/+A+Dxc5OuXr2KDRs24OTJk+jYsSP+/e9/l/p5Ozs7fP/998jKysKUKVNQtWpVvPnmmwCAkydPap8FdenSJWRlZWmDT1hYmHa/JFnWuenK9pR2Szf+d6tpQUGBaNmypQgMDNS53VkIIebPny8AiJUrVwoh/v+W7uXLl4uEhATh4+MjXFxcRI8ePbS3NT/p+PHjonfv3qJatWpCrVaLmjVripdfflns3LlTp7+rV6+KuLg44e3tLdRqtahVq5YYNWqUyM/P1/azaNEiUatWLWFvb1/s9u7du3eLmJgY4eHhIZydnUXt2rXFoEGDxNGjR3XGs3btWtGgQQOhVqtFw4YNxQ8//CDi4+ONun1wwIABAoCIjo4u9t7OnTvFiy++KPz9/YWTk5Pw9/cXsbGxxW631EffraRPK7pl9JNPPtH7/uXLl0VcXJzw8/MTjo6OIiAgQDz//PNizZo1Ov2dPHlSREVFCWdnZxEQECA+/PBDsWTJkjJv6Rbi8W2h7733nggJCRGOjo7Cz89P9O3bV1y+fFnbz4EDB0RERIRwcnIqduuuqWvUp7Rbup9cdvTd0m1MjXfv3hWjR48WAQEBwsnJSQQGBor4+Hhx584dbT8//vijaNiwoXBwcNAZV1RUlGjUqJHe+ss73Z+e1kI8vuU3ICBA2NnZ6Z12H3/8sQAgZs6cWeo0fbq+kmp/EgAxatSoEt97ulZDtgP3798XCQkJIjQ0VDg5OQkvLy/Rpk0b8emnn4qHDx8KIYRYs2aN6NKli/Dx8RFOTk6iRo0aYsSIEeLGjRtl1lzSenjr1i0xePBg4eXlJZycnESTJk2KLTdlrZ/6bNiwQTRt2lQ4OzuL4OBgMXv2bO0t/E/Oq9K2D4ZMEyGEWLJkiahTp45Qq9Wifv36YunSpdp1pSzx8fE665Crq6sIDg4Wffr0EWvWrBGFhYXFPlPScpKTkyNat24t7OzsxPfffy+EKH1fFR8fX2Z91qYSopQ2U5KsPXv2oGPHjli9ejX69u1r7XKIqILmz5+Pt956C1euXNG5roOIDMdraoiIrEwIgSVLliAqKoqBhqgCeE0NEZGV5ObmYsOGDdi9ezdOnTqFH3/80dolEckaQw0RkZXcvn0br776Kjw9PTF58mS88MIL1i6JSNZ4TQ0REREpAq+pISIiIkVgqCEiIiJFsKlrajQaDa5fv47KlSsr7vcuiIiIlEoIgfv378Pf37/UHyW2qVBz/fp1BAUFWbsMIiIiKof09HQEBgaW+L5NhZqiR2inp6fD3d3dytUQERGRIbKzsxEUFFTmT2HYVKgpOuXk7u7OUENERCQzZV06wguFiYiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIiISBEYaoiIiEgRGGqIiIhIEWQVav7880+89tprqFatGlxcXNCkSRMcPXrU2mURERGRBDhYuwBD/fXXX3j22WfRsWNHbNmyBd7e3rh48SKqVKli7dKIiIhIAmQTambPno2goCAsXbpU2y0kJMSKFREREZGUyOb004YNG9CiRQv069cPPj4+CA8Px6JFi6xdFhEREUmEbELNH3/8gaSkJNSpUwfbtm3DyJEjMXbsWHzzzTclfiY/Px/Z2dk6LyIiIlImlRBCWLsIQzg5OaFFixY4cOCAttvYsWORkpKCgwcP6v3M9OnTMWPGjGLds7Ky4O7ubrZaiYiIyHSys7Ph4eFR5v5bNi011atXR8OGDXW6NWjQANeuXSvxMwkJCcjKytK+0tPTzV0mERERWYlsLhR+9tlncf78eZ1uFy5cQM2aNUv8jFqthlqtNndpREREJAGyaal56623cOjQIcycOROXLl3CsmXL8O9//xujRo2ydmlEREQkAbIJNS1btsS6deuwfPlyNG7cGB9++CHmzZuHAQMGWLs0IiIikgDZXChsCoZeaERERETSobgLhYmIiIhKw1BDREREisBQQ0RERIrAUENlW9bf2hUQERGViaGGiIiIFIGhhsqUmp5p7RKIiIjKxFBDRLaDp1KJFI2hhoiIiBSBoYaIiIgUgaGGiIiIFIGhhoiIiBSBoYaIiIgUgaGGiGwGH09ApGwMNaR8vI2XiMgmMNQQERGRIjDUEBERkSIw1BAREZEiMNQQERGRIjDUEBERkSIw1JDi8TZeIiLbwFBDREREisBQQ0RERIrAUENERESKwFBDREREisBQQ0RERIrAUENERESKwFBDREREisBQQ0RERIrAUENERESKwFBDREREisBQQ0RERIrAUENERESKwFBDREREiiCbUDN9+nSoVCqdV/369a1dFhEREUmEg7ULMEajRo3w888/a/92cJBV+URERGRGskoFDg4O8PPzs3YZREREJEGyOf0EABcvXoS/vz9q1aqFAQMG4Nq1a6X2n5+fj+zsbJ0XERERKZNsQk2rVq2QnJyMrVu3IikpCWlpaWjXrh3u379f4mcSExPh4eGhfQUFBVmwYiIiIrIk2YSabt26oV+/fmjatCliYmKwefNmZGZmYtWqVSV+JiEhAVlZWdpXenq6BSsmIiIiS5LVNTVP8vT0RN26dXHp0qUS+1Gr1VCr1RasioiIiKxFNi01T8vJycHly5dRvXp1a5dCREREEiCbUPOPf/wDe/fuxZUrV3DgwAG89NJLsLe3R2xsrLVLIyIiIgmQzemn//73v4iNjcXdu3fh7e2Ntm3b4tChQ/D29rZ2aURERCQBsgk1K1assHYJREREJGGyOf1EREREVBqGGiIiIlIEhhoiIiJSBIYaIiIiUgSGGiIiIlIEhhoiIiJSBIYaIiIiUgSGGiIiIlIEhhoiIiJSBIYaIiIiUgSGGiIiIlIEhhoiIiMNSU6xdglEpAdDDRGRkcbcet/aJRCRHgw1REREpAgMNURERKQIDDVEREQ2SInXhjHUEBERkSIw1BAREZEiMNQQERGRIjDUEBliWX9rV0BERGVgqCEiIiJFYKghIiIiRWCoISIiIkVgqCEiIiJFYKghIiIiRWCoISJ6ihKftEpkCxhqiIiISBEYaoiIiEgRGGqIiIhIERhqiIieMubW+9YugYjKgaGGiIiIFIGhhoiIiBSBoYaIiIgUQbahZtasWVCpVBg/fry1SyEiIiIJkGWoSUlJwcKFC9G0aVNrl0JEREQSIbtQk5OTgwEDBmDRokWoUqWKtcshIiKSJSXe5Se7UDNq1Cj06NED0dHRZfabn5+P7OxsnReRKfAx+kRE0uNg7QKMsWLFCvz2229ISTFsh5KYmIgZM2aYuSoiIiKSAtm01KSnp2PcuHH4/vvv4ezsbNBnEhISkJWVpX2lp6ebuUoiIiKyFtm01Bw7dgwZGRlo3ry5tlthYSH27duHzz//HPn5+bC3t9f5jFqthlqttnSpREREZAWyCTWdO3fGqVOndLoNHjwY9evXx7vvvlss0BAREZFtkU2oqVy5Mho3bqzTrVKlSqhWrVqx7kRERGR7ZHNNDZGUKPFWSJNY1t/aFRCRDZNNS40+e/bssXYJRGQhQ5JTsGRQS2uXQUQSxpYaIiIiUgSGGiKSBZ7yI5vD07lGY6ghIqvgU5mJyNQYaojMiUdaREQWw1BDREREisBQQ8rD1hEiIpvEUENERESKwFBDZIDU9Exrl0BEVBxbpnUw1BCRyfHOJiKyBoYaIiIiUgSGGiIiIlIEhhoisl28HoFIURhqiIiISBEYaohMhUf9RGRCvOvSeCYNNTk5OaYcnE1InR1j7RKIKoZhjmSId+gpk8GhZu7cuaW+f//+fcTEcAdNRERE1mFwqJk8eTK+/fZbve/l5uaia9euuHv3rskKIyL5GnPrfWuXQEQ2yOBQ891332HEiBHYsGGDTvfc3FzExMTg9u3b2L17t8kLJCIiIv143Y0uB0N77Nu3LzIzMxEbG4tNmzahQ4cO2haaW7duYe/evahevbo5ayWSndT0TDSzdhFERDbC4FADAEOHDsW9e/fw4osv4scff8TUqVNx/fp17N27F/7+/uaqkUgWGGCIiKzLqFADAO+88w7u3buHzp07Izg4GHv27EFgYKA5aiMiBXt83c02a5dBRApicKjp3bu3zt+Ojo7w8vLCuHHjdLr/8MMPpqmMiIiIyAgGXyjs4eGh84qNjUXDhg2LdSciogpS0rN/KvJdlDQdyCIMbqlZunRpmf3w4XtEZGlDklOwZFBLa5dBRBLAh+8RERGRIpjk4Xs5OTl8+B4RERXD56iQJZnk4Xtdu3blw/eIiDswIrIqg0NN37598dlnnyE2NhZ79uwBAJ2H7+3Zs4cP3yMiMjdePEtUIj58j4iIiBSBD98jxeGTfc1gWX/g1ZXWroKIqFR8+B4REREpgsGh5ukH68XGxpq8GCIiKh1bIolKZtKH75Fl8GFjRMrG4EJUPgbf/fQkIQTu3Llj0efSJCUloWnTpnB3d4e7uzsiIyOxZcsWi42fzIB3cRARkQkZFWpu3ryJuLg4VKlSBb6+vvDx8UGVKlXw+uuv49atW+aqEQAQGBiIWbNm4dixYzh69Cg6deqEF198EWfOnDHreImIiEgeDD79lJ2djTZt2iAnJweDBw9G/fr1IYTA2bNnsXz5cuzfvx+//fYb3NzczFJoz549df7+5z//iaSkJBw6dAiNGjUyyziJSPrG3HofwLZyfZaneYiUxeBQM3/+fNjb2+PMmTPw9vbWee/999/Hs88+iwULFmDy5MkmL/JphYWFWL16NXJzcxEZGVlif/n5+cjPz9f+nZ2dbfbaiIiIyDoMPv20adMmTJ48uVigAQAfHx8kJCRg48aNJi3uaadOnYKbmxvUajXeeOMNrFu3Dg0bNiyx/8TERHh4eGhfQUFBZq1PMnitCpkYf/6AiOTA4FBz4cIFtGnTpsT327Rpg/Pnz5ukqJLUq1cPqampOHz4MEaOHIn4+HicPXu2xP4TEhKQlZWlfaWnp5u1PiJSGB4gEMmKwaEmOzsbnp6eJb7v6elp9tM7Tk5OCA0NRUREBBITExEWFob58+eX2L9ardbeLVX0UoLH1xAQkakNSU6xdglkIdyOKpPBoUYIATu7kntXqVQQQpikKENpNBqda2aIiIgUhy2GBjP4QmEhBOrWrQuVSlXi++aUkJCAbt26oUaNGrh//z6WLVuGPXv2YNu28t31QOXE3wAiG8K7o4jkRTZPFM7IyEBcXBxu3LgBDw8PNG3aFNu2bcNzzz1n1bqkiBtimWFQJCIyCYNDTXx8vDnrKNOSJUusOn4iIiKStnL9TALZLt7aS0REUsVQQ0T0P7wjhkjeGGqIiIgkjC3khmOoISIiMifekm0xDDVERFQx3GmTRBh891ORwsJCJCcnY+fOncjIyIBGo9F5f9euXSYrjoikTzaPEOCOl0jxjA4148aNQ3JyMnr06IHGjRuX+DA+IiKiipBNYCbJMDrUrFixAqtWrUL37t3NUQ8RERFRuRh9TU3Rj0oSERERSYnRoWbChAmYP3++xX+8koiIiKg0Rp9+2r9/P3bv3o0tW7agUaNGcHR01Hn/hx9+MFlxRLaA1w0Q/b8hySlYMqhl6T3x99KoBEaHGk9PT7z00kvmqIWIiIio3IwONdb+tW4iIpIWtjaSVPDhe0RERKQIBrXUNG/eHDt37kSVKlUQHh5e6rNpfvvtN5MVR8rGozuyCVa8/sOg61Mk5vGPim6zdhkkUwaFmhdffBFqtRoA0KtXL3PWQ0REpCg8gLMcg0LNtGnT9P6fSFZ4xwQRkaLxmhoiIiJSBIYaIiIiUgSGGiIiIlIEhhoiIiJShHKHmocPH+L8+fMoKCgwZT1EZpOanmntEoiIyIyMDjV5eXkYMmQIXF1d0ahRI1y7dg0AMGbMGMyaNcvkBZLhhiSnWLsEspRl/a1dAcnA42e+KA8PUKgkRoeahIQEnDhxAnv27IGzs7O2e3R0NFau5O2yRESyw5BMCmF0qFm/fj0+//xztG3bVufJwo0aNcLly5dNWhxZEDdqRLLH1toScPtmM4wONbdv34aPj0+x7rm5uaX+fAIRmQ6b34mIijM61LRo0QKbNm3S/l0UZBYvXozIyEjTVUZERERkBIN+JuFJM2fORLdu3XD27FkUFBRg/vz5OHv2LA4cOIC9e/eao0bZkOOPxxXhb5MQEZHcGd1S07ZtW6SmpqKgoABNmjTB9u3b4ePjg4MHDyIiIsIcNRIRkQGUercTkaGMbqkBgNq1a2PRokWmroWISHHYCkpkOUa31GzevBnbtm0r1n3btm3YsmWLSYoiIrI63jGjGLyw3nYYHWomTZqEwsLCYt2FEJg0aZJJiiIiIiIyltGh5uLFi2jYsGGx7vXr18elS5dMUpQ+iYmJaNmyJSpXrgwfHx/06tUL58+fN9v4iIhsGluqSIaMDjUeHh74448/inW/dOkSKlWqZJKi9Nm7dy9GjRqFQ4cOYceOHXj06BG6dOmC3Nxcs42TiMhW8ZQNyZHRoebFF1/E+PHjdZ4efOnSJUyYMAEvvPCCSYt70tatWzFo0CA0atQIYWFhSE5OxrVr13Ds2DGzjZOIiEyIrT9kZkaHmo8//hiVKlVC/fr1ERISgpCQEDRo0ADVqlXDp59+ao4a9crKygIAVK1a1WLjJCKyFv4EAlHZjL6l28PDAwcOHMCOHTtw4sQJuLi4oGnTpmjfvr056tNLo9Fg/PjxePbZZ9G4ceMS+8vPz0d+fr727+zsbEuUR0REFbGsP/AqfyCZjFeu59SoVCp06dIFXbp0MXU9Bhk1ahROnz6N/fv3l9pfYmIiZsyYYaGqrO/xg7eK325PRERkCwwKNQsWLMDw4cPh7OyMBQsWlNrv2LFjTVJYSUaPHo2ffvoJ+/btQ2BgYKn9JiQk4O2339b+nZ2djaCgILPWR0QkN3xAICmFQaFm7ty5GDBgAJydnTF37twS+1OpVGYLNUIIjBkzBuvWrcOePXsQEhJS5mfUajXUarVZ6iEiIvNgyKLyMijUpKWl6f2/JY0aNQrLli3Djz/+iMqVK+PmzZsAHl/j4+LiYpWaiIiISDqMuvvp0aNHqF27Ns6dO2euekqUlJSErKwsdOjQAdWrV9e+Vq7kxWREVDLeNURkO4wKNY6Ojnjw4IG5aimVEELva9CgQVaph4hIrqQa9Iyui8+9oacY/ZyaUaNGYfbs2SgoKDBHPbL2+O4jIrIUqe6cicg6jL6lOyUlBTt37sT27dvRpEmTYj+N8MMPP5isOCIiIiJDGR1qPD090adPH3PUQkREJE18IKAsGB1qli5dao46iIjIQvigTlIqg6+p0Wg0mD17Np599lm0bNkSkyZNwt9//23O2oiIiCSBv1ouDwaHmn/+85+YPHky3NzcEBAQgPnz52PUqFHmrI2IpM7Kd5/w4nxlkez85F1WsmFwqPn222/x5ZdfYtu2bVi/fj02btyI77//HhqNxpz1ERERAeDdblQ2g0PNtWvX0L17d+3f0dHRUKlUuH79ulkKIyIiehqDDZXG4FBTUFAAZ2dnnW6Ojo549OiRyYsiIjI1XhOhPLY4T0sKdQx7jxl891PR03uf/IHIBw8e4I033tB5Vg2fU0OSZOlz4rz9k4jI4gxuqYmPj4ePjw88PDy0r9deew3+/v463YiIpESyF59WkJyOzE1Vq1LnZWkMnXZ6p40NXuBscEsNn09DREREUmb0bz8RERWxxWsaiEi6GGqIiGTAFk+9EBmLoYaIyAbJ6ZocIkMx1BAREZWCp1nlg6FGDmzwCnYp4pGtbeGOjEh+GGqIyCwMCYEMirqUOj14PRBZCkMNEZmFITsy7uxIblJnx1h0fFxHjMNQQ9LAU2xERFRBDDVkUUptXn8ar8cgshAeENETGGpIWiS8gbJWM3BZQVBqQVFq9VDFWfqUi2JJePumFAw1JCls4SiO59SJqAi3B6VjqJEBs+zozXzEwCM76WELipnxKJzI6hhqFMYmd1zcmZC1mHLZM3JYPGKnIiVt9409IFbC/oOhxgaVe8GVcniQcm1kk5Swg7AVVp1X3HaZFEONDbLFIzxeq0OWZovrWVmkuh5yXikHQw0RSR5bPWTAQi0OkgggCm1dkcS0rSCGGpIM7rhKYYKNqMEbLAVssLkslU0JOzB6jPPy/zHUkOylpmdKtlmbqFQKCJBFuA6SFDDUWIApbm829ZFneTZAJX5GQRtmS2JrAj2JoUD59M1jucx3uWyvGGqowuSyUhIVkcsGmsrG7Q89iaGGiEzK1Of3GUCITMTAVnU5r3OyCjX79u1Dz5494e/vD5VKhfXr11u7JMnhBWMWYObTbXLeoMgF1xOqCLm2DlW0bjlsm2QVanJzcxEWFoYvvvjC2qUQyVtJwYzXR5WN00j25LBzpvKRVajp1q0bPvroI7z00kvWLoUsgTsPsoYyljtTH6VzB0tkOrIKNbZAkRs4hhNSqCcDjlxPSVgMtwNkAYoONfn5+cjOztZ5kXRZ9DqHCmxglbzzMvUzf0wR0m3p+hdJfFdj1g0GFf0UekGuJJbPMig61CQmJsLDw0P7CgoKsnZJVmfOlUhuK6icGBo0bGEelOc7Snm6yGFHQf/DECd5ig41CQkJyMrK0r7S09OtXVKZStrAFXWX8sbZEkzxIENA2a0t5mbryyD9D3fwJEGKDjVqtRru7u46L6WxpR2MLX1XvUrYidjCkb4tfEeSL+22yYigZ63tmakODKVKVqEmJycHqampSE1NBQCkpaUhNTUV165ds25hViT5jf2TKzmP7IjKh+uOJFiyhdfmD+LKSVah5ujRowgPD0d4eDgA4O2330Z4eDimTp1q5coqztAFWPIhxpIUuqHnPJYWa+9cLD3+J3fcZY2bp3FJamQVajp06AAhRLFXcnKytUsjA3ADKBEKDYNkHtYOdeZgsQMHrmsWJ6tQo2SKOjrnikzGMHJ5UdS6IgOc3qUrLfSV1upV0nQtuuZFqtNd6iGXoYZKZcwCXOJK+sSKbUg/ReN8umXn6c+y5af8OO1MoDzh/anPyHk+SLV2Y3e6ptxJS3Wa2BKGGgmSehIm0zDHkZhUj+6USMo7sApvQ2TQ2srtpJnJYBnQh6GGSiT7jcay/rK+fdGS01/fuOQ8/60d7kqadlIOQkRPKqml/Ml1S4rbCIYaCTJog2xIipZp0pYbU67YTw6rwqfbOP9NwtoBSUqktBMzyXxZ1t8kwynvMLhsmR5DDZVIDiucSc+H62vVkXEwKCkESba1QMrTWsq1kSyYZXta2nJZgWW23LVKYD1hqDETKR3RPKm8C6tUv0+JJLByyWmaWTzASmD+mJMcDghMxVzL+dPDNfRUsjHT3hQB3+JhxUCWOHiR4nLOUGMm5p7Z5lhg9W2cyvM99NVmjR28KaaRuTYMppge1gpNUtyQlUsJOw7JtmRR+Sg8QJuczC9tYKghrdJ2VuXdkUl9BzEkOaXCK2hZP0JqimFZg95azLAxS03PNM1wrbmhNeO4x9x6X/LrEZmWpQ5ay0vKyyNDjalIOLlKQUV21uZu3ubvuRjO2Gmlne/lXD8sOr3MuA6XeerEWtsPCW+3pBTwpcoc267yDlMqd5oy1FC5yX0HbTZyb3UoiZlrenpjWtHly1aOTMtUjvkmpZ2lXMcrJWWtC6ZaV6QwrRlqzEjpO/0xt963yM6XR2zmpZTlVLtB/d8yaexyU5ENshQ25pIgpTBu6VpMMD6lrIvWxFCjUEOSUwzf0EppQ2QkKQaekqZ7ac+gMTepbSwNWTbleLF9eRlaS3nmo86wZbyuW4rU1hVTKGtdkuJ2tLwYakxEShtIY8m59oooz4pskg2eiXYsStoQVZRUzuebW0XnebmviTLT8M2OIc5gSglzDDVkFaWtQLLeWZtoIyq5nYPMyXqZ0sNUIc7cIYf0K2n7Z8z0NVkIUVjwY6iRMT7rxEJkvNIbM3+teaRm0RBXgfkp6RYhGS+nRKbCUGNhkt4oKoi5dpJlhTGptbA8Xa+hwUUpTdH6SG0emYq1vlep64QVg1ZqeqZi57U5yOpAsxQMNTJmzoVQyTu10ljie0ttQ6uUjVkRKU3f0pYnky5rbKWRjSHJKZJa56S0vpgCQw2ZhFxDkJQ2LvqY4vSRtTeiit95m7imCt/hVFa/EmgtluKPx1Z0OTV0HijlzkepbvMZakiWzLVCSS3kWLKeJ8elb7yWOKKT6oayvKS2PFma3mVGisG0BOVdHqXY+mEryyJDjRkZvBDJaCUn0zLlHQy28EvbUtxZGMrQeW0rOx8penIeWbuFk8qHocaS/rcTUNrRKCD/DbHOPHlqZ23IjtSQeSr3aWQNnGblI+XpZrVgaqMHj1JeFsyBocbMntzZlbQyy/nok6RB6suQ1OsjhdETYMp9zYuNhiG5YqixEEk+Ip8rK1GFMbCZhtSmo621cCgFQw1ViNQ2RDZHjsG0lJq5IyGiimCoISIiKgEP3OSFoUaqTHQEXtoFrFxZTccWWxjKu/xwuZMWJd64IIllTI6tqArAUENkQaYOP5LYeJO0cGdKpiajZYqhhoiMpsSje6Vg0CVbxlAjI9yR/I81HjRHRAax9e2UEr+/nIIyQw3pJZXQoMQNBJmPlJcXqaxTkiSj0xskbQw1ClfWhpQb2sc4HYhMg+uS+Uk5vFsbQ41Eyam5z5ys8cOKSp723OEQmVfROqbk7YiUyS7UfPHFFwgODoazszNatWqFI0eOWLskg3BnYhweiUibMcuztX5p3NbJaR1iAJAfqa5rsgo1K1euxNtvv41p06bht99+Q1hYGGJiYpCRkWHt0kyD55W1pLrCEJH0yCnAkXnJKtTMmTMHw4YNw+DBg9GwYUN89dVXcHV1xddff23t0oiIjMLgTmR6sgk1Dx8+xLFjxxAdHa3tZmdnh+joaBw8eFDvZ/Lz85Gdna3zsjRjNlxsgiUiW5E6O8Zkw7K1gDjm1vs2950NpRJCCGsXYYjr168jICAABw4cQGRkpLb7O++8g7179+Lw4cPFPjN9+nTMmDGjWPesrCy4u7ubtV6zWNYfeHWltasoVersGDR7d1uF+yEiaeF6K31DklOwZFBLa5dhFtnZ2fDw8Chz/y2blprySEhIQFZWlvaVnp5u7ZIqRuKBBgA3ekQK1SzI09olEJXJwdoFGMrLywv29va4deuWTvdbt27Bz89P72fUajXUarUlyiMiIrIqpbbSGEM2LTVOTk6IiIjAzp07td00Gg127typczqKiIiIbJNsWmoA4O2330Z8fDxatGiBZ555BvPmzUNubi4GDx5s7dLICGzGJiIic5BVqOnfvz9u376NqVOn4ubNm2jWrBm2bt0KX19fa5dGREREViarUAMAo0ePxujRo61dBhEREUmMbK6pISIiIioNQw0REZVNBo+UIGKoISIiIkVgqCEiIiJFYKghIiIiRWCoIcvjuXkiIjIDhhoiIiJSBIYaIiIiUgSGGiIiIlIEhhoiIiJSBIYaIiIiUgSGGiIiIlIE2f2gJRGVj0ajwcOHD61dBlWAo6Mj7O3trV0GkWQx1BDZgIcPHyItLQ0ajcbapVAFeXp6ws/PDyqVytqlEEkOQw2RwgkhcOPGDdjb2yMoKAh2djzrLEdCCOTl5SEjIwMAUL16dStXRCQ9DDVECldQUIC8vDz4+/vD1dXV2uVQBbi4uAAAMjIy4OPjw1NRRE/hIRuRwhUWFgIAnJycrFwJmUJRMH306JGVKyGSHoYaIhvBazCUgfORqGQMNURk84KDgzFv3jzt3yqVCuvXr7d4HdOnT0ezZs0sPl4ipWCoISJ6yo0bN9CtWzeD+mUQIZIOXihMZKOGJKdYdHxLBrU06/AfPnxosuuG/Pz8TDIcIrIsttQQkSR16NABo0ePxujRo+Hh4QEvLy9MmTIFQggAj08Zffjhh4iLi4O7uzuGDx8OANi/fz/atWsHFxcXBAUFYezYscjNzdUONyMjAz179oSLiwtCQkLw/fffFxv306ef/vvf/yI2NhZVq1ZFpUqV0KJFCxw+fBjJycmYMWMGTpw4AZVKBZVKheTkZABAZmYmhg4dCm9vb7i7u6NTp044ceKEznhmzZoFX19fVK5cGUOGDMGDBw9MPBWJbAtDDRFJ1jfffAMHBwccOXIE8+fPx5w5c7B48WLt+59++inCwsJw/PhxTJkyBZcvX0bXrl3Rp08fnDx5EitXrsT+/fsxevRo7WcGDRqE9PR07N69G2vWrMGXX36pffaLPjk5OYiKisKff/6JDRs24MSJE3jnnXeg0WjQv39/TJgwAY0aNcKNGzdw48YN9O/fHwDQr18/ZGRkYMuWLTh27BiaN2+Ozp074969ewCAVatWYfr06Zg5cyaOHj2K6tWr48svvzTTlCSyDTz9RESSFRQUhLlz50KlUqFevXo4deoU5s6di2HDhgEAOnXqhAkTJmj7Hzp0KAYMGIDx48cDAOrUqYMFCxYgKioKSUlJuHbtGrZs2YIjR46gZcvHp8OWLFmCBg0alFjDsmXLcPv2baSkpKBq1aoAgNDQUO37bm5ucHBw0DlltX//fhw5cgQZGRlQq9UAHgew9evXY82aNRg+fDjmzZuHIUOGYMiQIQCAjz76CD///DNba4gqgC01RCRZrVu31rmFOTIyEhcvXtQ+e6dFixY6/Z84cQLJyclwc3PTvmJiYqDRaJCWloZz587BwcEBERER2s/Ur18fnp6eJdaQmpqK8PBwbaAxxIkTJ5CTk4Nq1arp1JKWlobLly8DAM6dO4dWrVrpfC4yMtLgcRBRcWypISLZqlSpks7fOTk5GDFiBMaOHVus3xo1auDChQtGj6PoKb7GyMnJQfXq1bFnz55i75UWoIioYhhqiEiyDh8+rPP3oUOHUKdOnRJ/HqB58+Y4e/aszumhJ9WvXx8FBQU4duyY9vTT+fPnkZmZWWINTZs2xeLFi3Hv3j29rTVOTk7alqMn67h58yYcHBwQHBysd7gNGjTA4cOHERcXp/P9iKj8ePqJiCTr2rVrePvtt3H+/HksX74cn332GcaNG1di/++++y4OHDiA0aNHIzU1FRcvXsSPP/6ovVC4Xr166Nq1K0aMGIHDhw/j2LFjGDp0aKmtMbGxsfDz80OvXr3w66+/4o8//sDatWtx8OBBAI/vwkpLS0Nqairu3LmD/Px8REdHIzIyEr169cL27dtx5coVHDhwAO+99x6OHj0KABg3bhy+/vprLF26FBcuXMC0adNw5swZE049ItvDUENEkhUXF4e///4bzzzzDEaNGoVx48Zpb93Wp2nTpti7dy8uXLiAdu3aITw8HFOnToW/v7+2n6VLl8Lf3x9RUVHo3bs3hg8fDh8fnxKH6eTkhO3bt8PHxwfdu3dHkyZNMGvWLG1rUZ8+fdC1a1d07NgR3t7eWL58OVQqFTZv3oz27dtj8ODBqFu3Ll555RVcvXoVvr6+AID+/ftjypQpeOeddxAREYGrV69i5MiRJppyRLZJJYoe+mADsrOz4eHhgaysLLi7u1u7HCKLePDgAdLS0hASEgJnZ2drl2OwDh06oFmzZjo/X0DynZ9EFWHo/pstNURERKQIDDVERESkCLz7iYgkSd/t0EREpZFNS80///lPtGnTBq6urnzOAxERERUjm1Dz8OFD9OvXj3cHEBERkV6yOf00Y8YMAND+Ai4RERHRk2QTasojPz8f+fn52r+zs7OtWA0RERGZk2xOP5VHYmIiPDw8tK+goCBrl0RERERmYtVQM2nSJKhUqlJfv//+e7mHn5CQgKysLO0rPT3dhNUTERGRlFj19NOECRMwaNCgUvupVatWuYevVquhVqvL/XkiIkvZs2cPOnbsiL/++ot3eBKVk1VDjbe3N7y9va1ZAhFRuTGIEEmLbC4UvnbtGu7du4dr166hsLAQqampAIDQ0FC4ublZtzgiOVrW37Lje3WlZcdHRDZHNhcKT506FeHh4Zg2bRpycnIQHh6O8PBwHD161NqlEZGZaDQaJCYmIiQkBC4uLggLC8OaNWsghEB0dDRiYmJQ9Ju89+7dQ2BgIKZOnQrgcSuKSqXCpk2b0LRpUzg7O6N169Y4ffq0zjj279+Pdu3awcXFBUFBQRg7dixyc3O17+fn5+Pdd99FUFAQ1Go1QkNDsWTJEly5cgUdO3YEAFSpUgUqlUp7Or2kup+0efNm1K1bFy4uLujYsSOuXLlipqlIZDtkE2qSk5MhhCj26tChg7VLIyIzSUxMxLfffouvvvoKZ86cwVtvvYXXXnsN+/btwzfffIOUlBQsWLAAAPDGG28gICBAG2qKTJw4Ef/617+QkpICb29v9OzZE48ePQIAXL58GV27dkWfPn1w8uRJrFy5Evv378fo0aO1n4+Li8Py5cuxYMECnDt3DgsXLoSbmxuCgoKwdu1aAMD58+dx48YNzJ8/v9S69+7dCwBIT09H79690bNnT6SmpmLo0KGYNGmS2acnkdLJ5vQTEdmW/Px8zJw5Ez///DMiIyMBPL5xYP/+/Vi4cCGWLVuGhQsXIi4uDjdv3sTmzZtx/PhxODjobtamTZuG5557DgDwzTffIDAwEOvWrcPLL7+MxMREDBgwAOPHjwcA1KlTBwsWLEBUVBSSkpJw7do1rFq1Cjt27EB0dLS2hiJVq1YFAPj4+GivqSmr7qJh165dG//6178AAPXq1cOpU6cwe/Zs80xMIhvBUENEknTp0iXk5eVpA0mRhw8fIjw8HADQr18/rFu3DrNmzUJSUhLq1KlTbDhFwQJ4HELq1auHc+fOAQBOnDiBkydP4vvvv9f2I4SARqNBWloaTp06BXt7e0RFRZm07nPnzqFVq1Yl1klE5cNQQ0SSlJOTAwDYtGkTAgICdN4relRDXl4ejh07Bnt7e1y8eLFc4xgxYgTGjh1b7L0aNWrg0qVLZqmbiMyDoYaIJKlhw4ZQq9W4du1aiS0lEyZMgJ2dHbZs2YLu3bujR48e6NSpk04/hw4dQo0aNQAAf/31Fy5cuIAGDRoAAJo3b46zZ88iNDRU7/CbNGkCjUaDvXv3ak8/PcnJyQkAUFhYaFTdDRo0wIYNG4rVSUQVw1BDRJJUuXJl/OMf/8Bbb70FjUaDtm3bIisrC7/++ivc3d3h5eWFr7/+GgcPHkTz5s0xceJExMfH4+TJk6hSpYp2OB988AGqVasGX19fvPfee/Dy8kKvXr0AAO+++y5at26N0aNHY+jQoahUqRLOnj2LHTt24PPPP0dwcDDi4+Px+uuvY8GCBQgLC8PVq1eRkZGBl19+GTVr1oRKpcJPP/2E7t27w8XFpcy64+Pj8cYbb+Bf//oXJk6ciKFDh+LYsWP8sV4iE5DN3U9EZHs+/PBDTJkyBYmJiWjQoAG6du2KTZs2ITg4GEOGDMH06dPRvHlzAMCMGTPg6+uLN954Q2cYs2bNwrhx4xAREYGbN29i48aN2haWpk2bYu/evbhw4QLatWuH8PBwTJ06Ff7+/trPJyUloW/fvnjzzTdRv359DBs2THvLd0BAAGbMmIFJkybB19dXe9dUSXWHhIQAeHxqa+3atVi/fj3CwsLw1VdfYebMmWafnkRKpxJFD3mwAdnZ2fDw8EBWVhbc3d2tXQ6RRTx48ABpaWkICQmBs7OztcuxGKU+7ddW5yfZNkP332ypISIiIkVgqCEiIiJF4IXCRKRIHTp0gA2dXScisKWGiIiIFIKhhoiIiBSBoYbIRvBUjDJwPhKVjKGGSOHs7e0BPP7tIZK/vLw8AICjo6OVKyGSHl4oTKRwDg4OcHV1xe3bt+Ho6Ag7Ox7LyJEQAnl5ecjIyICnp6c2rBLR/2OoIVI4lUqF6tWrIy0tDVevXrV2OVRBnp6e8PPzs3YZRJLEUENkA5ycnFCnTh2egpI5R0dHttAQlYKhhshG2NnZ8bH6RKRoPLlOREREisBQQ0RERIrAUENERESKYFPX1BQ9tCo7O9vKlRAREZGhivbbZT180qZCzf379wEAQUFBVq6EiIiIjHX//n14eHiU+L5K2NAztzUaDa5fv47KlStDpVKZbLjZ2dkICgpCeno63N3dTTZcMi/ON3nifJMnzjd5ksp8E0Lg/v378Pf3L/UBojbVUmNnZ4fAwECzDd/d3Z0rqwxxvskT55s8cb7JkxTmW2ktNEV4oTAREREpAkMNERERKQJDjQmo1WpMmzYNarXa2qWQETjf5InzTZ443+RJbvPNpi4UJiIiIuViSw0REREpAkMNERERKQJDDRERESkCQw0REREpAkONCXzxxRcIDg6Gs7MzWrVqhSNHjli7JJuxb98+9OzZE/7+/lCpVFi/fr3O+0IITJ06FdWrV4eLiwuio6Nx8eJFnX7u3buHAQMGwN3dHZ6enhgyZAhycnJ0+jl58iTatWsHZ2dnBAUF4eOPPzb3V1O0xMREtGzZEpUrV4aPjw969eqF8+fP6/Tz4MEDjBo1CtWqVYObmxv69OmDW7du6fRz7do19OjRA66urvDx8cHEiRNRUFCg08+ePXvQvHlzqNVqhIaGIjk52dxfT5GSkpLQtGlT7UPYIiMjsWXLFu37nF/yMGvWLKhUKowfP17bTVHzTlCFrFixQjg5OYmvv/5anDlzRgwbNkx4enqKW7duWbs0m7B582bx3nvviR9++EEAEOvWrdN5f9asWcLDw0OsX79enDhxQrzwwgsiJCRE/P3339p+unbtKsLCwsShQ4fEL7/8IkJDQ0VsbKz2/aysLOHr6ysGDBggTp8+LZYvXy5cXFzEwoULLfU1FScmJkYsXbpUnD59WqSmporu3buLGjVqiJycHG0/b7zxhggKChI7d+4UR48eFa1btxZt2rTRvl9QUCAaN24soqOjxfHjx8XmzZuFl5eXSEhI0Pbzxx9/CFdXV/H222+Ls2fPis8++0zY29uLrVu3WvT7KsGGDRvEpk2bxIULF8T58+fF5MmThaOjozh9+rQQgvNLDo4cOSKCg4NF06ZNxbhx47TdlTTvGGoq6JlnnhGjRo3S/l1YWCj8/f1FYmKiFauyTU+HGo1GI/z8/MQnn3yi7ZaZmSnUarVYvny5EEKIs2fPCgAiJSVF28+WLVuESqUSf/75pxBCiC+//FJUqVJF5Ofna/t59913Rb169cz8jWxHRkaGACD27t0rhHg8nxwdHcXq1au1/Zw7d04AEAcPHhRCPA60dnZ24ubNm9p+kpKShLu7u3ZevfPOO6JRo0Y64+rfv7+IiYkx91eyCVWqVBGLFy/m/JKB+/fvizp16ogdO3aIqKgobahR2rzj6acKePjwIY4dO4bo6GhtNzs7O0RHR+PgwYNWrIwAIC0tDTdv3tSZPx4eHmjVqpV2/hw8eBCenp5o0aKFtp/o6GjY2dnh8OHD2n7at28PJycnbT8xMTE4f/48/vrrLwt9G2XLysoCAFStWhUAcOzYMTx69Ehn3tWvXx81atTQmXdNmjSBr6+vtp+YmBhkZ2fjzJkz2n6eHEZRP1w/K6awsBArVqxAbm4uIiMjOb9kYNSoUejRo0ex6au0eWdTP2hpanfu3EFhYaHOjAYAX19f/P7771aqiorcvHkTAPTOn6L3bt68CR8fH533HRwcULVqVZ1+QkJCig2j6L0qVaqYpX5bodFoMH78eDz77LNo3LgxgMfT1cnJCZ6enjr9Pj3v9M3bovdK6yc7Oxt///03XFxczPGVFOvUqVOIjIzEgwcP4ObmhnXr1qFhw4ZITU3l/JKwFStW4LfffkNKSkqx95S2rjHUEJFVjRo1CqdPn8b+/futXQqVoV69ekhNTUVWVhbWrFmD+Ph47N2719plUSnS09Mxbtw47NixA87OztYux+x4+qkCvLy8YG9vX+wq8Vu3bsHPz89KVVGRonlQ2vzx8/NDRkaGzvsFBQW4d++eTj/6hvHkOKh8Ro8ejZ9++gm7d+9GYGCgtrufnx8ePnyIzMxMnf6fnndlzZeS+nF3d+dRfzk4OTkhNDQUERERSExMRFhYGObPn8/5JWHHjh1DRkYGmjdvDgcHBzg4OGDv3r1YsGABHBwc4Ovrq6h5x1BTAU5OToiIiMDOnTu13TQaDXbu3InIyEgrVkYAEBISAj8/P535k52djcOHD2vnT2RkJDIzM3Hs2DFtP7t27YJGo0GrVq20/ezbtw+PHj3S9rNjxw7Uq1ePp57KSQiB0aNHY926ddi1a1ex03sRERFwdHTUmXfnz5/HtWvXdObdqVOndELpjh074O7ujoYNG2r7eXIYRf1w/TQNjUaD/Px8zi8J69y5M06dOoXU1FTtq0WLFhgwYID2/4qadxa9LFmBVqxYIdRqtUhOThZnz54Vw4cPF56enjpXiZP53L9/Xxw/flwcP35cABBz5swRx48fF1evXhVCPL6l29PTU/z444/i5MmT4sUXX9R7S3d4eLg4fPiw2L9/v6hTp47OLd2ZmZnC19dXDBw4UJw+fVqsWLFCuLq68pbuChg5cqTw8PAQe/bsETdu3NC+8vLytP288cYbokaNGmLXrl3i6NGjIjIyUkRGRmrfL7rNtEuXLiI1NVVs3bpVeHt7673NdOLEieLcuXPiiy++4C3C5TRp0iSxd+9ekZaWJk6ePCkmTZokVCqV2L59uxCC80tOnrz7SQhlzTuGGhP47LPPRI0aNYSTk5N45plnxKFDh6xdks3YvXu3AFDsFR8fL4R4fFv3lClThK+vr1Cr1aJz587i/PnzOsO4e/euiI2NFW5ubsLd3V0MHjxY3L9/X6efEydOiLZt2wq1Wi0CAgLErFmzLPUVFUnfPAMgli5dqu3n77//Fm+++aaoUqWKcHV1FS+99JK4ceOGznCuXLkiunXrJlxcXISXl5eYMGGCePTokU4/u3fvFs2aNRNOTk6iVq1aOuMgw73++uuiZs2awsnJSXh7e4vOnTtrA40QnF9y8nSoUdK8UwkhhGXbhoiIiIhMj9fUEBERkSIw1BAREZEiMNQQERGRIjDUEBERkSIw1BAREZEiMNQQERGRIjDUEBERkSIw1BCRbAwaNAi9evWydhlEJFH8lW4ikgSVSlXq+9OmTcP8+fPB54USUUkYaohIEm7cuKH9/8qVKzF16lScP39e283NzQ1ubm7WKI2IZIKnn4hIEvz8/LQvDw8PqFQqnW5ubm7FTj916NABY8aMwfjx41GlShX4+vpi0aJFyM3NxeDBg1G5cmWEhoZiy5YtOuM6ffo0unXrBjc3N/j6+mLgwIG4c+eOhb8xEZkaQw0Rydo333wDLy8vHDlyBGPGjMHIkSPRr18/tGnTBr/99hu6dOmCgQMHIi8vDwCQmZmJTp06ITw8HEePHsXWrVtx69YtvPzyy1b+JkRUUQw1RCRrYWFheP/991GnTh0kJCTA2dkZXl5eGDZsGOrUqYOpU6fi7t27OHnyJADg888/R3h4OGbOnIn69esjPDwcX3/9NXbv3o0LFy5Y+dsQUUXwmhoikrWmTZtq/29vb49q1aqhSZMm2m6+vr4AgIyMDADAiRMnsHv3br3X51y+fBl169Y1c8VEZC4MNUQka46Ojjp/q1QqnW5Fd1VpNBoAQE5ODnr27InZs2cXG1b16tXNWCkRmRtDDRHZlObNm2Pt2rUIDg6GgwM3gURKwmtqiMimjBo1Cvfu3UNsbCxSUlJw+fJlbNu2DYMHD0ZhYaG1yyOiCmCoISKb4u/vj19//RWFhYXo0qULmjRpgvHjx8PT0xN2dtwkEsmZSvDxnERERKQAPCwhIiIiRWCoISIiIkVgqCEiIiJFYKghIiIiRWCoISIiIkVgqCEiIiJFYKghIiIiRWCoISIiIkVgqCEiIiJFYKghIiIiRWCoISIiIkVgqCEiIiJF+D8PqPX5XGNf+QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Importing the matplotlib library for plotting the predictions against the expected values\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Plot the predictions against the expected values\n",
"plt.title('Expected vs Predicted Electricity Prices for area DK1')\n",
"\n",
"# Plot the predicted values\n",
"plt.bar(x=np.arange(len(y_pred)), height=y_pred, label='predicted', alpha=0.7)\n",
"\n",
"# Plot the expected values\n",
"plt.bar(x=np.arange(len(y_pred)), height=y_test, label='expected', alpha=0.7)\n",
"\n",
"# Add labels to the x-axis and y-axis\n",
"plt.xlabel('Time')\n",
"plt.ylabel('Price in DKK')\n",
"\n",
"# Add a legend and display the plot\n",
"plt.legend()\n",
"plt.show() "
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHHCAYAAAClV3ArAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC570lEQVR4nOzdeVxN+f/A8dctlbQqLSLKmi0aO1FDZBljG2YxY5kwZmxZQpaUrcYwsg1jUBjLLJYZJkyW7Ps2hpF9GDQxUtKoW/f8/vDrfF2FaqLk/Xw87kPncz7bOZ/c++5zPudcjaIoCkIIIYQQQhQBBgXdASGEEEIIIfKLBLdCCCGEEKLIkOBWCCGEEEIUGRLcCiGEEEKIIkOCWyGEEEIIUWRIcCuEEEIIIYoMCW6FEEIIIUSRIcGtEEIIIYQoMiS4FUIIIYQQRYYEt0IIIQqtyMhINBoNV69eLeiuCCFeERLcCiFEIZIZzGX3GjNmzAtpc//+/QQHB3Pv3r0XUv/rLCUlheDgYGJiYgq6K0K8NooVdAeEEEJkNWnSJFxdXfXSatas+ULa2r9/PyEhIfTu3Rtra+sX0kZeffTRR7z33nuYmJgUdFfyJCUlhZCQEAC8vb0LtjNCvCYkuBVCiEKobdu21KtXr6C78Z88ePAAMzOz/1SHoaEhhoaG+dSjl0en05GWllbQ3RDitSTLEoQQ4hW0efNmmjVrhpmZGRYWFrRv354zZ87o5fntt9/o3bs3FSpUoHjx4jg6OvLxxx/zzz//qHmCg4MJCAgAwNXVVV0CcfXqVa5evYpGoyEyMjJL+xqNhuDgYL16NBoNZ8+e5YMPPqBkyZJ4enqq+7/99lvq1q2LqakpNjY2vPfee1y/fv25x5ndmlsXFxfeeustYmJiqFevHqamptSqVUu99L9u3Tpq1apF8eLFqVu3LidOnNCrs3fv3pibm3P58mV8fX0xMzPDycmJSZMmoSiKXt4HDx4wYsQInJ2dMTExoWrVqsyYMSNLPo1Gw6BBg1i5ciU1atTAxMSEhQsXYmdnB0BISIh6bjPPW07G5/Fze/HiRXV23crKij59+pCSkpLlnH377bc0aNCAEiVKULJkSZo3b86vv/6qlycnvz9CvKpk5lYIIQqhxMRE7ty5o5dWqlQpAFasWEGvXr3w9fXl888/JyUlhQULFuDp6cmJEydwcXEBIDo6msuXL9OnTx8cHR05c+YMixYt4syZMxw8eBCNRkOXLl04f/48q1evZtasWWobdnZ23L59O9f97tatG5UrV2batGlqADh16lQmTJhA9+7d6du3L7dv32bu3Lk0b96cEydO5GkpxMWLF/nggw/45JNP+PDDD5kxYwYdOnRg4cKFjB07ls8++wyA0NBQunfvTmxsLAYG/5vPycjIoE2bNjRq1Ijp06ezZcsWJk6cSHp6OpMmTQJAURTefvttdu7ciZ+fH3Xq1GHr1q0EBARw48YNZs2apdenHTt28P333zNo0CBKlSpF7dq1WbBgAZ9++imdO3emS5cuALi7uwM5G5/Hde/eHVdXV0JDQzl+/DiLFy/G3t6ezz//XM0TEhJCcHAwTZo0YdKkSRgbG3Po0CF27NhB69atgZz//gjxylKEEEIUGhEREQqQ7UtRFOX+/fuKtbW10q9fP71ycXFxipWVlV56SkpKlvpXr16tAMru3bvVtC+++EIBlCtXrujlvXLligIoERERWeoBlIkTJ6rbEydOVADl/fff18t39epVxdDQUJk6dape+unTp5VixYplSX/a+Xi8b+XLl1cAZf/+/Wra1q1bFUAxNTVV/vzzTzX966+/VgBl586dalqvXr0UQBk8eLCaptPplPbt2yvGxsbK7du3FUVRlA0bNiiAMmXKFL0+vfPOO4pGo1EuXryodz4MDAyUM2fO6OW9fft2lnOVKafjk3luP/74Y728nTt3VmxtbdXtCxcuKAYGBkrnzp2VjIwMvbw6nU5RlNz9/gjxqpJlCUIIUQjNnz+f6OhovRc8mu27d+8e77//Pnfu3FFfhoaGNGzYkJ07d6p1mJqaqj8/fPiQO3fu0KhRIwCOHz/+Qvo9YMAAve1169ah0+no3r27Xn8dHR2pXLmyXn9zo3r16jRu3FjdbtiwIQAtWrSgXLlyWdIvX76cpY5BgwapP2cuK0hLS2Pbtm0AREVFYWhoyJAhQ/TKjRgxAkVR2Lx5s166l5cX1atXz/Ex5HZ8njy3zZo1459//iEpKQmADRs2oNPpCAoK0pulzjw+yN3vjxCvKlmWIIQQhVCDBg2yvaHswoULwKMgLjuWlpbqz3fv3iUkJIQ1a9YQHx+vly8xMTEfe/s/Tz7h4cKFCyiKQuXKlbPNb2RklKd2Hg9gAaysrABwdnbONj0hIUEv3cDAgAoVKuilValSBUBd3/vnn3/i5OSEhYWFXr5q1aqp+x/35LE/T27H58ljLlmyJPDo2CwtLbl06RIGBgbPDLBz8/sjxKtKglshhHiF6HQ64NG6SUdHxyz7ixX739t69+7d2b9/PwEBAdSpUwdzc3N0Oh1t2rRR63mWJ9d8ZsrIyHhqmcdnIzP7q9Fo2Lx5c7ZPPTA3N39uP7LztCcoPC1deeIGsBfhyWN/ntyOT34cW25+f4R4VclvsRBCvEIqVqwIgL29PT4+Pk/Nl5CQwPbt2wkJCSEoKEhNz5y5e9zTgtjMmcEnv9zhyRnL5/VXURRcXV3VmdHCQKfTcfnyZb0+nT9/HkC9oap8+fJs27aN+/fv683enjt3Tt3/PE87t7kZn5yqWLEiOp2Os2fPUqdOnafmgef//gjxKpM1t0II8Qrx9fXF0tKSadOmodVqs+zPfMJB5izfk7N64eHhWcpkPov2ySDW0tKSUqVKsXv3br30r776Ksf97dKlC4aGhoSEhGTpi6IoWR579TLNmzdPry/z5s3DyMiIli1bAtCuXTsyMjL08gHMmjULjUZD27Ztn9tGiRIlgKznNjfjk1OdOnXCwMCASZMmZZn5zWwnp78/QrzKZOZWCCFeIZaWlixYsICPPvqIN954g/feew87OzuuXbvGL7/8QtOmTZk3bx6WlpY0b96c6dOno9VqKVOmDL/++itXrlzJUmfdunUBGDduHO+99x5GRkZ06NABMzMz+vbtS1hYGH379qVevXrs3r1bneHMiYoVKzJlyhQCAwO5evUqnTp1wsLCgitXrrB+/Xr69+/PyJEj8+385FTx4sXZsmULvXr1omHDhmzevJlffvmFsWPHqs+m7dChA2+++Sbjxo3j6tWr1K5dm19//ZWffvoJf39/dRb0WUxNTalevTrfffcdVapUwcbGhpo1a1KzZs0cj09OVapUiXHjxjF58mSaNWtGly5dMDEx4ciRIzg5OREaGprj3x8hXmkF9JQGIYQQ2ch89NWRI0eemW/nzp2Kr6+vYmVlpRQvXlypWLGi0rt3b+Xo0aNqnr/++kvp3LmzYm1trVhZWSndunVTbt68me2jqSZPnqyUKVNGMTAw0Hv0VkpKiuLn56dYWVkpFhYWSvfu3ZX4+PinPgos8zFaT1q7dq3i6empmJmZKWZmZoqbm5sycOBAJTY2Nkfn48lHgbVv3z5LXkAZOHCgXlrm48y++OILNa1Xr16KmZmZcunSJaV169ZKiRIlFAcHB2XixIlZHqF1//59ZdiwYYqTk5NiZGSkVK5cWfniiy/UR2s9q+1M+/fvV+rWrasYGxvrnbecjs/Tzm1250ZRFGXp0qWKh4eHYmJiopQsWVLx8vJSoqOj9fLk5PdHiFeVRlFewip7IYQQopDo3bs3P/74I8nJyQXdFSHECyBrboUQQgghRJEhwa0QQgghhCgyJLgVQgghhBBFhqy5FUIIIYQQRYbM3AohhBBCiCJDglshhBBCCFFkyJc4iNeOTqfj5s2bWFhYPPWrMYUQQghRuCiKwv3793FycsLA4OnzsxLcitfOzZs3cXZ2LuhuCCGEECIPrl+/TtmyZZ+6X4Jb8dqxsLAA4MqVK9jY2BRwb8STtFotv/76K61bt8bIyKiguyOeIONTuMn4FH4yRnmXlJSEs7Oz+jn+NBLcitdO5lIECwsLLC0tC7g34klarZYSJUpgaWkpb/yFkIxP4SbjU/jJGP13z1tSKDeUCSGEEEKIIkOCWyGEEEIIUWRIcCuEEEIIIYoMCW6FEEIIIUSRIcGtEEIIIYQoMiS4FUIIIYQQRYYEt0IIIYQQosiQ4FYIIYQQQhQZEtwKIYQQQogiQ4JbIYQQQghRZEhwK4QQQgghigwJboUQQgghRJEhwa0QQgghhCgyJLgVQgghhBBFhgS3QgghhBCvqYyMDCZMmICrqyumpqZUrFiRyZMnoyiKXr4//viDt99+GysrK8zMzKhfvz7Xrl1T93t7e6PRaPReAwYMeGbbiqIQFBRE6dKlMTU1xcfHhwsXLvznYyr2n2sQQgghhBCvpM8//5wFCxawbNkyatSowdGjR+nTpw9WVlYMGTIEgEuXLuHp6Ymfnx8hISFYWlpy5swZihcvrldXv379mDRpkrpdokSJZ7Y9ffp05syZw7Jly3B1dWXChAn4+vpy9uzZLHXnxms/c+vt7Y2/v39Bd+OFCw4Opk6dOgXdDQBOnTrF+++/j7OzM6amplSrVo3Zs2cXdLeEEEKI187+/fvp2LEj7du3x8XFhXfeeYfWrVtz+PBhNc+4ceNo164d06dPx8PDg4oVK/L2229jb2+vV1eJEiVwdHRUX5aWlk9tV1EUwsPDGT9+PB07dsTd3Z3ly5dz8+ZNNmzY8J+O6bUPbl91aWlpL7U9RVFIT0//T3UcO3YMe3t7vv32W86cOcO4ceMIDAxk3rx5+dRLIYQQQuREkyZN2L59O+fPnwceTUDt3buXtm3bAqDT6fjll1+oUqUKvr6+2Nvb07Bhw2wD0JUrV1KqVClq1qxJYGAgKSkpT233ypUrxMXF4ePjo6ZZWVnRsGFDDhw48J+OSaM8uajiNdK7d2+WLVuml3blyhWSk5MJCAhgz549mJmZ0bp1a2bNmkWpUqWAR7O9tWrVwtDQkGXLlmFsbMyUKVP44IMPGDRoED/++CMODg7MnTtX/eWIiYnhzTffZNOmTQQGBnL+/Hnq1KnD4sWLqVmzptr+3r17CQwM5OjRo5QqVYrOnTsTGhqKmZkZAC4uLvj5+XHhwgU2bNhAly5diIyMZPTo0axfv56//voLR0dHevToQVBQEEZGRkRGRtKnTx+944yIiMDb2xtXV1dOnDihzureu3ePkiVLsnPnTry9vdV+R0VFMX78eE6fPs2vv/5K8+bN+fzzz1m0aBFxcXFUqVKFCRMm8M477+RpLAYOHMgff/zBjh07gEczzRs2bGDIkCEEBwdz9+5devbsydy5c5k5cyZffvklOp2OoUOHMm7cuFy1lZSUhJWVFRVHfEd6MbM89Ve8OCaGCtMbZDDqsCGpGZqC7o54goxP4SbjU/gVljG6GtYeeBS8jh07lunTp2NoaEhGRgZTp04lMDAQgLi4OEqXLk2JEiWYMmUKb775Jlu2bGHs2LHs3LkTLy8vABYtWkT58uVxcnLit99+Y/To0TRo0IB169Zl2/7+/ftp2rQpN2/epHTp0mp69+7d0Wg0fPfdd1nKZH5+JyYmPnNW+LVeczt79mzOnz9PzZo11TUiRkZGNGjQgL59+zJr1iz+/fdfRo8eTffu3dXAC2DZsmWMGjWKw4cP89133/Hpp5+yfv16OnfuzNixY5k1axYfffQR165d01tzEhAQwOzZs3F0dGTs2LF06NCB8+fPY2RkxKVLl2jTpg1Tpkxh6dKl3L59m0GDBjFo0CAiIiLUOmbMmEFQUBATJ05U0ywsLIiMjMTJyYnTp0/Tr18/LCwsGDVqFO+++y6///47W7ZsYdu2bcCjv47+/vvvHJ+rMWPGMGPGDCpUqEDJkiUJDQ3l22+/ZeHChVSuXJndu3fz4YcfYmdnp/6i50ZiYiI2NjZ6aZcuXWLz5s1s2bKFS5cu8c4773D58mWqVKnCrl272L9/Px9//DE+Pj40bNjwqXWnpqaSmpqqbiclJQFgYqBgaPja/m1XaJkYKHr/isJFxqdwk/Ep/ArLGGm1WgC+++47Vq5cyfLly6levTqnTp1i5MiR2Nvb07NnT/Xzs0OHDgwaNAiAGjVqsHfvXr766iuaNGkCoDeJ5ubmhp2dHb6+vpw7d46KFStmaT/zKrBWq1X7Ao+CbY1Go5f2ZJ+f57UObq2srDA2NlbXiABMmTIFDw8Ppk2bpuZbunQpzs7OnD9/nipVqgBQu3Ztxo8fD0BgYCBhYWGUKlWKfv36ARAUFMSCBQv47bffaNSokVrXxIkTadWqFfAoQC5btizr16+ne/fuhIaG0qNHD3UNcOXKlZkzZw5eXl4sWLBAXVzdokULRowYoXcsmX2BR7O7I0eOZM2aNYwaNQpTU1PMzc0pVqyYepy5NWnSJLXfqampTJs2jW3bttG4cWMAKlSowN69e/n6669zHdzu37+f7777jl9++UUvXafTsXTpUiwsLKhevTpvvvkmsbGxREVFYWBgQNWqVfn888/ZuXPnM4Pb0NBQQkJCsqSP99BRokRGrvoqXp7J9XQF3QXxDDI+hZuMT+FX0GMUFRUFgL+/P127dsXCwoLr169jY2NDmzZtmDhxIqVKlUKr1WJoaIihoaFaBsDY2JjffvtNL+1xDx8+BGDNmjV4eHhk2R8XFwfA2rVrqVChgpp+7tw5XF1ds633WcscHvdaB7fZOXXqFDt37sTc3DzLvkuXLqnBrbu7u5puaGiIra0ttWrVUtMcHBwAiI+P16sjMxgEsLGxoWrVqvzxxx9q27/99hsrV65U8yiKgk6n48qVK1SrVg2AevXqZenbd999x5w5c7h06RLJycmkp6c/c8o+tx5v8+LFi6SkpKjBbqa0tLRsf4Gf5ffff6djx45MnDiR1q1b6+1zcXHBwsJC3XZwcMDQ0BADAwO9tCfP8ZMCAwMZPny4up2UlISzszNTThiQbmSYq/6KF8/EQGFyPR0TjhqQqpPLqoWNjE/hJuNT+BWWMfo92Bd4FGfUqlWLdu3aqftOnz7N4cOH1bT69esD6OVZunQptWvX1kt73P79+4FHM76Px0yZFEUhODgYrVar1pGUlMTFixcZM2ZMtvVmXnl9Hglun5CcnEyHDh34/PPPs+x7fE2IkZGR3j6NRqOXptE8+oXV6XL+l1lycjKffPKJ+uiNx5UrV079OXP9baYDBw7Qo0cPQkJC8PX1xcrKijVr1jBz5sxntpcZJD6+7PppU/6Pt5mcnAzAL7/8QpkyZfTymZiYPLPNx509e5aWLVvSv39/vZnnTM87x5lpzzvHJiYm2fYrVachXdakFVqpOo2sGSzEZHwKNxmfwq+gxyjz87RDhw6EhYXh6upKjRo1OHHiBLNnz+bjjz9W82QucfT29lbX3P7yyy/ExMSoyypXrVpFu3btsLW15bfffmPYsGE0b96cunXrqm26ubkRGhpK586dgUezxqGhobi5uamPAnNycuKdd97J8nn/eJ+f57UPbo2NjcnI+N+l6TfeeIO1a9fi4uJCsWL5f3oOHjyoBqoJCQmcP39enZF94403OHv2LJUqVcpVnfv376d8+fJ6N1b9+eefenmePE4AOzs7AG7duqXOuJ48efK57VWvXh0TExOuXbuWp/W1AGfOnKFFixb06tWLqVOn5qmO/+pQYEtsbW0LpG3xdFqtlqioKH4P9s3xG5l4eWR8CjcZn8KvsI3R3LlzmTBhAp999hnx8fE4OTnxySefEBQUpObp3LkzCxcuJDQ0lCFDhlC1alXWrl2Lp6cn8CjG2LZtG+Hh4Tx48ABnZ2e6du2aZeIqNjaWxMREdXvUqFE8ePCA/v37c+/ePTw9PdmyZct/esYtSHCLi4sLhw4d4urVq5ibmzNw4EC++eYb3n//fUaNGoWNjQ0XL15kzZo1LF68GEPD/3YZe9KkSdja2uLg4MC4ceMoVaoUnTp1AmD06NE0atSIQYMG0bdvX8zMzDh79izR0dHPfExW5cqVuXbtGmvWrKF+/fr88ssvrF+/PstxXrlyhZMnT1K2bFksLCwwNTWlUaNG6l9s8fHx2c6gPsnCwoKRI0cybNgwdDodnp6eJCYmsm/fPiwtLenVq9czy//++++0aNECX19fhg8frq67MTQ0VANuIYQQQrx4FhYWhIeHEx4e/sx8H3/8MR9//HG2+5ydndm1a9dz23ryAV0ajYZJkybpffFDfnjtn3M7cuRIDA0NqV69OnZ2dqSlpbFv3z4yMjJo3bo1tWrVwt/fH2tra721nnkVFhbG0KFDqVu3LnFxcWzcuBFjY2Pg0TreXbt2cf78eZo1a4aHhwdBQUE4OTk9s863336bYcOGMWjQIOrUqcP+/fuZMGGCXp6uXbvSpk0b3nzzTezs7Fi9ejXwaM1Meno6devWxd/fnylTpuToOCZPnsyECRMIDQ2lWrVqtGnThl9++QVXV9fnlv3xxx+5ffs23377LaVLl1ZfmWt6hBBCCCHy6rV+zu3LlPm82ISEBKytrQu6O6+1zOfk3blzR5YlFEKZl+zatWtXKC7ZCX0yPoWbjE/hJ2OUdzl9zu1rP3MrhBBCCCGKDgluRb4bMGAA5ubm2b4GDBhQ0N0TQgghRBH22t9Q9rJ4e3tnWUhdVE2aNImRI0dmuy8/n70rhBBCCPEkCW5FvrO3t8fe3r6guyGEEEKI15AsSxBCCCGEEEWGBLdCCCGEEKLIkOBWCCGEEEIUGRLcCiGEEEKIIkOCWyGEEEIIUWRIcCuEEEIIIYoMCW6FEEIIIUSRIcGtKHDe3t74+/sXdDeEEEKIF8bFxQWNRoOxsTGdOnXC2NgYjUbDwIEDAbh06RKdO3fGzs4OS0tLunfvzt9//62Wv3r1Kn5+fri6umJqakrFihWZOHEiaWlpz2z34cOHDBw4EFtbW8zNzenatatevUWRBLdCCCGEEC/YkSNHuHXrFteuXSMiIoLNmzcD0K1bNx48eEDr1q3RaDTs2LGDffv2kZaWRocOHdDpdACcO3cOnU7H119/zZkzZ5g1axYLFy5k7Nixz2x32LBhbNy4kR9++IFdu3Zx8+ZNunTp8sKPtyDJN5QJIYQQQrxgdnZ2AGi1WkqWLElUVBQVK1bEy8uL6Ohorl69yokTJ9SvqV+2bBklS5Zkx44d+Pj40KZNG9q0aaPWV6FCBWJjY1mwYAEzZszIts3ExESWLFnCqlWraNGiBQARERFUq1aNgwcP0qhRoxd81AVDglvxUj148IBPP/2UdevWYWFhwciRI/X2r1ixgtmzZxMbG4uZmRktWrQgPDwce3t7FEWhcuXKDBgwQK/cyZMn8fDw4MKFC1SqVCnHfWkYup30Ymb5dmwif5gYKkxvADWDt5KaoSno7ognyPgUbjI+hc/VsPZZ0rRaLatWrWL48OFoNBpSU1PRaDSYmJioeYoXL46BgQF79+7Fx8cn27oTExOxsbF5atvHjh1Dq9XqlXdzc6NcuXIcOHBAglsh8kNAQAC7du3ip59+wt7enrFjx3L8+HHq1KkDPPoPP3nyZKpWrUp8fDzDhw+nd+/eREVFodFo+Pjjj4mIiNALbiMiImjevPlTA9vU1FRSU1PV7aSkJABMDBQMDZUXd7AiT0wMFL1/ReEi41O4yfgUPlqtNsv2oUOHuHfvHj169ECr1VK3bl3MzMwICAhg8uTJKIrCuHHjyMjI4MaNG1nqALh48SJz587l888/z3Y/wF9//YWxsTFmZmZ6eezt7Z9ab2GW0/5qFEWR/wHipUhOTsbW1pZvv/2Wbt26AXD37l3Kli1L//79CQ8Pz1Lm6NGj1K9fn/v372Nubs7NmzcpV64c+/fvp0GDBmi1WpycnJgxYwa9evXKtt3g4GBCQkKypK9atYoSJUrk6zEKIYQQzxMcHEyxYsUYP368mnbixAkWLlxIfHw8Go2GZs2acf36dapUqcKAAQP0yv/zzz+MGzeOmjVrMmjQoKe2s2vXLubOncuPP/6olx4QEEDNmjWf+rlZWKWkpPDBBx+QmJioLt/IjgS34qU5deoUderU4c8//6RcuXJquoeHB15eXoSHh3Ps2DGCg4M5deoUCQkJ6HQ6UlJSOHPmDNWrVwegY8eOlC5dmoULF7Ju3Tp69+5NXFzcUwPV7GZunZ2dqR6whnQjWZZQ2JgYKEyup2PCUQNSdXJZtbCR8SncZHwKn9+DffW2L126RI0aNVi9ejWdO3fOkv/OnTsUK1YMa2trnJ2d8ff3Z8SIEer+mzdv4uPjQ8OGDVmyZAkGBk9/NsDOnTvx9fUlPj4ea2trNb1SpUoMHjyYoUOH/vcDfImSkpIoVarUc4NbWZYgCo0HDx7g6+uLr68vK1euxM7OjmvXruHr66v3qJO+ffvy0UcfMWvWLCIiInj33XefOQNrYmKit44pU6pOQ7qsSSu0UnUaWTNYiMn4FG4yPoWHkZGR3vbKlSuxsrKiQ4cOWfYBlC5dGoAdO3YQHx9P586d1Xw3btygVatW1KtXj2XLlmFoaPjMths2bIiRkRG7d++ma9euAMTGxnLt2jU8PT2zbb8wy2l/JbgVL03FihUxMjLi0KFD6sxtQkIC58+fx8vLi3PnzvHPP/8QFhaGs7Mz8GhZwpPatWuHmZkZCxYsYMuWLezevTtP/TkU2BJbW9u8H5B4IbRaLVFRUfwe7PvKvfG+DmR8CjcZn8JNp9OxfPly3nzzTYoV0w/BMp9iYGdnx4EDBxg6dCjDhg2jatWqwKPA1tvbm/LlyzNjxgxu376tlnV0dFTztGzZkuXLl9OgQQOsrKzw8/Nj+PDh2NjYYGlpyeDBg2ncuHGRvZkMJLgVL5G5uTl+fn4EBARga2uLvb0948aNUy+plCtXDmNjY+bOncuAAQP4/fffmTx5cpZ6DA0N6d27N4GBgVSuXJnGjRu/7EMRQgghcm3btm1cu3aN0aNHZ9kXGxtLYGAgd+/excXFhXHjxjFs2DB1f3R0NBcvXuTixYuULVtWr2zmClOtVktsbCwpKSnqvlmzZmFgYEDXrl1JTU3F19eXr7766gUdYeEgX+IgXqovvviCZs2a0aFDB3x8fPD09KRu3brAo2cARkZG8sMPP1C9enXCwsKe+uw+Pz8/0tLS6NOnz8vsvhBCCJFnrVu3Ji0tjTJlymTZFxYWRlxcHGlpaZw/f159TFim3r17oyhKtq9MLi4uKIqCt7e3mla8eHHmz5/P3bt3efDgAevWrVNneosqmbkVL5W5uTkrVqxgxYoValpAQID68/vvv8/777+vVya7ex5v3LiBkZERPXv2fHGdFUIIIcQrR4Jb8UpJTU3l9u3bBAcH061bNxwcHAq6S0IIIYQoRGRZgnilrF69mvLly3Pv3j2mT59e0N0RQgghRCEjwa14pfTu3ZuMjAyOHTuW7ZolIYQQQrzeJLgVQgghhBBFhgS3QgghhBCiyJDgVgghhBBCFBkS3AohhBBCiCJDglshhBBCCFFkSHArhBBCCCGKDAluhRBCCCFEkSHBrRBCCCGEKDIkuBX5ztvbG39//4LuhhBCiJfsxo0bfPjhh9ja2mJqakqtWrU4evSour93795oNBq9V5s2bbKtKzU1lTp16qDRaDh58uQz23348CEDBw7E1tYWc3Nzunbtyt9//52fhyZeIRLcCiGEEOI/S0hIoGnTphgZGbF582bOnj3LzJkzKVmypF6+Nm3acOvWLfW1evXqbOsbNWoUTk5OOWp72LBhbNy4kR9++IFdu3Zx8+ZNunTp8p+PSbyaihV0B4TID2lpaRgbGxd0N4QQ4rX1+eef4+zsTEREhJrm6uqaJZ+JiQmOjo7PrGvz5s38+uuvrF27ls2bNz8zb2JiIkuWLGHVqlW0aNECgIiICKpVq8bBgwdp1KhRHo5GvMokuBUvhE6nY9SoUSxevBhjY2MGDBhAcHAwANeuXWPw4MFs374dAwMD2rRpw9y5c3FwcAAeXba6d+8eGzZsUOvz9/fn5MmTxMTEAI+WPtSsWZNixYrx7bffUqtWLXbu3JmrPjYM3U56MbP8OFyRj0wMFaY3gJrBW0nN0BR0d8QTZHwKt4IYn6th7QH4+eef8fX1pVu3buzatYsyZcrw2Wef0a9fP738MTEx2NvbU7JkSVq0aMGUKVOwtbVV9//999/069ePDRs2UKJEiee2f+zYMbRaLT4+Pmqam5sb5cqV48CBAxLcvoYkuBUvxLJlyxg+fDiHDh3iwIED9O7dm6ZNm9KyZUs6duyIubk5u3btIj09nYEDB/Luu++qgWtu2vj000/Zt2/fM/OlpqaSmpqqbiclJQFgYqBgaKjk+tjEi2VioOj9KwoXGZ/CrSDGR6vVAnD58mUWLFjA0KFDCQgI4NixYwwZMgQDAwN69uwJgI+PD2+//TYuLi5cvnyZCRMm0KZNG/bs2YOhoSGKotCrVy/69etH7dq1uXr1qtpGZjtP+uuvvzA2NsbMzEwvj729PTdu3HhquYKS2Z/C1q9XQU7PmQS34oVwd3dn4sSJAFSuXJl58+axfft2AE6fPs2VK1dwdnYGYPny5dSoUYMjR45Qv379HLdRuXJlpk+f/tx8oaGhhISEZEkf76GjRImMHLcnXq7J9XQF3QXxDDI+hdvLHJ+oqCgAMjIyqFixIk2aNOHWrVs4OTnRsmVLvvjiC0qVKgWAhYUFANevX8fIyAh/f38GDBjA9OnTqV27Nps2beLatWv079+fqKgo9aawvXv3cvPmzWzbP3nyJDqdTu1HpsTERC5fvpwlvbCIjo4u6C68clJSUnKUT4Jb8UK4u7vrbZcuXZr4+Hj++OMPnJ2d1cAWoHr16lhbW/PHH3/kKritW7dujvIFBgYyfPhwdTspKQlnZ2emnDAg3cgwx+2Jl8PEQGFyPR0TjhqQqpPL3oWNjE/hVhDj83uwLwBOTk40adKEdu3aqfuuX79OaGioXtqTxo8fT6lSpWjXrh1LliwhNjaW7t276+UJCAjg/fffZ+nSpVnKm5qaMmvWLJo0aYK1tbWaPmTIkCz9KQy0Wi3R0dG0atUKIyOjgu7OKyXzyuvzSHArXogn/8NqNBp0upzNJBgYGKAo+pfUsrsUYWaWs/WyJiYmmJiYZElP1WlIlzWDhVaqTiNrOgsxGZ/C7WWOT+b7fdOmTblw4YLe+/+lS5coX778U4O4v/76i3/++YeyZctiZGTEvHnzmDZtmrr/5s2b+Pr68t1339GwYcNs68lM3717N127dgUgNjaWa9eu4enpWWgDSCMjo0Lbt8Iqp+dLglvxUlWrVo3r169z/fp1dfb27Nmz3Lt3j+rVqwNgZ2fH77//rlfu5MmT+f4mcCiwpd5NDKJw0Gq1REVF8Xuwr7zxF0IyPoVbQY7PsGHDaNKkCdOmTaN79+4cPnyYRYsWsWjRIgCSk5MJCQmha9euODo6cunSJUaNGkWlSpXw9X00+1uuXDm9Os3NzQGoWLEiZcuWBR49S7dly5YsX76cBg0aYGVlhZ+fH8OHD8fGxgZLS0sGDx5M48aN5Way15Q851a8VD4+PtSqVYsePXpw/PhxDh8+TM+ePfHy8qJevXoAtGjRgqNHj7J8+XIuXLjAxIkTswS7QgghCpf69euzfv16Vq9eTc2aNZk8eTLh4eH06NEDAENDQ3777TfefvttqlSpgp+fH3Xr1mXPnj3ZXl17Gq1WS2xsrN76y1mzZvHWW2/RtWtXmjdvjqOjI+vWrcv3YxSvBpm5FS+VRqPhp59+YvDgwTRv3lzvUWCZfH19mTBhAqNGjeLhw4d8/PHH9OzZk9OnTxdgz4UQQjzPW2+9xVtvvZXtPlNTU7Zu3Zqr+lxcXLIsU8surXjx4syfP5/58+fnrsOiSJLgVuS77B7p9fgza8uVK8dPP/30zDpCQkKyfcLBs9oQQgghhJBlCUIIIYQQosiQ4FYIIYQQQhQZEtwKIYQQQogiQ4JbIYQQQghRZEhwK4QQQgghigwJboUQQgghRJEhwa0QQgghhCgyJLgVQgghhBBFhgS3QgghhBCiyJDgVgghhBBCFBkS3AohhBBCiCJDglvxyggODqZOnToF3Q0hhChUgoOD0Wg0aDQajI2N6dSpEzVr1lT3x8XF8dFHH+Ho6IiZmRlvvPEGa9eu1avj+PHjtGrVCmtra2xtbenfvz/JycnPbFdRFIKCgihdujSmpqb4+Phw4cKFF3KMQuSGBLeiUNJoNGzYsKGguyGEEK+EGjVqcOvWLa5du0ZERAQxMTHqvp49exIbG8vPP//M6dOn6dKlC927d+fEiRMA3Lx5Ex8fHypVqsShQ4fYsmULZ86coXfv3s9sc/r06cyZM4eFCxdy6NAhzMzM8PX15eHDhy/wSIV4PgluhRBCiFdcsWLFcHR0xNHRkZIlS1KqVCl13/79+xk8eDANGjSgQoUKjB8/Hmtra44dOwbApk2bMDIyYv78+VStWpX69euzcOFC1q5dy8WLF7NtT1EUwsPDGT9+PB07dsTd3Z3ly5dz8+ZNmZgQBa5YQXdAFG7e3t7UqlULQ0NDli1bhrGxMVOmTOGDDz5g0KBB/Pjjjzg4ODB37lzatm0LwK5duwgICODUqVPY2NjQq1cvpkyZQrFixdQ63d3dKV68OIsXL8bY2JgBAwYQHBwMgIuLCwCdO3cGoHz58ly9elXt04oVK5gwYQIJCQm0bduWb775BgsLi1wfW8PQ7aQXM8v7yREvhImhwvQGUDN4K6kZmoLujniCjE/hcjWsPQAXLlzAycmJ4sWL4+zsTM2aNalYsSIATZo04bvvvqN9+/ZYW1vz/fff8/DhQ7y9vQFITU3F2NgYA4P/zXeZmpoCsHfvXipVqpSl3StXrhAXF4ePj4+aZmVlRcOGDTlw4ADvvffeizpkIZ5LZm7Fcy1btoxSpUpx+PBhBg8ezKeffkq3bt1o0qQJx48fp3Xr1nz00UekpKRw48YN2rVrR/369Tl16hQLFixgyZIlTJkyJUudZmZmHDp0iOnTpzNp0iSio6MBOHLkCAARERHcunVL3Qa4dOkSGzZsYNOmTWzatIldu3YRFhb28k6GEEIUMg0bNiQyMpItW7Ywd+5c/v77b1q0aMH9+/cB+P7779Fqtdja2mJiYsInn3zC+vXr1aC1RYsWxMXF8cUXX5CWlkZCQgJjxowB4NatW9m2GRcXB4CDg4NeuoODg7pPiIIiM7fiuWrXrs348eMBCAwMJCwsjFKlStGvXz8AgoKCWLBgAb/99hsbN27E2dmZefPmodFocHNz4+bNm4wePZqgoCB1ZsDd3Z2JEycCULlyZebNm8f27dtp1aoVdnZ2AFhbW+Po6KjXF51OR2RkpDpT+9FHH7F9+3amTp361P6npqaSmpqqbiclJQFgYqBgaKjkxykS+cjEQNH7VxQuMj6Fi1ar1Zs9rVSpEhMmTOCzzz5j9erV9OnTh3HjxpGQkMCWLVuwtbXl559/pnv37uzYsYNatWpRpUoVlixZwqhRowgMDMTQ0JBBgwbh4OCAoihotdos7aanp6vtP75fp9Oh0WiyLSMeyTw3co5yL6fnTIJb8Vzu7u7qz4aGhtja2lKrVi01LfMv9/j4eP744w8aN26MRvO/y5VNmzYlOTmZv/76i3LlymWpE6B06dLEx8c/ty8uLi56SxByUi40NJSQkJAs6eM9dJQokfHcNkXBmFxPV9BdEM8g41M4REVFZUkzNzfH3t6eX3/9FZ1Ox1dffcWcOXN4+PAhN27coG7dupQvX56xY8fy6aefAo+WFHz99dfcu3cPExMTNBoN4eHh3Lt3L9s2Mmdn165dS4UKFdT0c+fO4erqmm0ZoS/zaqXIuZSUlBzlk+BWPJeRkZHetkaj0UvLDGR1upx/2GVXZ07K56VcYGAgw4cPV7eTkpJwdnZmygkD0o0Mc9xn8XKYGChMrqdjwlEDUnWyprOwkfEpXH4P9tXb1mq1/Pzzz/zzzz80bdqUBg0aAODl5UW1atXUfPPnz6ds2bK0a9cu23ojIyMpXrw4AQEBWFtbZ9mvKArBwcFotVq1jqSkJC5evMiYMWOeWq94NEbR0dG0atUqy2eaeLbMK6/PI8GtyFfVqlVj7dq1KIqiBr379u3DwsKCsmXL5rgeIyMjMjLyZ1bVxMQEExOTLOm7R/tga2ubL22I/KPVaomKiuJYUBt54y+EZHwKn5EjR9KhQwfKly/PtWvXCAsLw9DQkA8//BBra2sqVarEoEGDmDFjBra2tmzYsIFt27apT0kAmDdvHk2aNMHc3Jzo6GgCAgIICwtTl4kBuLm5ERoaqt7s6+/vT2hoKG5ubri6ujJhwgScnJx455135HcjB4yMjOQ85VJOz5cEtyJfffbZZ4SHhzN48GAGDRpEbGwsEydOZPjw4Xp34j6Pi4sL27dvp2nTppiYmFCyZMkX2GshhHh1/fXXX7z//vv8888/2NnZ4erqyp49e9TANCoqijFjxtChQweSk5OpVKkSy5Yt05tdPXz4MBMnTiQ5ORk3Nze+/vprPvroI712YmNjSUxMVLdHjRrFgwcP6N+/P/fu3cPT05MtW7ZQvHjxl3PgQjyFBLciX5UpU4aoqCgCAgKoXbs2NjY2+Pn5qTek5dTMmTMZPnw433zzDWXKlNF7FJgQQoj/WbNmjfpz5sx65mPA4NFNu09+I9mTli9f/tx2FEX/JkKNRsOkSZOYNGlSLnssxIulUZ78bRWiiEtKSsLKyoo7d+7IsoRCKPPDuV27dnLJrhCS8SncZHwKPxmjvMv8/E5MTMTS0vKp+eQ5t0IIIYQQosiQ4FYIIYQQQhQZEtwKIYQQQogiQ4JbIYQQQghRZEhwK4QQQgghigwJboUQQgghRJEhwa0QQgghhCgyJLgVQgghhBBFhgS3QgghhBCiyJDgVgghhBBCFBkS3AohhBBCiCLjlQtuvb298ff3LzT15MTVq1fRaDScPHnypbSX27ZjYmLQaDTcu3cPgMjISKytrV9K/4QQojAICwtDo9HofS5cunSJzp07Y2dnh6WlJd27d+fvv//WKzd16lSaNGlCiRIlcvy+qSgKQUFBlC5dGlNTU3x8fLhw4UI+Ho0Qr7dXLrjNrScDt0zr1q1j8uTJBdOpl8jZ2Zlbt25Rs2bNHJd59913OX/+vLodHBxMnTp18rVfoaGh1K9fHwsLC+zt7enUqROxsbH52oYQQuTEkSNH+Prrr3F3d1fTHjx4QOvWrdFoNOzYsYN9+/aRlpZGhw4d0Ol0ar60tDS6devGp59+muP2pk+fzpw5c1i4cCGHDh3CzMwMX19fHj58mK/HJcTrqlAFt2lpaS+tLRsbGywsLF5aewXF0NAQR0dHihUrluMypqam2Nvbv8Bewa5duxg4cCAHDx4kOjoarVZL69atefDgwQttVwghHpecnEyPHj345ptvKFmypJq+b98+rl69SmRkJLVq1aJWrVosW7aMo0ePsmPHDjVfSEgIw4YNo1atWjlqT1EUwsPDGT9+PB07dsTd3Z3ly5dz8+ZNNmzYkN+HJ8RrKecRzwvg7e1NzZo1KVasGN9++y21atVi7ty5BAQEsGfPHszMzGjdujWzZs2iVKlS2daxYsUKZs+eTWxsLGZmZrRo0YLw8HDs7e25evUqb775JoD6ptWrVy8iIyPx9vamTp06hIeHM3bsWLZv386hQ4f06q5duzZdu3YlKCgIgMWLFzNz5kyuXLmCi4sLQ4YM4bPPPsvx8V6+fJlhw4Zx6NAhKleuzMKFC2ncuDHwaHZ0w4YNessHwsPDCQ8P5+rVqwD07t2be/fu0aBBA2bPnk1qairDhw9n7NixBAYGsmTJEkqUKMHkyZPp06cP8GhZgqurKydOnFBnX6OiovD39+f69es0atSIXr166fUzMjISf39/7t27R2RkJCEhIQBoNBoAIiIi2L17N/Hx8WzatEktp9VqKVOmDKGhofj5+T3zXGzZsiVLm/b29hw7dozmzZur7S1cuJCNGzeyY8cOypcvz9KlS7Gzs6Nv374cOXKE2rVrs2LFCipWrJjjccjUMHQ76cXMcl1OvFgmhgrTG0DN4K2kZmgKujviCa/6+FwNa6+3PXDgQNq3b4+Pjw9TpkxR01NTU9FoNJiYmKhpxYsXx8DAgL179+Lj45On9q9cuUJcXJxeeSsrKxo2bMiBAwd477338lSvEOJ/CnzmdtmyZRgbG7Nv3z7CwsJo0aIFHh4eHD16lC1btvD333/TvXv3p5bXarVMnjyZU6dOsWHDBq5evUrv3r2BR5fk165dC0BsbCy3bt1i9uzZWero0aMHhw8f5tKlS2ramTNn+O233/jggw8AWLlyJUFBQUydOpU//viDadOmMWHCBJYtW5bjYx03bhwjR47k5MmTVKlShffff5/09PQclwfYsWMHN2/eZPfu3Xz55ZdMnDiRt956i5IlS3Lo0CEGDBjAJ598wl9//ZVt+evXr9OlSxc6dOjAyZMn6du3L2PGjHlqe++++y4jRoygRo0a3Lp1i1u3bvHuu+/St29ftmzZwq1bt9S8mzZtIiUlhXfffTdXxwSQmJgIPJpRf9zkyZPp2bMnJ0+exM3NjQ8++IBPPvmEwMBAjh49iqIoDBo0KNftCSHEmjVrOH78OKGhoVn2NWrUCDMzM0aPHk1KSgoPHjxg5MiRZGRk6L3v5VZcXBwADg4OeukODg7qPiHEf1OgM7cAlStXZvr06QBMmTIFDw8Ppk2bpu5funQpzs7OnD9/nipVqmQp//HHH6s/V6hQgTlz5lC/fn2Sk5MxNzdXgyV7e/unLvavUaMGtWvXZtWqVUyYMAF4FMw2bNiQSpUqATBx4kRmzpxJly5dAHB1deXs2bN8/fXXWWY+n2bkyJG0b/9o1iAkJIQaNWpw8eJF3NzcclQeHgV/c+bMwcDAgKpVqzJ9+nRSUlIYO3YsAIGBgYSFhbF3795sZwAWLFhAxYoVmTlzJgBVq1bl9OnTfP7559m2Z2pqirm5OcWKFcPR0VFNb9KkCVWrVmXFihWMGjUKeDSj261bN8zNzXN8PAA6nQ5/f3+aNm2aZW1wnz591D9uRo8eTePGjZkwYQK+vr4ADB06VJ2lfprU1FRSU1PV7aSkJABMDBQMDZVc9VW8eCYGit6/onB51cdHq9UCj/7QHzp0KFFRURgaGqLValEUBZ1Oh1arxdramtWrVzN48GD1Pffdd9/Fw8NDr55MGRkZ2aY/KXNCQ6vV6uXV6XRoNJrnls/p8f3XesSLI2OUdzk9ZwUe3NatW1f9+dSpU+zcuTPb4OjSpUvZBrfHjh0jODiYU6dOkZCQoC70v3btGtWrV89xP3r06MHSpUuZMGECiqKwevVqhg8fDjy6seDSpUv4+fnRr18/tUx6ejpWVlY5buPxmxVKly4NQHx8fK6C2xo1amBg8L8JdwcHB72A0NDQEFtbW+Lj47Mt/8cff9CwYUO9tMylEbnVt29fFi1axKhRo/j777/ZvHmz3lq0nBo4cCC///47e/fuzbLv8XOWOdPx+No2BwcHHj58SFJSEpaWltnWHxoaqi6teNx4Dx0lSmTkur/i5ZhcT/f8TKLAvKrjExUVBcDBgweJj4+nQYMG6j6dTseePXuYP38+P/zwA4aGhnz55ZckJSVhYGCAubk5vXv3xt3dXa0n06lTp9BqtVnSn5Q5O7t27VoqVKigpp87dw5XV9fnls+p6OjofKlHvDgyRrmXkpKSo3wFHtyamf1vzWNycjIdOnTIdhYxMxh83IMHD/D19cXX15eVK1diZ2fHtWvX8PX1zfXNae+//z6jR4/m+PHj/Pvvv1y/fl29vJ6cnAzAN998kyUwNDQ0zHEbRkZG6s+Z61czg3EDAwMURX8mJLu/UB6vI7Oe7NIev5v3RenZsydjxozhwIED7N+/H1dXV5o1a5arOgYNGsSmTZvYvXs3ZcuWzbI/u3P2rPOYncDAQPUPFXg0c+vs7MyUEwakG+V8/MTLYWKgMLmejglHDUjVvXprOou6V318fg9+dNWnWbNmWZa89evXj6pVqzJy5MhsnzCzc+dOEhMTGTlyJFWrVtXbd+fOHYyMjGjXrt0z21cUheDgYLRarZo3KSmJixcvMmbMmOeWfx6tVkt0dDStWrXK8tkgCgcZo7zLvPL6PAUe3D7ujTfeYO3atbi4uOTo7v5z587xzz//EBYWhrOzMwBHjx7Vy2NsbAz875LR05QtWxYvLy9WrlzJv//+S6tWrdQnBjg4OODk5MTly5fp0aNHXg7tuezs7IiLi0NRFDVgexHPxa1WrRo///yzXtrBgwefWcbY2Djb82dra0unTp2IiIjgwIEDz10e8DhFURg8eDDr168nJiYGV1fXHJfNLRMTE72bQjLtHu2Dra3tC2tX5E3m7NexoDbyxl8IFZXxsbGxybLG39zcHDs7O3XpQUREBNWqVcPOzo4DBw4wdOhQhg0bphf4Xrt2jbt373Ljxg0yMjI4c+YMAJUqVVKvQrq5uREaGkrnzp0B8Pf3JzQ0FDc3N1xdXZkwYQJOTk688847+XZOjYyMXunxeR3IGOVeTs9XoQpuBw4cyDfffMP777/PqFGjsLGx4eLFi6xZs4bFixdnmSUtV64cxsbGzJ07lwEDBvD7779neXZt+fLl0Wg0bNq0iXbt2qlrSLPTo0cPJk6cSFpaGrNmzdLbFxISwpAhQ7CysqJNmzakpqZy9OhREhIS9GYF88rb25vbt28zffp03nnnHbZs2cLmzZufeqk9rwYMGMDMmTMJCAigb9++HDt2jMjIyGeWcXFx4cqVK5w8eZKyZctiYWGhBot9+/blrbfeIiMjI8drj+HRWK9atYqffvoJCwsL9VKdlZUVpqameT4+IYTIL7GxsQQGBnL37l1cXFwYN24cw4YN08sTFBSkd2NxZmC8c+dOvL291Xoyb5oFGDVqFA8ePKB///7cu3cPT09PtmzZQvHixV/8QQnxGijwpyU8zsnJiX379pGRkUHr1q2pVasW/v7+WFtb660zzWRnZ0dkZCQ//PAD1atXJywsjBkzZujlKVOmDCEhIYwZMwYHB4dn3ln/zjvv8M8//5CSkkKnTp309vXt25fFixcTERFBrVq18PLyIjIyMt9mHKtVq8ZXX33F/PnzqV27NocPH2bkyJH5UvfjypUrx9q1a9mwYQO1a9dm4cKFejfwZadr1660adOGN998Ezs7O1avXq3u8/HxoXTp0vj6+uLk5JTjfixYsIDExES8vb0pXbq0+vruu+/yfGxCCPFfxMTEEB4erm6HhYURFxdHWloa58+fZ/jw4eqVtUyRkZEoipLllRnYwqMrVZlP8YFHy6kmTZpEXFwcDx8+ZNu2bdneUyKEyBuN8uRCTyFyITk5mTJlyhAREaE+SaKwS0pKwsrKijt37siyhEIo87J3u3bt5JJdISTjU7jJ+BR+MkZ5l/n5nZiY+Mwr24VqWYJ4deh0Ou7cucPMmTOxtrbm7bffLuguCSGEEEIUrmUJr6pp06Zhbm6e7att27YF3b0X4tq1azg4OLBq1SqWLl2qdwPgtWvXnno+zM3NuXbtWgH2XAghhBBFmczc5oMBAwY89VvUiurNUS4uLlkeXZbJycnpmU96yM3aXCGEEEKI3JDgNh9k90iZ11mxYsXUb3YTQgghhHiZZFmCEEIIIYQoMiS4FUIIIYQQRYYEt0IIIYQQosiQ4FYIIYQQQhQZEtwKIYQQQogiQ4JbIYQQQghRZEhwK4QQQgghigwJboUQQhR5YWFhaDQa/P39Abh69SoajSbb1w8//KBXNjIyEnd3d4oXL469vT0DBw58ZlsPHz5k4MCB2NraYm5uTteuXfn7779f1KEJIZ4gwe1zREZGYm1t/Z/r8fb2Vt9UX1UuLi6Eh4cXdDeEECJXjhw5wtdff427u7ua5uzszK1bt/ReISEhWb42/csvv2TcuHGMGTOGM2fOsG3bNnx9fZ/Z3rBhw9i4cSM//PADu3bt4ubNm3Tp0uWFHZ8QQp8Et8/x7rvvcv78+YLuxitn0aJFeHt7Y2lpiUaj4d69e1ny3L17lx49emBpaYm1tTV+fn4kJye//M4KIYqs5ORkevTowTfffEPJkiXVdENDQxwdHfVe69evp3v37pibmwOQkJDA+PHjWb58OR988AEVK1bE3d2dt99++6ntJSYmsmTJEr788ktatGhB3bp1iYiIYP/+/Rw8ePCFH68QQr5+97lMTU0xNTUt6G68clJSUmjTpg1t2rQhMDAw2zw9evTg1q1bREdHo9Vq6dOnD/3792fVqlUvpY8NQ7eTXszspbQlcs7EUGF6A6gZvJXUDE1Bd0c84VUYn6th7dWfBw4cSPv27fHx8WHKlClPLXPs2DFOnjzJ/Pnz1bTo6Gh0Oh03btygWrVq3L9/nyZNmjBz5kycnZ2fWo9Wq8XHx0dNc3Nzo1y5chw4cIBGjRrlwxEKIZ7ltZy53bRpE9bW1mRkZABw8uRJNBoNY8aMUfP07duXDz/8MMuyhODgYOrUqcOKFStwcXHBysqK9957j/v376t5Hjx4QM+ePTE3N6d06dLMnDkzV/376quvqFy5MsWLF8fBwYF33nlH3eft7c2gQYMYNGgQVlZWlCpVigkTJqAoiponNTWVkSNHUqZMGczMzGjYsCExMTF6bezdu5dmzZphamqKs7MzQ4YM4cGDB+r++Ph4OnTogKmpKa6urqxcuTJXx+Dv78+YMWOe+kb+xx9/sGXLFhYvXkzDhg3x9PRk7ty5rFmzhps3bwL/WxKyadMmqlatSokSJXjnnXdISUlh2bJluLi4ULJkSYYMGaKOpRBCZFqzZg3Hjx8nNDT0uXmXLFlCtWrVaNKkiZp2+fJldDod06ZNIzw8nB9//JG7d+/SqlUr0tLSsq0nLi4OY2PjLMvZHBwciIuL+0/HI4TImddy5rZZs2bcv3+fEydOUK9ePXbt2kWpUqX0AsBdu3YxevTobMtfunSJDRs2sGnTJhISEujevTthYWFMnToVgICAAHbt2sVPP/2Evb09Y8eO5fjx49SpU+e5fTt69ChDhgxhxYoVNGnShLt377Jnzx69PMuWLcPPz4/Dhw9z9OhR+vfvT7ly5ejXrx8AgwYN4uzZs6xZswYnJyfWr19PmzZtOH36NJUrV+bSpUu0adOGKVOmsHTpUm7fvq0GzBEREQD07t2bmzdvsnPnToyMjBgyZAjx8fF5ONvZO3DgANbW1tSrV09N8/HxwcDAgEOHDtG5c2fg0QzwnDlzWLNmDffv36dLly507twZa2troqKiuHz5Ml27dqVp06a8++672baVmppKamqqup2UlASAiYGCoaGSbRlRcEwMFL1/ReHyKoyPVqvl+vXrDB06lKioKAwNDdFqtSiKgk6nQ6vV6uX/999/WbVqFWPHjtXbp9Vq0Wq16hIDgOXLl+Ps7Ex0dDStW7fO0nZ6erpa9nGKopCRkZElPb9l1v+i2xF5J2OUdzk9Z69lcGtlZUWdOnWIiYmhXr16xMTEMGzYMEJCQkhOTiYxMZGLFy/i5eXFvn37spTX6XRERkZiYWEBwEcffcT27duZOnUqycnJLFmyhG+//ZaWLVsCj4LRsmXL5qhv165dw8zMjLfeegsLCwvKly+Ph4eHXh5nZ2dmzZqFRqOhatWqnD59mlmzZtGvXz+uXbtGREQE165dw8nJCYCRI0eyZcsWIiIimDZtGqGhofTo0UO9wa1y5crMmTMHLy8vFixYwLVr19i8eTOHDx+mfv36wP9mNfJLXFwc9vb2emnFihXDxsZGb3ZDq9WyYMECKlasCMA777zDihUr+PvvvzE3N6d69eq8+eab7Ny586nBbWhoKCEhIVnSx3voKFFCZnwLq8n1dAXdBfEMhXl8oqKiOHjwIPHx8TRo0EBN1+l07Nmzh/nz5/PDDz9gaGgIwM6dO3nw4AGOjo5ERUWp+W/fvg3ArVu39NItLCyIiopSA9nH/fnnn6SlpfH999+ra3cz0xMSEvTqeZGio6NfSjsi72SMci8lJSVH+V7L4BbAy8uLmJgYRowYwZ49ewgNDeX7779n79693L17FycnJypXrpxtcOvi4qIGtgClS5dWZzUvXbpEWloaDRs2VPfb2NhQtWrVHPWrVatWlC9fngoVKqhrVjt37kyJEiXUPI0aNUKj+d9at8aNGzNz5kwyMjI4ffo0GRkZVKlSRa/e1NRUbG1tATh16hS//fab3lKDzBmNK1eucP78eYoVK0bdunXV/W5ubvny1IjcKlGihBrYwqNLey4uLnofGg4ODs+cVQ4MDGT48OHqdlJSEs7Ozkw5YUC6keGL6bjIMxMDhcn1dEw4akCqrnCu6XydvQrj83uwL82aNaN79+566f369aNq1aqMHDmSmjVrqulffvklHTp04P3339fLX6lSJebOnUvZsmXVmdu7d+9y//592rdvT6tWrbK03bRpUyZPnkyxYsVo164dALGxsdy+fZs+ffrofTa8CFqtlujoaFq1aoWRkdELbUvkjYxR3mVeeX2e1za49fb2ZunSpZw6dQojIyPc3Nzw9vYmJiaGhIQEvLy8nlr2yV9GjUaDTpc/sxgWFhYcP36cmJgYfv31V4KCgggODubIkSM5Ci6Tk5MxNDTk2LFj6qxEpsyAMDk5mU8++YQhQ4ZkKV+uXLmX8nQIR0fHLAFpeno6d+/exdHRUU3L7lzn9vybmJhgYmKSJX33aB814BeFh1arJSoqimNBbeSNvxB6VcbHxsYGGxsbvTRzc3Ps7Oz0roZdvHiRPXv2EBUVleV4atSoQceOHRkxYgSLFi3C0tKSwMBA3Nzc1MDkxo0btGzZkuXLl9OgQQNKlSqFn58fo0aNwt7eHktLSwYPHkzjxo3x9PR8KccOj947C/P4CBmjvMjp+XotbyiD/627nTVrlhrIZga3MTExeHt756neihUrYmRkxKFDh9S0hISEXAWMxYoVw8fHh+nTp/Pbb79x9epVduzYoe5/vG6AgwcPUrlyZQwNDfHw8CAjI4P4+HgqVaqk98oMGt944w3Onj2bZX+lSpUwNjbGzc2N9PR0jh07prYRGxub7eO88qpx48bcu3dPr40dO3ag0+le+MyGEEJkWrp0KWXLls12/Sw8WmPbsGFD2rdvj5eXF0ZGRmzZskX9kNVqtcTGxupdLp01axZvvfUWXbt2pXnz5jg6OrJu3bqXcjxCiNd45rZkyZK4u7uzcuVK5s2bB0Dz5s3p3r07Wq32mTO3z2Jubo6fnx8BAQHY2tpib2/PuHHjMDDI2d8RmzZt4vLlyzRv3pySJUsSFRWFTqfTW9Zw7do1hg8fzieffMLx48eZO3eu+kSGKlWq0KNHD3r27MnMmTPx8PDg9u3bbN++HXd3d9q3b8/o0aNp1KgRgwYNom/fvpiZmXH27Fmio6OZN28eVatWpU2bNnzyyScsWLCAYsWK4e/vn6tHosXFxREXF8fFixcBOH36NBYWFpQrVw4bGxuqVatGmzZt6NevHwsXLkSr1TJo0CDee+89da2wEELkpyefGgMwbdo0pk2b9tQylpaWLFmyhCVLlmS738XFRe9pNQDFixdn/vz5eo8VE0K8PK/tzC08WnebkZGhztLa2NhQvXp1HB0dc7xGNjtffPEFzZo1o0OHDvj4+ODp6am3fvVZrK2tWbduHS1atKBatWosXLiQ1atXU6NGDTVPz549+ffff2nQoAEDBw5k6NCh9O/fX90fERFBz549GTFiBFWrVqVTp04cOXKEcuXKAeDu7s6uXbs4f/48zZo1w8PDg6CgIL2gMiIiAicnJ7y8vOjSpQv9+/fPcgPYsyxcuBAPDw/1CQ7NmzfHw8ODn3/+Wc2zcuVK3NzcaNmyJe3atcPT05NFixbluA0hhBBCiCdplCf/5BSFmre3N3Xq1JGvwf0PkpKSsLKy4s6dO7LmthDKXNPZrl07WY9WCMn4FG4yPoWfjFHeZX5+JyYmYmlp+dR8r/XMrRBCCCGEKFokuH3J9uzZg7m5+VNfr4KVK1c+tf+PL58QQgghhHjZXtsbygpKvXr1OHnyZJ7LZ3dDxMv29ttvP/WJBnKJRQghhBAFSYLbl8zU1JRKlSoVdDf+EwsLC70vsRBCCCGEKCxkWYIQQgghhCgyJLgVQgghhBBFhgS3QgghhBCiyJDgVgghhBBCFBkS3AohhBBCiCJDglshhBBCCFFkSHArhBDihQgLC0Oj0eDv76+mLVq0CG9vbywtLdFoNNy7dy9Lubt379KjRw8sLS2xtrbGz8+P5OTkZ7b18OFDBg4ciK2tLebm5nTt2pW///47n49ICPEqkOA2lyIjI7G2tv7P9Xh7e+u94QshRFFy5MgRvv76a9zd3fXSU1JSaNOmDWPHjn1q2R49enDmzBmio6PZtGkTu3fvpn///s9sb9iwYWzcuJEffviBXbt2cfPmTbp06ZIvxyKEeLXkW3Cb3V/fRdG7777L+fPnC7ob+erq1atoNJr/9M1pj7t16xYffPABVapUwcDA4KlB/A8//ICbmxvFixenVq1aREVF5Uv7QoiClZycTI8ePfjmm28oWbKk3j5/f3/GjBlDo0aNsi37xx9/sGXLFhYvXkzDhg3x9PRk7ty5rFmzhps3b2ZbJjExkSVLlvDll1/SokUL6tatS0REBPv37+fgwYP5fnxCiMItT8Ht559/znfffadud+/eHVtbW8qUKcOpU6fyrXOFkampKfb29gXdjUItNTUVOzs7xo8fT+3atbPNs3//ft5//338/Pw4ceIEnTp1olOnTvz+++8vubdCiPw2cOBA2rdvj4+PT67LHjhwAGtra+rVq6em+fj4YGBgwKFDh7Itc+zYMbRarV57bm5ulCtXjgMHDuT+AIQQr7Q8ff3uwoULWblyJQDR0dFER0ezefNmvv/+ewICAvj111/ztZMv2qZNm/jwww/5559/MDQ05OTJk3h4eDB69GjCwsIA6Nu3Lw8fPsTHxwd/f391pjo4OJgNGzYwYsQIJkyYQEJCAm3btuWbb75Rv6L2wYMHfPrpp6xbtw4LCwtGjhyZq/7dunWLvn37smPHDhwdHZk6dSpjx47F398ff39/rl69iqurKydOnKBOnTrAo5n0kiVLsnPnTry9vUlISGDQoEH8+uuvJCcnU7ZsWcaOHUufPn1wdXUFwMPDAwAvLy9iYmKIiYlh1KhRnDlzBiMjI2rUqMGqVasoX778M/vr4uLC7NmzAVi6dGm2eWbPnk2bNm0ICAgAYPLkyURHRzNv3jwWLlyo1tO3b1/Onz/PunXrsLW1Ze7cuTRu3Ji+ffuyfft2KlSowNKlS/U+CHOqYeh20ouZ5bqceLFMDBWmN4CawVtJzdAUdHfEE542PlfD2gOwZs0ajh8/zpEjR/JUf1xcXJYJhGLFimFjY0NcXNxTyxgbG2dZMubg4PDUMkKIoitPwW1cXBzOzs7Ao8Cwe/futG7dGhcXFxo2bJivHXwZmjVrxv379zlx4gT16tVj165dlCpVipiYGDXPrl27GD16dLblL126xIYNG9i0aRMJCQl0796dsLAwpk6dCkBAQAC7du3ip59+wt7enrFjx3L8+HE1EH2enj17cufOHWJiYjAyMmL48OHEx8fn6hgnTJjA2bNn2bx5M6VKleLixYv8+++/ABw+fJgGDRqwbds2atSogbGxMenp6XTq1Il+/fqxevVq0tLSOHz4MBpN/gQbBw4cYPjw4Xppvr6+bNiwQS9t1qxZTJs2jQkTJjBr1iw++ugjmjRpwscff8wXX3zB6NGj6dmzJ2fOnHlq31JTU0lNTVW3k5KSADAxUDA0VPLleET+MTFQ9P4VhcvTxker1XL9+nWGDh1KVFQUhoaGaLVaFEVBp9Oh1Wr18qenp6vlHt+XkZGBoihZ8mfuyy798boepyjKU8sUVZnH+jod86tGxijvcnrO8hTclixZkuvXr+Ps7MyWLVuYMmUK8L83kleNlZUVderUISYmhnr16hETE8OwYcMICQkhOTmZxMRELl68iJeXF/v27ctSXqfTERkZqc7UfvTRR2zfvp2pU6eSnJzMkiVL+Pbbb2nZsiUAy5Yto2zZsjnq27lz59i2bRtHjhxRZycXL15M5cqVc3WM165dw8PDQ63DxcVF3WdnZweAra0tjo6OwKO7lRMTE3nrrbeoWLEiANWqVctVm88SFxeHg4ODXlp2syzt2rXjk08+ASAoKIgFCxZQv359unXrBsDo0aNp3Lgxf//9t9r3J4WGhhISEpIlfbyHjhIlXr3f19fF5Hq6gu6CeIYnxycqKoqDBw8SHx9PgwYN1HSdTseePXuYP38+P/zwA4aGhgCcPn0agF9//RVzc3M1f3x8PDdv3tRbg5+RkcE///zDjRs3sl2b/+eff5KWlsb333+vV9eff/5JQkLCa7mePzo6uqC7IJ5Dxij3UlJScpQvT8Ftly5d+OCDD6hcuTL//PMPbdu2BeDEiRNUqlQpL1UWuMxL8SNGjGDPnj2Ehoby/fffs3fvXu7evYuTkxOVK1fONrh1cXFRA1uA0qVLqzOrly5dIi0tTW9G28bGhqpVq+aoX7GxsRQrVow33nhDTatUqVKWmzSe59NPP6Vr164cP36c1q1b06lTJ5o0afLU/DY2NvTu3RtfX19atWqFj48P3bt3p3Tp0rlq9796/E7rzGC4Vq1aWdLi4+OfGtwGBgbqzRInJSXh7OzMlBMGpBsZvohui//AxEBhcj0dE44akKqTZQmFzdPG5/dgX5o1a0b37t318vfr14+qVasycuRIatasqaabmT1aEtS6dWu95QSurq7MmzcPR0dH9X0vOjoaRVEYMGAATk5OWfrUtGlTJk+eTLFixWjXrh3w6L3z9u3b9OnT55W8ophXWq2W6OhoWrVqhZGRUUF3R2RDxijvMq+8Pk+egttZs2bh4uLC9evXmT59uvqX8q1bt/jss8/yUmWB8/b2ZunSpZw6dQojIyPc3Nzw9vYmJiaGhIQEvLy8nlr2yV9OjUaDTvfyZp0MDB7dF6go/7tM+OTUfdu2bfnzzz+JiooiOjqali1bMnDgQGbMmPHUeiMiIhgyZAhbtmzhu+++Y/z48URHRz/1LufccHR0zPIMyuxmXx8/t5nLDrJLe9b5NjExwcTEJEv67tE+2Nra5r7z4oXSarVERUVxLKiNvPEXQs8aHxsbG2xsbPTSzM3NsbOzU9f0x8XFERcXx9WrV4FHV6csLCwoV64cNjY2uLu706ZNGz799FMWLlyIVqvF39+f9957T13vf+PGDVq2bMny5ctp0KABpUqVws/Pj1GjRmFvb4+lpSWDBw+mcePGeHp6vviTUggZGRnJ/59CTsYo93J6vvL0tAQjIyNGjhzJ7Nmz1TcsePScwb59++alygKXue521qxZaiCbGdzGxMTg7e2dp3orVqyIkZGR3l2+CQkJOX6cWNWqVUlPT+fEiRNq2sWLF0lISFC3M5cV3Lp1S03L7rFednZ29OrVi2+//Zbw8HAWLVoEgLGxMUC2S0o8PDwIDAxk//791KxZk1WrVuWo38/TuHFjtm/frpcWHR1N48aN86V+IUThtHDhQjw8POjXrx8AzZs3x8PDg59//lnNs3LlStzc3GjZsiXt2rXD09NTfb+CRwF2bGys3iXKWbNm8dZbb9G1a1eaN2+Oo6Mj69ate3kHJoQoNPI0cwuwYsUKvv76ay5fvsyBAwcoX7484eHhuLq60rFjx/zs40tRsmRJ3N3dWblyJfPmzQMevel2794drVb7zJnbZzE3N8fPz4+AgABsbW2xt7dn3Lhx6mzr87i5ueHj40P//v1ZsGABRkZGjBgxAlNTU3XW0tTUlEaNGhEWFoarqyvx8fGMHz9er56goCDq1q1LjRo1SE1NZdOmTeoaWnt7e0xNTdmyZQtly5alePHi3L17l0WLFvH222/j5OREbGwsFy5coGfPnjnqd2ZwnZyczO3btzl58iTGxsZUr14dgKFDh+Ll5cXMmTNp3749a9as4ejRo3ofYEKIV9/jN+bCoyfMBAcHP7OMjY3NM/+QdnFx0btSBVC8eHHmz5/P/Pnz89pVIUQRkaeZ2wULFjB8+HDatm3LvXv31Bk/a2trwsPD87N/L5WXlxcZGRnqLK2NjQ3Vq1fH0dExx2tks/PFF1/QrFkzOnTogI+PD56entStWzfH5ZcvX46DgwPNmzenc+fO9OvXDwsLC4oXL67mWbp0Kenp6dStWxd/f3/1Jr9MxsbGBAYG4u7uTvPmzTE0NGTNmjXAo8fszJkzh6+//honJyc6duxIiRIlOHfuHF27dqVKlSr079+fgQMHqjd3PY+HhwceHh4cO3aMVatW4eHhoa6FA2jSpAmrVq1i0aJF1K5dmx9//JENGzborckTQgghhMgtjfLkn785UL16daZNm0anTp2wsLDg1KlTVKhQgd9//x1vb2/u3LnzIvoq/t9ff/2Fs7Mz27ZtU5/AIHIuKSkJKysr7ty5I2tuC6HMNZ3t2rWT9WiFkIxP4SbjU/jJGOVd5ud3YmIilpaWT82Xp2UJV65c0Vtrm8nExIQHDx7kpUrxDDt27CA5OZlatWpx69YtRo0ahYuLC82bNy/orgkhhBBCFCp5Wpbg6uqa7Q1LW7Zsyddnob4O9uzZg7m5+VNf8OivvLFjx1KjRg06d+6MnZ2d+oUOBaFGjRpP7W/mN9cJIYQQQhSEPM3cDh8+nIEDB/Lw4UMUReHw4cOsXr2a0NBQFi9enN99LNLq1auX7R8Kj/P19cXX1/fldCgHoqKinvotIU9+MYMQQgghxMuUp+C2b9++mJqaMn78eFJSUvjggw9wcnJi9uzZvPfee/ndxyLN1NT0lfvii8xnTQohhBBCFDa5Dm7T09NZtWoVvr6+9OjRg5SUFJKTk7G3t38R/RNCCCGEECLHcr3mtlixYgwYMICHDx8CUKJECQlshRBCCCFEoZCnG8oaNGig941ZQgghhBBCFAZ5WnP72WefMWLECP766y/q1q2LmZmZ3n53d/d86ZwQQgghhBC5kafgNvOmsSFDhqhpGo0GRVHQaDTqN5YJIYQQQgjxMuX5SxyEEEIIIYQobPK05rZ8+fLPfAkhhHi1LFiwAHd3dywtLbG0tKRx48Zs3rwZgKtXr6LRaNBoNBgbG9OpUyeMjY3RaDT88MMPevVERkbi7u5O8eLFsbe3Z+DAgc9s9+HDhwwcOBBbW1vMzc3p2rUrf//99ws7TiFE0Zenmdvly5c/c3/Pnj3z1BkhhBAFo2zZsoSFhVG5cmUURWHZsmV07NiREydO4Obmxq1bt4BH35i4fft2rly5wpdffknbtm3VOr788ktmzpzJF198QcOGDXnw4AFXr159ZrvDhg3jl19+4YcffsDKyopBgwbRpUsX9u3b9yIPVwhRhOUpuB06dKjetlarJSUlBWNjY0qUKCHBrRBCvGI6dOigtz116lQWLFjAwYMHqVGjBo6OjsCj9/uSJUsSHh5O9+7d1a8JT0hIYPz48WzcuJGWLVuq9TzrBuPExESWLFnCqlWraNGiBQARERFUq1aNgwcP0qhRo/w+TCHEayBPyxISEhL0XsnJycTGxuLp6cnq1avzu49CPFdGRgY6na6guyFEkZCRkcGaNWt48OABjRs3zrL/4sWLnDp1Cj8/PzUtOjoanU7HjRs3qFatGmXLlqV79+5cv379qe0cO3YMrVaLj4+Pmubm5ka5cuU4cOBA/h6UEOK1kaeZ2+xUrlyZsLAwPvzwQ86dO5df1YpX0PLlyxk2bBg3b97ExMRETe/UqRMWFhasWLGCn376iZCQEM6ePYuTkxO9evVi3LhxFCv26Ffyyy+/JCIigsuXL2NjY0OHDh2YPn26OksUGRmJv78/y5cvZ8yYMZw/f56LFy/i4uKS4342DN1OejGz52cUL5WJocL0BlAzeCupGZqC7s5r4WpYewBOnz5N48aNefjwIebm5qxfv57q1atnyb9t2zbc3Nxo0qSJmnb58mV0Oh3Tpk1j9uzZWFlZMX78eFq1asVvv/2GsbFxlnri4uIwNjbG2tpaL93BwYG4uLj8PUghxGsj34JbePTtZTdv3szPKsUrqFu3bgwZMoSff/6Zbt26ARAfH88vv/zCr7/+yp49e+jZsydz5syhWbNmXLp0if79+wMwceJEAAwMDJgzZw6urq5cvnyZzz77jFGjRvHVV1+p7aSkpPD555+zePFibG1tn/pNeampqaSmpqrbSUlJAJgYKBgaKi/kHIi8MzFQ9P4VL55WqwWgQoUKHDlyhKSkJNauXUuvXr3Ytm2bXoCblJTE7t27GT9+vFousw6tVsuXX36pLjFYvnw5zs7OREdH07p16yztpqen67WfSVEUMjIysqSL58s8Z3LuCi8Zo7zL6TnLU3D7888/620risKtW7eYN28eTZs2zUuVoggxNTXlgw8+ICIiQg1uv/32W8qVK4e3tzetWrVizJgx9OrVC3j0gTp58mRGjRqlBrf+/v5qfS4uLkyZMoUBAwboBbdarZavvvqK2rVrP7M/oaGhhISEZEkf76GjRAl5JnNhNbmeLDN5WaKiorKkNW3alK1btzJq1Cg+++wzNX3nzp2kpaVRpkwZvXK3b98G4NatW3rpFhYWREVFqYHs4/7880/S0tL4/vvv1asymekJCQnZ9kvkTHR0dEF3QTyHjFHupaSk5CifRlGUXE+PGBjoL9XVaDTY2dnRokULZs6cSenSpXNbpShiTpw4Qf369fnzzz8pU6YM7u7udOvWjQkTJmBnZ0dycjKGhoZq/oyMDB4+fMiDBw8oUaIE27ZtIzQ0lHPnzpGUlER6erre/sjISD755BMePnyIRvPsS9fZzdw6OztTPWAN6UayLKGwMTFQmFxPx4SjBqTqZFnCy/B7sG+26a1bt8bZ2ZklS5aoaS1btiQ9PZ1t27ZhZGSkpp8/f56aNWuyZcsWdeb27t27ODk5sXHjRlq1apWl/sTERJycnFixYgVdunQBIDY2llq1arFnzx4aNmyYn4f5WtBqtURHR9OqVSu98RGFh4xR3iUlJVGqVCkSExOxtLR8ar48zdzKjTvieTw8PKhduzbLly+ndevWnDlzhl9++QWA5ORkQkJC1A+zxxUvXpyrV6/y1ltv8emnnzJ16lRsbGzYu3cvfn5+pKWlUaJECeDRDPHzAlsAExMTvbW/mXaP9sHW1vY/HqnIb1qtlqioKI4FtZE3/pcoMDCQtm3bUq5cOe7fv8+qVavYtWsXW7duVcfh4sWL7N27lwkTJmBkZKQ3PjVq1KBjx46MGDGCRYsWYWlpSWBgIG5ubuqH+I0bN2jZsiXLly+nQYMGlCpVCj8/P0aNGoW9vT2WlpYMHjyYxo0b4+npWVCnokh4cnxE4SNjlHs5PV95Cm4nTZrEyJEj1SAj07///ssXX3xBUFBQXqoVRUzfvn0JDw/nxo0b+Pj44OzsDMAbb7xBbGwslSpVyrbcsWPH0Ol0zJw5U71K8P3337+0fgvxOoqPj6dnz57cunULKysr3N3d2bp1q96M69KlSylbtix16tTJto7Mm0nbt2+PgYEBXl5ebNmyRf1A0mq1xMbG6l1anDVrFgYGBnTt2pXU1FR8fX31lh8JIURu5WlZgqGhIbdu3cpyA88///yDvb09GRmyjlH875Jjeno6y5cv59133wVg69atvPXWW4wfP5533nkHAwMDTp06xe+//86UKVM4deoUderUITw8nA4dOrBv3z4CAwO5ceMGCQkJWFtbq09LuHfvXq77lZSUhJWVFXfu3JGZ20Ioc+a2Xbt2MqtRCMn4FG4yPoWfjFHeZX5+P29ZQp6ec6soSraXg0+dOoWNjU1eqhRFkJWVFV27dsXc3JxOnTqp6b6+vmzatIlff/2V+vXr06hRI2bNmqV+dXPt2rX58ssv+fzzz6lZsyYrV64kNDS0gI5CCCGEEK+SXC1LKFmypPr94lWqVNELcDMyMkhOTmbAgAH53knx6rpx4wY9evTIsubV19cXX9/sb2KBR1/JOWzYML20jz76SP25d+/e9O7dO1/7KoQQQohXX66C2/DwcBRF4eOPPyYkJAQrKyt1n7GxMS4uLtl+m414/SQkJBATE0NMTIysnxNCCCHES5Or4DbzuaSurq40adJE1oqIp/Lw8CAhIYHPP/+cqlWrFnR3hBBCCPGayNPTEry8vNSfHz58SFpamt7+Zy3yFa+Hq1evFnQXhBBCCPEaytMNZSkpKQwaNAh7e3vMzMwoWbKk3ksIIYQQQoiCkKfgNiAggB07drBgwQJMTExYvHgxISEhODk5sXz58vzuoxBCCCGEEDmSp2UJGzduZPny5Xh7e9OnTx+aNWtGpUqVKF++PCtXrqRHjx753U8hhBBCCCGeK08zt3fv3qVChQrAo/W1d+/eBcDT05Pdu3fnX++EEEIIIYTIhTwFtxUqVODKlSsAuLm5qV+NunHjRqytrfOtc0IIIYQQQuRGnoLbPn36cOrUKQDGjBnD/PnzKV68OMOGDSMgICBfOyiEEEIIIURO5WnN7ePfHOXj48O5c+c4duwYlSpVwt3dPd86J4QQQgghRG7kaeb2cQ8fPqR8+fJ06dJFAlshhHhFLFiwAHd3dywtLbG0tKRx48Zs3rxZL8+BAwdo0aIFZmZmWFpa0rx5c/799191//nz5+nYsSOlSpXC0tIST09Pdu7c+cx2FUUhKCiI0qVLY2pqio+PDxcuXHghxyiEeD3lKbjNyMhg8uTJlClTBnNzcy5fvgzAhAkTWLJkSb52UDydt7c3/v7+L7XNRYsW4ezsjIGBAeHh4S+1bYDIyEhZ1y1EPihbtixhYWEcO3aMo0eP0qJFCzp27MiZM2eAR4FtmzZtaN26NYcPH+bIkSMMGjQIA4P/fWy89dZbpKens2PHDo4dO0bt2rV56623iIuLe2q706dPZ86cOSxcuJBDhw5hZmaGr68vDx8+fOHHLIR4PeQpuJ06dSqRkZFMnz4dY2NjNb1mzZosXrw43zonCpekpCQGDRrE6NGjuXHjBv379y/oLgkh8qhDhw60a9eOypUrU6VKFaZOnYq5uTkHDx4EHi0/GzJkCGPGjKFGjRpUrVqV7t27Y2JiAsCdO3e4cOECY8aMwd3dncqVKxMWFkZKSgq///57tm0qikJ4eDjjx4+nY8eOuLu7s3z5cm7evMmGDRte1qELIYq4PAW3y5cvZ9GiRfTo0QNDQ0M1vXbt2pw7dy7fOicKl2vXrqHVamnfvj2lS5emRIkSBd0lIUQ+yMjIYM2aNTx48IDGjRsTHx/PoUOHsLe3p0mTJjg4OODl5cXevXvVMra2tlStWpXly5fz4MED0tPT+frrr7G3t6du3brZtnPlyhXi4uLw8fFR06ysrGjYsCEHDhx44ccphHg95OmGshs3blCpUqUs6TqdDq1W+587JbJ68OABn376KevWrcPCwoKRI0fq7V+xYgWzZ88mNjYWMzMzWrRoQXh4OPb29iiKQuXKlRkwYIBeuZMnT+Lh4cGFCxeoVKkS165dY/DgwWzfvh0DAwPatGnD3LlzcXBwIDIykj59+gCozzieO3cu48eP559//sHQ0FCtb/To0YSFhQHQt29fHj58yLfffgvA3r17CQwM5OjRo5QqVYrOnTsTGhqKmZkZAKmpqYwbN47Vq1dz7949atasyeeff463t3e25+X27du0bdsWZ2dn1qxZo84q5UTD0O2kFzPLcX7xcpgYKkxvADWDt5KaoSno7hQ5V8Paqz+fPn2axo0b8/DhQ8zNzVm/fj3Vq1dXZ2+Dg4OZMWMGderUYfny5bRs2ZITJ04AoNFo2LZtG506dcLCwgIDAwPs7e3ZsmXLU7+GPXO5goODg166g4PDM5cyCCFEbuQpuK1evTp79uyhfPnyeuk//vgjHh4e+dIxoS8gIIBdu3bx008/YW9vz9ixYzl+/Dh16tQBQKvVMnnyZKpWrUp8fDzDhw+nd+/eREVFodFo+Pjjj4mIiNALbiMiImjevDmVKlVCp9PRsWNHzM3N2bVrF+np6QwcOJB3332XmJgY3n33XZydnfHx8eHw4cM4OztjamrK0KFDOXHiBPXq1WPXrl2UKlWKmJgYtY1du3YxevRoAC5dukSbNm2YMmUKS5cu5fbt2wwaNIhBgwYREREBwKBBgzh79ixr1qzBycmJ9evX06ZNG06fPk3lypX1zsn169dp1aoVjRo1YsmSJXpXER6XmppKamqqup2UlASAiYGCoaHyn8dG5C8TA0XvX5G/Hp+AqFChAkeOHCEpKYm1a9fSq1cvtm3bRlpaGvDoj9MPP/wQeLRWdtu2bSxdupRmzZqRlpbGp59+ip2dHTt37sTU1JSlS5fSoUMH9u/fT+nSpbO0nZ6ervbh8X7odDo0Go1MjuSDzHMo57LwkjHKu5yeszwFt0FBQfTq1YsbN26g0+lYt24dsbGxLF++nE2bNuWlSvEMycnJLFmyhG+//ZaWLVsCsGzZMsqWLavm+fjjj9WfK1SowJw5c6hfvz7JycmYm5vTu3dvgoKCOHz4MA0aNECr1bJq1SpmzJgBwPbt2zl9+jRXrlzB2dkZeLT8pEaNGhw5coT69etja2sLgJ2dHY6OjgDUqVOHmJgY6tWrR0xMDMOGDSMkJITk5GQSExO5ePEiXl5eAISGhtKjRw/1JrjKlSszZ84cvLy8WLBgAfHx8URERHDt2jWcnJwAGDlyJFu2bCEiIoJp06apxxgbG0urVq3o3Lkz4eHhaDRPn+ELDQ0lJCQkS/p4Dx0lSmTkbjDESzO5nq6gu1AkRUVFZZvetGlTtm7dyqhRo+jatSsAaWlpevmtrKw4cuQIzZo1Y+bMmURFRfHtt99y79497t27R9u2bfn5558ZP368WsfjMmdn165dq14BAjh37hyurq5P7ZvIvejo6ILugngOGaPcS0lJyVG+XAW3ly9fxtXVlY4dO7Jx40YmTZqEmZkZQUFBvPHGG2zcuJFWrVrlqcPi6S5dukRaWhoNGzZU02xsbKhataq6fezYMYKDgzl16hQJCQnodI8Cg2vXrlG9enWcnJxo3749S5cupUGDBmzcuJHU1FS6desGwB9//IGzs7Ma2MKjGXpra2v++OMP6tevn23fvLy8iImJYcSIEezZs4fQ0FC+//579u7dy927d3FyclJnXE+dOsVvv/3GypUr1fKKoqDT6bhy5QqXL18mIyODKlWq6LWRmpqqBtYA//77L82aNeODDz7I0RMbAgMDGT58uLqdlJSEs7MzU04YkG6U/WyvKDgmBgqT6+mYcNSAVJ0sS8hvvwf7PnVfeHg4Dg4O9O7dm5CQEExNTWnXrp26f+LEiep7fPXq1QFo06YN5ubmah5zc3MqV66sVy6ToigEBwej1WrV/UlJSVy8eJExY8ZkW0bkjlarJTo6mlatWmFkZFTQ3RHZkDHKu8wrr8+Tq+C2cuXK3Lp1C3t7e5o1a4aNjQ2nT5/Osn5KvFwPHjzA19cXX19fVq5ciZ2dHdeuXcPX11e9vAiPLjF+9NFHzJo1i4iICN59993/fFOYt7c3S5cu5dSpUxgZGeHm5oa3tzcxMTEkJCSos7bwaAb6k08+YciQIVnqKVeuHL/99huGhoYcO3YsyxKDxz88TUxM8PHxYdOmTQQEBFCmTJln9tHExCTbtbi7R/voBc2icNBqtURFRXEsqI288b9AgYGBtG3blnLlynH//n1WrVrFrl272Lp1K8bGxgQEBDBx4kTeeOMN6tSpw7Jly4iNjWXNmjXExsbStGlTSpYsSd++fQkKCsLU1JRvvvmGq1ev8vbbb6tj5+bmRmhoKJ07dwbA39+f0NBQ3NzccHV1ZcKECTg5OfHOO+/IeOcjIyMjOZ+FnIxR7uX0fOUquFUU/TVwmzdv5sGDB7mpQuRBxYoVMTIy4tChQ5QrVw6AhIQEzp8/j5eXF+fOneOff/4hLCxMnXk9evRolnratWuHmZkZCxYsYMuWLezevVvdV61aNa5fv87169fVOs6ePcu9e/fUGZrsNGvWjPv37zNr1iw1kPX29iYsLIyEhARGjBih5n3jjTc4e/ZstjcjAnh4eJCRkUF8fDzNmjV7apsGBgasWLGCDz74gDfffJOYmBh1GYMQImfi4+Pp2bMnt27dwsrKCnd3d7Zu3arOzPr7+/Pw4UOGDRvG3bt3qV27NtHR0VSsWJHY2FhKlSrFli1bGDduHC1atECr1VKjRg1++uknateurbYTGxtLYmKiuj1q1CgePHhA//79uXfvHp6enmzZsoXixYu/9HMghCiilFzQaDTK33//rW6bm5srly5dyk0VIo8GDBiglC9fXtm+fbty+vRp5e2331bMzc2VoUOHKvHx8YqxsbESEBCgXLp0Sfnpp5+UKlWqKIBy4sQJvXrGjh2rGBsbK9WqVdNL1+l0Sp06dZRmzZopx44dUw4dOqTUrVtX8fLyUvOcOHFCAZQrV67ola1Tp45iaGioLFiwQFEURfnnn38UIyMjBVDOnTun5jt16pRiamqqDBw4UDlx4oRy/vx5ZcOGDcrAgQPVPD169FBcXFyUtWvXKpcvX1YOHTqkTJs2Tdm0aZOiKIoSERGhWFlZKYqiKFqtVnnnnXeUqlWrKrdu3crxuUxMTFQA5c6dOzkuI16etLQ0ZcOGDUpaWlpBd0VkQ8ancJPxKfxkjPIu8/M7MTHxmfly9ZxbjUaT5cadZ93II/LPF198QbNmzejQoQM+Pj54enqqz5K0s7MjMjKSH374gerVqxMWFqbeKPYkPz8/0tLS1Md6ZdJoNPz000+ULFmS5s2b4+PjQ4UKFfjuu++e2zcvLy8yMjLUx3XZ2NhQvXp1HB0d9dYFu7u7s2vXLs6fP0+zZs3w8PAgKChIb9Y1IiKCnj17MmLECKpWrUqnTp04cuSIOmP9uGLFirF69Wpq1KhBixYtiI+Pf25fhRBCCFG0aRRFyfHzdgwMDGjbtq26fnHjxo3q944/bt26dfnbS5Fv9uzZQ8uWLbl+/fpru1Y6KSkJKysr7ty5I2tuC6HMNbft2rWT9WiFkIxP4SbjU/jJGOVd5ud3YmIilpaWT82XqzW3vXr10tvOfP6hKPxSU1O5ffs2wcHBdOvW7bUNbIUQQghRtOUquM180L549axevRo/Pz/1m4aEEEIIIYqiXK25Fa+u3r17k5GRwbFjx5776CwhhBBCiFeVBLdCCCGEEKLIkOBWCCGEEEIUGRLcCiGEEEKIIkOCWyGEEEIIUWRIcCuEEEIIIYoMCW6FEEIIIUSRIcGtEEIIIYQoMiS4FUKIl2DBggW4u7tjaWmJpaUljRs3ZvPmzer+hw8fMnDgQGxtbTE3N6dr1678/fffenVcu3aN9u3bU6JECezt7QkICCA9Pf2Z7d69e5cePXpgaWmJtbU1fn5+JCcnv5BjFEKIwkCC20Lu6tWraDQaTp48+cLb0mg0bNiw4YW3I8TrqGzZsoSFhXHs2DGOHj1KixYt6NixI2fOnAFg2LBhbNy4kR9++IFdu3Zx8+ZNunTpopbPyMigffv2pKWlsX//fpYtW0ZkZCRBQUHPbLdHjx6cOXOG6OhoNm3axO7du+nfv/8LPVYhhChIufr6XSGEEHnToUMHve2pU6eyYMECDh48SNmyZVmyZAmrVq2iRYsWwKOvO69WrRoHDx6kUaNG/Prrr5w9e5Zt27bh4OBAnTp1mDx5MqNHjyY4OBhjY+Msbf7xxx9s2bKFI0eOUK9ePQDmzp1Lu3btmDFjBk5OTi/+wIUQ4iWTmVtRJCiK8tzLs0IUFhkZGaxZs4YHDx7QuHFjjh07hlarxcfHR83j5uZGuXLlOHDgAAAHDhygVq1aODg4qHl8fX1JSkpSZ3+fdODAAaytrdXAFsDHxwcDAwMOHTr0go5OCCEKlszcFhI6nY4ZM2awaNEirl+/joODA5988gk9evTIknfXrl0EBARw6tQpbGxs6NWrF1OmTKFYsUfD6eLigr+/P/7+/mqZOnXq0KlTJ4KDgwG4cOECfn5+HD58mAoVKjB79uxc9fevv/4iICCArVu3kpqaSrVq1Zg/fz4NGzYEHq0vnDFjBtevX8fV1ZXx48fz0UcfAfDBBx+QkZHBd999p9an1WopXbo0X375JT179kSn0/H555+zaNEi4uLiqFKlChMmTOCdd94BICYmhjfffJOoqCjGjx/P6dOn+fXXX/H29s7xMTQM3U56MbNcHbd48UwMFaY3gJrBW0nN0BR0d/LF1bD2AJw+fZrGjRvz8OFDzM3NWb9+PdWrV+fkyZMYGxtjbW2tV87BwYG4uDgA4uLi9ALbzP2Z+7ITFxeHvb29XlqxYsWwsbF5ahkhhHjVSXBbSAQGBvLNN98wa9YsPD09uXXrFufOncuS78aNG7Rr147evXuzfPlyzp07R79+/ShevLgauD6PTqejS5cuODg4cOjQIRITE/UC4edJTk7Gy8uLMmXK8PPPP+Po6Mjx48fR6XQArF+/nqFDhxIeHo6Pjw+bNm2iT58+lC1bljfffJMePXrQrVs3kpOTMTc3B2Dr1q2kpKTQuXNnAEJDQ/n2229ZuHAhlStXZvfu3Xz44YfY2dnh5eWl9mXMmDHMmDGDChUqULJkyWz7m5qaSmpqqrqdlJQEgImBgqGhkuPjFi+HiYGi929RoNVqAahQoQJHjhwhKSmJtWvX0qtXL7Zt26ZedcjMl0lRFDIyMtBqteh0OhRF0cuT+XN6enqWsvBohvjJMo/vyy49p8eSl7LixZPxKfxkjPIup+dMgttC4P79+8yePZt58+bRq1cvACpWrIinpydXr17Vy/vVV1/h7OzMvHnz0Gg0uLm5cfPmTUaPHk1QUBAGBs9fabJt2zbOnTvH1q1b1TV306ZNo23btjnq76pVq7h9+zZHjhzBxsYGgEqVKqn7Z8yYQe/evfnss88AGD58OAcPHmTGjBm8+eab+Pr6YmZmxvr169XZ3FWrVvH2229jYWFBamoq06ZNY9u2bTRu3Bh4FBTs3buXr7/+Wi+4nTRpEq1atXpmf0NDQwkJCcmSPt5DR4kSGTk6ZvHyTa6nK+gu5JuoqKgsaU2bNmXr1q2MGjUKT09P0tLS+P7779U/+AD+/PNPEhISiIqK4v79+1y4cEGvrsynKVy8eDHbNuLj47l586bevoyMDP755x9u3LiRbZmcio6OznNZ8eLJ+BR+Mka5l5KSkqN8EtwWAn/88Qepqam0bNkyR3kbN26MRvO/y7VNmzYlOTmZv/76i3LlyuWoDmdnZ72bSTKDyJw4efIkHh4eamCbXf1P3o3dtGlTdelDsWLF6N69OytXruSjjz7iwYMH/PTTT6xZswZ49EGdkpKSJWhNS0vDw8NDL+3xtYRPExgYyPDhw9XtpKQknJ2dmXLCgHQjw+cfsHipTAwUJtfTMeGoAam6orEs4fdg32zTw8PDcXBw4NNPP2Xy5MkUK1aMdu3aARAbG8vt27fp06cPDRs2xMDAgB9//JF69eqpSw0WL16MpaUl/fr1w8TEJEv9rq6uzJs3D0dHR9544w3g0QeqoigMGDAgTzeUabVaoqOjadWqFUZGRrkuL14sGZ/CT8Yo7zKvvD6PBLeFgKmpab7WZ2BggKLoX9LNz8sf+dHfHj164OXlRXx8PNHR0ZiamtKmTRsA9Rmcv/zyC2XKlNEr9+QHuJnZ89fMmpiYZPvBv3u0D7a2tnk9BPGCaLVaoqKiOBbUpki98QcGBtK2bVvKlSvH/fv3WbVqFbt27WLr1q2UKlUKPz8/Ro0ahb29PZaWlgwePJjGjRvj6ekJQLt27ahevToff/wx06dPJy4ujokTJzJw4EB1tvfw4cP07NmT7du3U6ZMGdzd3WnTpg2ffvopCxcuRKvV4u/vz3vvvUf58uX/0/EYGRkVqfEpamR8Cj8Zo9zL6fmSpyUUApUrV8bU1JTt27c/N2+1atU4cOCAXvC6b98+LCwsKFu2LAB2dnbcunVL3Z+UlMSVK1f06rh+/bpenoMHD+a4v+7u7pw8eZK7d+8+tY/79u3TS9u3bx/Vq1dXt5s0aYKzszPfffcdK1eupFu3buovbfXq1TExMeHatWtUqlRJ7+Xs7JzjfgpRmMTHx9OzZ0+qVq1Ky5YtOXLkCFu3blWvUMyaNYu33nqLrl270rx5cxwdHVm3bp1a3tDQkE2bNmFoaEjjxo358MMP6dmzJ5MmTVLzpKSkEBsbq/fH7MqVK3Fzc6Nly5a0a9cOT09PFi1a9PIOXAghXjKZuS0EihcvzujRoxk1ahTGxsY0bdqU27dvc+bMmSxLFT777DPCw8MZPHgwgwYNIjY2lokTJzJ8+HB1vW2LFi2IjIykQ4cOWFtbExQUhKHh/y6/+/j4UKVKFXr16sUXX3xBUlIS48aNy3F/33//faZNm0anTp0IDQ2ldOnSnDhxAicnJxo3bkxAQADdu3fHw8MDHx8fNm7cyLp169i2bZtePR988AELFy7k/Pnz7Ny5U023sLBg5MiRDBs2DJ1Oh6enJ4mJiezbtw9LS0t1XbIQr5IlS5Y8c3/x4sWZP38+8+fPf2qe8uXLP3OdrLe3d5arNjY2NqxatSp3nRVCiFeYBLeFxIQJEyhWrBhBQUHcvHmT0qVLM2DAgCz5ypQpQ1RUFAEBAdSuXRsbGxv8/PwYP368micwMJArV67w1ltvYWVlxeTJk/Vmbg0MDFi/fj1+fn40aNAAFxcX5syZoy4LeB5jY2N+/fVXRowYQbt27UhPT6d69erqh3KnTp2YPXs2M2bMYOjQobi6uhIREZHlMV09evRg6tSplC9fnqZNm+rtmzx5MnZ2doSGhnL58mWsra154403GDt2bE5PqRBCCCFeQxrlyT/zhSjikpKSsLKy4s6dO7LmthDKXHPbrl07WY9WCMn4FG4yPoWfjFHeZX5+JyYmYmlp+dR8suZWCCGEEEIUGRLciiymTZuGubl5tq+cPgtXCCGEEKIgyJpbkcWAAQPo3r17tvvy+7FlQgghhBD5SYJbkYWNjc1Tv6BBCCGEEKIwk2UJQgghhBCiyJDgVgghhBBCFBkS3AohhBBCiCJDglshhBBCCFFkSHArhBBCCCGKDAluhRBCCCFEkSHBrRBF3O7du+nQoQNOTk5oNBo2bNigt3/dunW0bt0aW1tbNBoNJ0+ezFLHw4cPGThwILa2tpibm9O1a1f+/vvvZ7arKApBQUGULl0aU1NTfHx8uHDhQj4emRBCCJGVBLeviZiYGDQaDffu3ctxmeDgYOrUqfPC+pRdoCXy34MHD6hduzbz589/6n5PT08+//zzp9YxbNgwNm7cyA8//MCuXbu4efMmXbp0eWa706dPZ86cOSxcuJBDhw5hZmaGr68vDx8+/E/HI4QQQjyLfInDa6JJkybcunULKyurHJcZOXIkgwcPVrd79+7NvXv3ch2QBgcHs2HDhiwzgrdu3aJkyZK5qkvkXtu2bZ/5tckfffQRAFevXs12f2JiIkuWLGHVqlW0aNECgIiICKpVq8bBgwdp1KhRljKKohAeHs748ePp2LEjAMuXL8fBwYENGzbw3nvv/cejEkIIIbInM7evgLS0tP9ch7GxMY6Ojmg0mhyXMTc3x9bW9j+3/TSOjo6YmJi8sPpF/jh27BharRYfHx81zc3NjXLlynHgwIFsy1y5coW4uDi9MlZWVjRs2PCpZYQQQoj8IDO3BcDb25uaNWsCsGLFCoyMjPj000+ZNGkSGo0GFxcX/Pz8uHDhAhs2bKBLly5ERkayd+9eAgMDOXr0KKVKlaJz586EhoZiZmYGQGpqKkFBQaxatYr4+HicnZ0JDAzEz8+PmJgY3nzzTRISErC2tiYyMhJ/f38iIyMJCAjg+vXreHl5sXjxYpydnQH9Gdfg4GCWLVsGoAbIO3fuxNvbm9GjR7N+/Xr++usvHB0d6dGjB0FBQRgZGREZGUlISIheuYiICHr37o1Go2H9+vV06tQJgNOnTzN06FAOHDhAiRIl6Nq1K19++SXm5ubA/2aOPT09mTlzJmlpabz33nuEh4djZGSU63FoGLqd9GJmeRzFwu9qWPt8qScuLg5jY2Osra310h0cHIiLi3tqmcw8OS0jhBBC5AcJbgvIsmXL8PPz4/Dhwxw9epT+/ftTrlw5+vXrB8CMGTMICgpi4sSJAFy6dIk2bdowZcoUli5dyu3btxk0aBCDBg0iIiICgJ49e3LgwAHmzJlD7dq1uXLlCnfu3HlqH1JSUpg6dSrLly/H2NiYzz77jPfee499+/ZlyTty5Ej++OMPkpKS1PZsbGwAsLCwIDIyEicnJ06fPk2/fv2wsLBg1KhRvPvuu/z+++9s2bKFbdu2AWS7NOLBgwf4+vrSuHFjjhw5Qnx8PH379mXQoEFERkaq+Xbu3Enp0v/X3t3H1Xz//wN/nOroUqWki63UJsqkWqlZKGSRmWFjPm3KyGcUkcu2IcNq8wlzsTGfD9mXDZsxX5rPGmpKishlQrRsq9HQUU2dOq/fH369v84qF43OcXrcb7dzu/V+XbzP6/V+cnr26vV+Z48DBw7g4sWLGDVqFLy8vKTr1pjq6mpUV1dLxwqFAgBgqCegry+a7PekUyqVjZbX1tY2WldfplQq1epra2sbPZ8QAnV1dY2e6+4+d9erVCrIZLImx/bXcZD2YXy0G+Oj/Rij5nvQa8bkVkMcHR2xbNkyyGQydOnSBadOncKyZcukJK1fv36YPn261H78+PEICwvD1KlTAQCurq5YsWIFAgMD8dlnn6G4uBjbtm1Damqq9KvgZ5555p5jUCqVWLVqFfz9/QHcSbjd3d2Rk5MDPz8/tbZmZmYwNjZGdXU17Ozs1Oref/996WtnZ2fMmDEDW7ZswaxZs2BsbAwzMzMYGBg06He3L7/8Erdv38YXX3whrUSvWrUKQ4YMwUcffSStALZr1w6rVq2Cvr4+3NzcMHjwYOzbt++eyW1CQoK0eqw2bm8VTEzq7nmNnmQpKSmNlufm5ja60l3/9IOMjAz89ttvUvnPP/+MmpoabNu2TVpFry+/ceNGo+9Tvzq7fft2tX+H586dg4uLS5Nju1tqaup925DmMD7ajfHRfozRw6uqqnqgdkxuNeSFF15Q2//as2dPJCUloa7uTrLl6+ur1v7EiRM4efIkNm/eLJUJIaBSqXD58mWcOnUK+vr6CAwMfOAxGBgYoEePHtKxm5sbLC0tkZ+f3yC5vZetW7dixYoVKCwsREVFBWpra2Fubv7A/QEgPz8fnp6eUmILAAEBAVCpVCgoKJCS2+eeew76+vpSG3t7e5w6deqe546Li0NsbKx0rFAo4OjoiEXH9VAr179Hzyfb6fiQRst9fHwQGhraoLz+hrJevXqpPSUjICAACxcuhIGBgdSvoKAA165dw9ixY6Ufju4mhEB8fDyUSqXUR6FQ4OLFi5gzZ06j719PqVQiNTUVAwYMaNZ2E3q8GB/txvhoP8ao+ep/83o/TG611N1JHgBUVFTgn//8J6ZMmdKgrZOTEy5evNhSQ1OTlZWFsLAwLFiwACEhIbCwsMCWLVuQlJT0WN7vrx8EMpkMKpXqnn0MDQ0bvXGtWiVDbd2D32D3pKm/VhUVFWr/Pq5cuYIzZ87AysoKTk5OuH79OoqLi6XV2kuXLkEul8POzg52dnZo3749xo0bh1mzZqFDhw4wNzfH5MmT0bNnT/Tq1Us6r5ubGxISEjBs2DAAwNSpU5GQkAA3Nze4uLhg7ty5cHBwwGuvvfZAH+hyuZwf/FqM8dFujI/2Y4we3oNeLya3GpKdna12fPjwYbi6uqqtSt7t+eefx9mzZ9GpU6dG6z08PKBSqZCenq52h/q91NbW4ujRo9IqbUFBAW7evAl3d/dG27dp00ZaWa536NAhdOzYEe+9955U9vPPP9+331+5u7sjOTkZlZWVUmKfmZkJPT09dOnS5YHm87Cy4/o/1qdBaIujR4+ib9++0nH9KnZ4eDiSk5Oxa9cujB07Vqqvf0zX/PnzER8fDwBYtmwZ9PT0MGLECFRXVyMkJASffvqp2vsUFBSgvLxcOp41axYqKysxYcIE6UbAvXv3wsjI6HFNlYiIiI8C05Ti4mLExsaioKAAX331FVauXImYmJgm28+ePRuHDh1CdHQ08vLycOHCBXz33XeIjo4GcGeva3h4ON5++23s3LkTly9fRlpaGrZt29bkOeVyOSZPnozs7Gzk5uYiIiICL7zwQpNbEpydnXHy5EkUFBSgrKwMSqUSrq6uKC4uxpYtW1BYWIgVK1Zgx44dDfpdvnwZeXl5KCsrU7u5q15YWBiMjIwQHh6O06dP48CBA5g8eTLeeuutBnfc08MJCgqCEKLBq/5GvYiIiEbr6xNbADAyMsLq1atx/fp1VFZW4ttvv22wh1oIgYiICOlYJpPhgw8+QGlpKW7fvo0ff/wRnTt3boEZExFRa8bkVkPGjBmDP//8E35+foiKikJMTAwmTJjQZPvu3bsjPT0d58+fR+/eveHt7Y158+bBwcFBavPZZ5/htddew6RJk+Dm5obIyEhUVlY2eU4TExPMnj0b//jHPxAQEAAzMzNs3bq1yfaRkZHo0qULfH19YWNjg8zMTLzyyiuYNm0aoqOj4eXlhUOHDmHu3Llq/UaMGIGBAweib9++sLGxwVdffdXoWP773//i+vXr6NGjB1577TX0798fq1atutdlJCIiIlIjE0Lo7rOQtFRQUBC8vLywfPlyjY2h/jm3D/PneHWFQqGAhYUFysrKWsW2hCeNUqlESkoKQkNDuR9NCzE+2o3x0X6MUfPVf/8uLy+/543rXLklIiIiIp3B5JaIiIiIdAaflqABaWlpmh4CIiIi1G7+ISIiItIFXLklIiIiIp3B5JaIiIiIdAaTWyIiIiLSGUxuiYiIiEhnMLklIiIiIp3B5JaIiIiIdAaTWyIiIiLSGUxuiYiIiEhnMLmlR6KoqAgymQx5eXkP1U8mk2Hnzp2PZUza7tdff8Wbb74Ja2trGBsbw8PDA0ePHpXqhRCYN28e7O3tYWxsjODgYFy4cOG+5129ejWcnZ1hZGQEf39/5OTkPM5pEBERaRUmt0QacOPGDQQEBEAul+P777/H2bNnkZSUhHbt2kltPv74Y6xYsQJr1qxBdnY2TE1NERISgtu3bzd53q1btyI2Nhbz58/HsWPH4OnpiZCQEFy9erUlpkVERKRxTG7pb6upqdH0EJ44H330ERwdHbFhwwb4+fnBxcUFL730Ep599lkAd1Ztly9fjvfffx9Dhw5F9+7d8cUXX+C3336750r30qVLERkZibFjx6Jr165Ys2YNTExMsH79+haaGRERkWYZaHoA9Pjt3r0bb775Jv744w/o6+sjLy8P3t7emD17NhITEwEA48ePx+3bt7Fp0yZs374d8+bNw8WLF2Fvb4/Jkydj+vTp0vmcnZ0xbtw4XLhwATt37sTw4cMRHx+v9p51dXWIjIzEoUOH8MMPP8DJyQkXLlzAuHHjkJOTg2eeeQaffPJJg7HOnj0bO3bswC+//AI7OzuEhYVh3rx5kMvlKCoqwjPPPIOcnBz4+vpKfZYvX45ly5bh8uXL0NN78J/X/BP2odbA9CGv5t9XlDgYu3btQkhICF5//XWkp6fjqaeewqRJkxAZGQkAuHz5MkpLSxEcHCz1s7CwgL+/P7KysvDGG280OG9NTQ1yc3MRFxcnlenp6SE4OBhZWVmPf2JERERagMltK9C7d2/cunULx48fh6+vL9LT09G+fXukpaVJbdLT0zF79mzk5uZi5MiRiI+Px6hRo3Do0CFMmjQJ1tbWiIiIkNr/61//wrx58zB//vwG71ddXY3Ro0ejqKgIBw8ehI2NDVQqFYYPHw5bW1tkZ2ejvLwcU6dObdC3bdu2SE5OhoODA06dOoXIyEi0bdsWs2bNgrOzM4KDg7Fhwwa15HbDhg2IiIhoMrGtrq5GdXW1dKxQKAAAhnoC+vriIa/m36dUKnHp0iV89tlniImJwcyZM5Gbm4spU6ZAT08PY8aMwS+//AIAsLKyglKplPra2Njgt99+UyurV1JSgrq6OlhbW6vVt2/fHvn5+Y320Ub143xSxtvaMD7ajfHRfoxR8z3oNWNy2wpYWFjAy8sLaWlp8PX1RVpaGqZNm4YFCxagoqIC5eXluHjxIgIDAxEfH4/+/ftj7ty5AIDOnTvj7NmzWLJkiVpy269fP7XV3KKiIgBARUUFBg8ejOrqahw4cAAWFhYAgB9//BHnzp3Df//7Xzg4OAAAPvzwQwwaNEhtrO+//770tbOzM2bMmIEtW7Zg1qxZAO6sML/zzjtYunQpDA0NcezYMZw6dQrfffddk/NPSEjAggULGpS/762CiUndQ1zJRyMlJQV1dXV49tln8eKLL6KkpAQODg7o378/lixZgvbt2+PcuXMAgH379sHKykrqW1JSAplMhpSUlAbnvX79OgDg0KFD0tcAcOnSJdy8ebPRPtosNTVV00Oge2B8tBvjo/0Yo4dXVVX1QO2Y3LYSgYGBSEtLw/Tp03Hw4EEkJCRg27ZtyMjIwPXr1+Hg4ABXV1fk5+dj6NChan0DAgKwfPly1NXVQV9fHwDUVk7vNnr0aDz99NPYv38/jI2NpfL8/Hw4OjpKiS0A9OzZs0H/rVu3YsWKFSgsLERFRQVqa2thbm4u1b/66quIiorCjh078MYbbyA5ORl9+/aFs7Nzk3OPi4tDbGysdKxQKODo6IhFx/VQK9e/94V7DE7Hh8DBwQEvvvgiQkNDpfIrV64gISEBoaGhcHNzw5w5c9CtWzd4eXlJbZKSkuDp6anWr15NTQ0iIyPx7LPPqtV/88036NKlS6N9tJFSqURqaioGDBgAuVyu6eHQXzA+2o3x0X6MUfPV/+b1fpjcthJBQUFYv349Tpw4AblcDjc3NwQFBSEtLQ03btxAYGDgQ53P1LTxvaqhoaHYtGkTsrKy0K9fv4c6Z1ZWFsLCwrBgwQKEhITAwsICW7ZsQVJSktSmTZs2GDNmDDZs2IDhw4fjyy+/bHTv7t0MDQ1haGjYoLxaJUNtneyhxvgoyOVyBAQE4MKFC2ofbIWFhejYsSPkcjk6d+4MOzs7/PTTT+jRoweAO/+pc3JyMGnSpEY/EOVyOXx8fJCeno7XXnsNAKBSqXDgwAFER0c/cR+icrn8iRtza8L4aDfGR/sxRg/vQa8Xk9tWon7f7bJly6RENigoCImJibhx44a0xcDd3R2ZmZlqfTMzM9G5c2dp1fZeJk6ciG7duuGVV17Bnj17pPdyd3fHlStXUFJSAnt7ewDA4cOH1foeOnQIHTt2xHvvvSeV/fzzzw3eY/z48ejWrRs+/fRT1NbWYvjw4Q9xJf5Pdlx/WFtbN6vv3zVt2jS8+OKL+PDDDzFy5Ejk5OTg888/x+effw7gzvN/p06dikWLFsHV1RUuLi6YO3cuHBwc8Oqrr0rn6d+/P4YNG4bo6GgAQGxsLMLDw+Hr6ws/Pz8sX74clZWVGDt2rCamSURE1OKY3LYS7dq1Q/fu3bF582asWrUKANCnTx+MHDkSSqVSSkKnT5+OHj16YOHChRg1ahSysrKwatUqfPrppw/8XpMnT0ZdXR1efvllfP/99+jVqxeCg4PRuXNnhIeHY8mSJVAoFGpJLAC4urqiuLgYW7ZsQY8ePbBnzx7s2LGjwfnd3d3xwgsvYPbs2Xj77bfVtj88KXr06IEdO3YgLi4OH3zwAVxcXLB8+XKEhYVJbWbNmoXKykpMmDABN2/eRK9evbB3714YGRlJbQoLC1FWViYdjxo1CteuXcO8efNQWloKLy8v7N27F7a2ti06PyIiIo0R1GrExMQIACI/P18q8/T0FHZ2dmrtvvnmG9G1a1chl8uFk5OTWLJkiVp9x44dxbJly9TKLl++LACI48ePS2VJSUmibdu2IjMzUwghREFBgejVq5do06aN6Ny5s9i7d68AIHbs2CH1mTlzprC2thZmZmZi1KhRYtmyZcLCwqLBXP7zn/8IACInJ+ehr0N5ebkAIMrKyh66Lz1+NTU1YufOnaKmpkbTQ6FGMD7ajfHRfoxR89V//y4vL79nO5kQouWfhUT0Ny1cuBBff/01Tp48+dB9FQoFLCwsUFZWprFtCdQ0pVKJlJQUhIaGcj+aFmJ8tBvjo/0Yo+ar//5dXl6udrP5X/EvlNETpaKiAqdPn8aqVaswefJkTQ+HiIiItAyTW3qiREdHw8fHB0FBQXj77bc1PRwiIiLSMryhjJ4oycnJSE5O1vQwiIiISEtx5ZaIiIiIdAaTWyIiIiLSGUxuiYiIiEhnMLklIiIiIp3B5JaIiIiIdAaTWyIiIiLSGUxuiYiIiEhnMLklIiIiIp3B5FYHBQUFYerUqZoexiMRERGBV199VdPD+Nvi4+Mhk8nUXm5ublL9559/jqCgIJibm0Mmk+HmzZsPdN7Vq1fD2dkZRkZG8Pf3R05OzmOaARER0ZOBye0TLC0t7aESIdKs5557DiUlJdIrIyNDqquqqsLAgQPx7rvvPvD5tm7ditjYWMyfPx/Hjh2Dp6cnQkJCcPXq1ccxfCIioicC//wuPZCamhq0adNG08N4ohkYGMDOzq7RuvqV9rS0tAc+39KlSxEZGYmxY8cCANasWYM9e/Zg/fr1mDNnzt8dLhER0ROJK7eP0O7du2FpaYm6ujoAQF5eHmQymVqiMX78eLz55psAgIyMDPTu3RvGxsZwdHTElClTUFlZKbX9n//5H/j6+qJt27aws7PDP/7xD2lVrqioCH379gUAtGvXDjKZDBEREVJflUqFWbNmwcrKCnZ2doiPj1cb682bNzF+/HjY2NjA3Nwc/fr1w4kTJ6T6+Ph4eHl54d///jdcXFxgZGR03/mrVCp8/PHH6NSpEwwNDeHk5ITFixdL9adOnUK/fv1gbGwMa2trTJgwARUVFVJ9XV0dYmNjYWlpCWtra8yaNQtCiAbvkZCQABcXFxgbG8PT0xPffPPNfcfWGP+EfXCes+exvu524cIFODg44JlnnkFYWBiKi4ubNW7gzg8bubm5CA4Olsr09PQQHByMrKysZp+XiIjoSceV20eod+/euHXrFo4fPw5fX1+kp6ejffv2aqtx6enpmD17NgoLCzFw4EAsWrQI69evx7Vr1xAdHY3o6Ghs2LABAKBUKrFw4UJ06dIFV69eRWxsLCIiIpCSkgJHR0ds374dI0aMQEFBAczNzWFsbCy9z8aNGxEbG4vs7GxkZWUhIiICAQEBGDBgAADg9ddfh7GxMb7//ntYWFhg7dq16N+/P86fPw8rKysAwMWLF7F9+3Z8++230NfXv+/84+LisG7dOixbtgy9evVCSUkJzp07BwCorKxESEgIevbsiSNHjuDq1asYP348oqOjkZycDABISkpCcnIy1q9fD3d3dyQlJWHHjh3o16+f9B4JCQnYtGkT1qxZA1dXV/z000948803YWNjg8DAwEbHVV1djerqaulYoVAAAAz1BPT1RaN9HhWlUgkA8PHxwb///W907twZpaWlWLRoEXr37o3jx4+jbdu2Uvva2lqpX33fxpSUlKCurg7W1tZq7dq3b4/8/Px79tV29WN/kuegyxgf7cb4aD/GqPke9JrJxF+Xxuhv8fHxwejRozFjxgwMGzYMPXr0wIIFC/DHH3+gvLwcTz/9NM6fP4+PPvoI+vr6WLt2rdQ3IyMDgYGBqKysbHSl9OjRo+jRowdu3boFMzMzpKWloW/fvrhx4wYsLS2ldkFBQairq8PBgwelMj8/P/Tr1w+JiYnIyMjA4MGDcfXqVRgaGkptOnXqhFmzZmHChAmIj4/Hhx9+iF9//RU2Njb3nfetW7dgY2ODVatWYfz48Q3q161bh9mzZ+PKlSswNTUFAKSkpGDIkCH47bffYGtrCwcHB0ybNg0zZ84EcCfRc3FxgY+PD3bu3Inq6mpYWVnhxx9/RM+ePaVzjx8/HlVVVfjyyy8bHVt8fDwWLFjQoPzLL7+EiYnJfef2OFRUVGDChAkYO3as9AMHcGd1e+7cudi0aRPMzMya7H/9+nW8/fbbSExMVLsxLTk5GWfOnMGSJUse6/iJiIhaWlVVFf7xj3+gvLwc5ubmTbbjyu0jFhgYiLS0NEyfPh0HDx5EQkICtm3bhoyMDFy/fh0ODg5wdXXFiRMncPLkSWzevFnqK4SASqXC5cuX4e7ujtzcXMTHx+PEiRO4ceMGVCoVAKC4uBhdu3a95zi6d++udmxvby9taThx4gQqKipgbW2t1ubPP/9EYWGhdNyxY8cHSmwBID8/H9XV1ejfv3+T9Z6enlJiCwABAQFQqVQoKCiAkZERSkpK4O/vL9UbGBjA19dX2ppw8eJFVFVVqSWDwJ1f0Xt7ezc5tri4OMTGxkrHCoUCjo6OWHRcD7Xy+69I/x2n40OarFu2bBlMTEwQGhoqldVfn5deekntB5a/qqmpQWRkJJ599lm1/t988w26dOmiVvakUSqVSE1NxYABAyCXyzU9HPoLxke7MT7ajzFqvvrfvN4Pk9tHLCgoCOvXr8eJEycgl8vh5uaGoKAgpKWl4caNG9KvzisqKvDPf/4TU6ZMaXAOJycn6df4ISEh2Lx5M2xsbFBcXIyQkBDU1NTcdxx//Q8jk8mk5LiiogL29vaN3rx0d0J1dyJ6P3dviXhc6vfn7tmzB0899ZRa3d0r0H9laGjYaH21SobaOtmjHeRfNPXBVVFRgUuXLmHMmDFqbQwMDKR+9/rQk8vl8PHxQXp6Ol577TUAd/YjHzhwANHR0TrxgXm/a0CaxfhoN8ZH+zFGD+9BrxeT20esft/tsmXLpEQ2KCgIiYmJuHHjBqZPnw4AeP7553H27Fl06tSp0fOcOnUKf/zxBxITE+Ho6AjgzraEu9U/vaD+BrYH9fzzz6O0tBQGBgZwdnZ+qL5NcXV1hbGxMfbt29fotgR3d3ckJyejsrJSSpozMzOhp6eHLl26wMLCAvb29sjOzkafPn0A3NmWkJubi+effx4A0LVrVxgaGqK4uLjJ/bUPIzuuf4PV68dlxowZGDJkCDp27IjffvsN8+fPh76+PkaPHg0AKC0tRWlpKS5evAjgTvzbtm0LJycnaQ90//79MWzYMERHRwMAYmNjER4eDl9fX/j5+WH58uWorKyUnp5ARETUGvFpCY9Yu3bt0L17d2zevBlBQUEAgD59+uDYsWM4f/68lJTNnj0bhw4dQnR0NPLy8nDhwgV89913UuLi5OSENm3aYOXKlbh06RJ27dqFhQsXqr1Xx44dIZPJsHv3bly7dk3tyQP3EhwcjJ49e+LVV1/FDz/8gKKiIhw6dAjvvfdegwT6QRkZGWH27NmYNWsWvvjiCxQWFuLw4cP4z3/+AwAICwuDkZERwsPDcfr0aRw4cACTJ0/GW2+9BVtbWwBATEwMEhMTsXPnTpw7dw6TJk1Se4Zv27ZtMWPGDEybNg0bN25EYWEhjh07hpUrV2Ljxo3NGndL+eWXXzB69Gh06dIFI0eOhLW1NQ4fPixt+1izZg28vb0RGRkJ4M6/GW9vb+zatUs6R2FhIcrKyqTjUaNG4V//+hfmzZsHLy8v5OXlYe/evdL1JCIiapUEPXIxMTECgMjPz5fKPD09hZ2dnVq7nJwcMWDAAGFmZiZMTU1F9+7dxeLFi6X6L7/8Ujg7OwtDQ0PRs2dPsWvXLgFAHD9+XGrzwQcfCDs7OyGTyUR4eLgQQojAwEARExOj9l5Dhw6V6oUQQqFQiMmTJwsHBwchl8uFo6OjCAsLE8XFxUIIIebPny88PT0fat51dXVi0aJFomPHjkIulwsnJyfx4YcfSvUnT54Uffv2FUZGRsLKykpERkaKW7duSfVKpVLExMQIc3NzYWlpKWJjY8WYMWPE0KFDpTYqlUosX75cdOnSRcjlcmFjYyNCQkJEenr6A4+zvLxcABBlZWUPNT9qGTU1NWLnzp2ipqZG00OhRjA+2o3x0X6MUfPVf/8uLy+/Zzs+LYFaHYVCAQsLC5SVlbXYtgR6cEqlEikpKQgNDeV+NC3E+Gg3xkf7MUbNV//9+35PS+C2BCIiIiLSGUxu6YEUFxfDzMysydff+WtbRERERI8Kn5ZAD8TBwQF5eXn3rCciIiLSNCa39EAMDAyafGwZERERkbbgtgQiIiIi0hlMbomIiIhIZzC5JSIiIiKdweSWiIiIiHQGk1siIiIi0hlMbomIiIhIZzC5JSIiIiKdweSWtFZycjIsLS01PYxHKjExETKZDFOnTpXKCgsLMWzYMNjY2MDc3BwjR47E77//ft9zrV69Gs7OzjAyMoK/vz9ycnIe48iJiIieDExuSWuNGjUK58+f1/QwHpkjR45g7dq16N69u1RWWVmJl156CTKZDPv370dmZiZqamowZMgQqFSqJs+1detWxMbGYv78+Th27Bg8PT0REhKCq1evtsRUiIiItBaTW9KImpqa+7YxNjZGhw4dWmA0j19FRQXCwsKwbt06tGvXTirPzMxEUVERkpOT4eHhAQ8PD2zcuBFHjx7F/v37mzzf0qVLERkZibFjx6Jr165Ys2YNTExMsH79+paYDhERkdbin9+lFhEUFIRu3brBwMAAmzZtgoeHB4YMGYINGzbg0qVLsLKywpAhQ/Dxxx/DzMwMwJ1tCVOnTsXNmzcBAPHx8di5cyemT5+OuXPn4saNGxg0aBDWrVuHtm3bPvSY/BP2odbA9FFOU01R4mDp66ioKAwePBjBwcFYtGiRVF5dXQ2ZTAZDQ0OpzMjICHp6esjIyEBwcHCD89bU1CA3NxdxcXFSmZ6eHoKDg5GVlfWYZkNERPRk4MottZiNGzeiTZs2yMzMxJo1a6Cnp4cVK1bgzJkz2LhxI/bv349Zs2bd8xyFhYXYuXMndu/ejd27dyM9PR2JiYktNIPm2bJlC44dO4aEhIQGdS+88AJMTU0xe/ZsVFVVobKyEjNmzEBdXR1KSkoaPV9ZWRnq6upga2urVm5ra4vS0tLHMgciIqInBVduqcW4urri448/lo67dOkife3s7IxFixbhnXfewaefftrkOVQqFZKTk6WV2rfeegv79u3D4sWLm+xTXV2N6upq6VihUAAADPUE9PVFs+dzP0qlEleuXEFMTAxSUlKgr68PpVIJIQRUKhWUSiUsLS3x1VdfYfLkyVixYgX09PQwatQoeHt7S+do7LwAUFtbq1ZfV1cHIUSjfZ4k9eN/0uehqxgf7cb4aD/GqPke9JoxuaUW4+Pjo3b8448/IiEhAefOnYNCoUBtbS1u376NqqoqmJiYNHoOZ2dntS0I9vb2972JKiEhAQsWLGhQ/r63CiYmdc2YyYNJSUnB4cOHcfXqVfj5+UnlKpUKBw8exOrVq/H1119DX18fS5cuhUKhgJ6eHszMzBAREYHu3bsjJSWlwXmVSiX09PSQkpKC69evS+XHjx+HTCZrtM+TKDU1VdNDoHtgfLQb46P9GKOHV1VV9UDtmNxSizE1/b/9rUVFRXj55ZcxceJELF68GFZWVsjIyMC4ceNQU1PTZHIrl8vVjmUy2T2fKgAAcXFxiI2NlY4VCgUcHR2x6LgeauX6f2NG93Y6PgS9e/fGyJEj1cojIyPRpUsXzJgxA926dWvQ78CBAygvL8eMGTPUVrfv5uPjA4VCgdDQUAB3EuaoqChMnDhRKntSKZVKpKamYsCAAQ3iTZrH+Gg3xkf7MUbNV/+b1/thcksakZubC5VKhaSkJOjp3dn6vW3btsfyXoaGhmo3bNX7aXYwrK2tH8t71rOysoKVlZVamZmZGWxsbKStBxs2bIC7uztsbGyQlZWFmJgYTJs2TS3x7d+/P4YNG4bo6GgAwPTp0xEeHg4/Pz/4+flh+fLlqKysxPjx43Xmw1Iul+vMXHQR46PdGB/txxg9vAe9XkxuSSM6deoEpVKJlStXYsiQIdJNZq1RQUEB4uLicP36dTg7O+O9997DtGnT1NoUFhairKxMOh41ahSuXbuGefPmobS0FF5eXti7d2+Dm8yIiIhaGya3pBGenp5YunQpPvroI8TFxaFPnz5ISEjAmDFjND20xy4tLU3tODEx8b5PfCgqKmpQFh0dLa3kEhER0R0yIcTju12cSAspFApYWFigrKzssW9LoIenVCqRkpKC0NBQ/spOCzE+2o3x0X6MUfPVf/8uLy+Hubl5k+34nFsiIiIi0hlMbomIiIhIZzC5JSIiIiKdweSWiIiIiHQGk1siIiIi0hlMbomIiIhIZzC5JSIiIiKdweSWiIiIiHQGk1siIiIi0hlMbomIiIhIZzC5JSIiIiKdweSWNKa0tBQDBgyAqakpLC0tH6hPcnKyWtv4+Hh4eXk9lvEBwE8//YQhQ4bAwcEBMpkMO3fuVKuXyWSNvpYsWXLP865evRrOzs4wMjKCv78/cnJyHtsciIiIWhMmt6Qxy5YtQ0lJCfLy8nD+/HlND6dRlZWV8PT0xOrVqxutLykpUXutX78eMpkMI0aMaPKcW7duRWxsLObPn49jx47B09MTISEhuHr16uOaBhERUathoOkBUOtVWFgIHx8fuLq6anooTRo0aBAGDRrUZL2dnZ3a8XfffYe+ffvimWeeabLP0qVLERkZibFjxwIA1qxZgz179mD9+vWYM2fOoxk4ERFRK8WV21bmm2++gYeHB4yNjWFtbY3g4GBUVlYiIiICr776Kv71r3/B3t4e1tbWiIqKglKplPreuHEDY8aMQbt27WBiYoJBgwbhwoULAAAhBGxsbPDNN99I7b28vGBvby8dZ2RkwNDQEFVVVXB2dsb27dvxxRdfQCaTISIiAsCdxM/DwwOmpqZwdHTEpEmTUFFR8ViuhX/CPjjP2dPoqzl+//137NmzB+PGjWuyTU1NDXJzcxEcHCyV6enpITg4GFlZWc16XyIiIvo/TG5bkZKSEowePRpvv/028vPzkZaWhuHDh0MIAQA4cOAACgsLceDAAWzcuBHJyclITk6W+kdERODo0aPYtWsXsrKyIIRAaGgolEolZDIZ+vTpg7S0NAB3EuH8/Hz8+eefOHfuHAAgPT0dPXr0gImJCY4cOYKBAwdi5MiRKCkpwSeffALgTqK3YsUKnDlzBhs3bsT+/fsxa9asFr1OzbVx40a0bdsWw4cPb7JNWVkZ6urqYGtrq1Zua2uL0tLSxz1EIiIincdtCa1ISUkJamtrMXz4cHTs2BEA4OHhIdW3a9cOq1atgr6+Ptzc3DB48GDs27cPkZGRuHDhAnbt2oXMzEy8+OKLAIDNmzfD0dERO3fuxOuvv46goCCsXbsWwJ0bsby9vWFnZ4e0tDS4ubkhLS0NgYGBAAAbGxsYGhrC2NhY7Vf7U6dOlb52dnbGokWL8M477+DTTz9t9ryrq6tRXV0tHSsUCgCAoZ6Avr5otM/dK9Z3q62tbbLuP//5D0aPHg19ff0m29SX//U8dXV1EEI02a81qb8GvBbaifHRboyP9mOMmu9BrxmT21bE09MT/fv3h4eHB0JCQvDSSy/htddeQ7t27QAAzz33HPT19aX29vb2OHXqFAAgPz8fBgYG8Pf3l+qtra3RpUsX5OfnAwACAwMRExODa9euIT09HUFBQVJyO27cOBw6dOi+q7A//vgjEhIScO7cOSgUCtTW1uL27duoqqqCiYlJs+adkJCABQsWNCh/31sFE5O6RvukpKQ0Wp6bmwu5XN6g/MyZMzh//jwmTpzYZF/gzn9MPT09pKSk4Pr161L58ePHIZPJ7tm3tUlNTdX0EOgeGB/txvhoP8bo4VVVVT1QOya3rYi+vj5SU1Nx6NAh/PDDD1i5ciXee+89ZGdnA0CDpE0mk0GlUj3w+T08PGBlZYX09HSkp6dj8eLFsLOzw0cffYQjR45AqVRKq76NKSoqwssvv4yJEydi8eLFsLKyQkZGBsaNG4eamppmJ7dxcXGIjY2VjhUKBRwdHbHouB5q5fqN9jkdH9JouY+PD0JDQxuUb9++Hc8//zyioqLuOx4fHx8oFArpPCqVClFRUZg4cWKj525tlEolUlNTMWDAgEZ/kCDNYny0G+Oj/Rij5qv/zev9MLltZWQyGQICAhAQEIB58+ahY8eO2LFjx337ubu7o7a2FtnZ2VKC+scff6CgoABdu3aVzt27d2989913OHPmDHr16gUTExNUV1dj7dq18PX1hampaZPvkZubC5VKhaSkJOjp3dkOvm3btr89Z0NDQxgaGjYo/2l2MKytre/Zt6KiAhcvXpSOr1y5gjNnzsDKygpOTk4A7vxn2759O5KSkhr9oOrfvz+GDRuG6OhoAMD06dMRHh4OPz8/+Pn5Yfny5aisrMT48eP5QXcXuVzO66HFGB/txvhoP8bo4T3o9WJy24pkZ2dj3759eOmll9ChQwdkZ2fj2rVrcHd3x8mTJ+/Z19XVFUOHDkVkZCTWrl2Ltm3bYs6cOXjqqacwdOhQqV1QUBCmT58OX19fmJmZAQD69OmDzZs3Y+bMmfd8j06dOkGpVGLlypUYMmQIMjMzsWbNmr8/8b/h6NGj6Nu3r3RcvwIcHh4u3Wy3ZcsWCCEwevToRs9RWFiIsrIy6XjUqFG4du0a5s2bh9LSUnh5eWHv3r0NbjIjIiKih8enJbQi5ubm+OmnnxAaGorOnTvj/fffR1JS0j2f43q3DRs2wMfHBy+//DJ69uwJIQRSUlLUfpIKDAxEXV0dgoKCpLKgoKAGZY3x9PTE0qVL8dFHH6Fbt27YvHkzEhISmjPVRyYoKAhCiAavu58iMWHCBFRVVcHCwqLRcxQVFSE+Pl6tLDo6Gj///DOqq6uRnZ2ttpeZiIiImk8m6p8DRdRKKBQKWFhYoKys7L7bEqjlKZVKpKSkIDQ0lL+y00KMj3ZjfLQfY9R89d+/y8vLYW5u3mQ7rtwSERERkc5gcktEREREOoPJLRERERHpDCa3RERERKQzmNwSERERkc5gcktEREREOoPJLRERERHpDCa3RERERKQzmNwSERERkc5gcktEREREOoPJLRERERHpDCa3RERERKQzmNwSERERkc5gcktEREREOoPJLRERERHpDCa3RERERKQzDDQ9AKKWJoQAANy6dQtyuVzDo6G/UiqVqKqqgkKhYHy0EOOj3Rgf7ccYNZ9CoQDwf9/Hm8LkllqdP/74AwDg4uKi4ZEQERHRw7p16xYsLCyarGdyS62OlZUVAKC4uPie/zlIMxQKBRwdHXHlyhWYm5trejj0F4yPdmN8tB9j1HxCCNy6dQsODg73bMfkllodPb07W80tLCz4waLFzM3NGR8txvhoN8ZH+zFGzfMgi1K8oYyIiIiIdAaTWyIiIiLSGUxuqdUxNDTE/PnzYWhoqOmhUCMYH+3G+Gg3xkf7MUaPn0zc73kKRERERERPCK7cEhEREZHOYHJLRERERDqDyS0RERER6Qwmt0RERESkM5jcUquyevVqODs7w8jICP7+/sjJydH0kFqFhIQE9OjRA23btkWHDh3w6quvoqCgQK3N7du3ERUVBWtra5iZmWHEiBH4/fff1doUFxdj8ODBMDExQYcOHTBz5kzU1ta25FRahcTERMhkMkydOlUqY3w069dff8Wbb74Ja2trGBsbw8PDA0ePHpXqhRCYN28e7O3tYWxsjODgYFy4cEHtHNevX0dYWBjMzc1haWmJcePGoaKioqWnonPq6uowd+5cuLi4wNjYGM8++ywWLlyIu+/XZ3xamCBqJbZs2SLatGkj1q9fL86cOSMiIyOFpaWl+P333zU9NJ0XEhIiNmzYIE6fPi3y8vJEaGiocHJyEhUVFVKbd955Rzg6Oop9+/aJo0ePihdeeEG8+OKLUn1tba3o1q2bCA4OFsePHxcpKSmiffv2Ii4uThNT0lk5OTnC2dlZdO/eXcTExEjljI/mXL9+XXTs2FFERESI7OxscenSJfHf//5XXLx4UWqTmJgoLCwsxM6dO8WJEyfEK6+8IlxcXMSff/4ptRk4cKDw9PQUhw8fFgcPHhSdOnUSo0eP1sSUdMrixYuFtbW12L17t7h8+bL4+uuvhZmZmfjkk0+kNoxPy2JyS62Gn5+fiIqKko7r6uqEg4ODSEhI0OCoWqerV68KACI9PV0IIcTNmzeFXC4XX3/9tdQmPz9fABBZWVlCCCFSUlKEnp6eKC0tldp89tlnwtzcXFRXV7fsBHTUrVu3hKurq0hNTRWBgYFScsv4aNbs2bNFr169mqxXqVTCzs5OLFmyRCq7efOmMDQ0FF999ZUQQoizZ88KAOLIkSNSm++//17IZDLx66+/Pr7BtwKDBw8Wb7/9tlrZ8OHDRVhYmBCC8dEEbkugVqGmpga5ubkIDg6WyvT09BAcHIysrCwNjqx1Ki8vBwBYWVkBAHJzc6FUKtXi4+bmBicnJyk+WVlZ8PDwgK2trdQmJCQECoUCZ86cacHR666oqCgMHjxYLQ4A46Npu3btgq+vL15//XV06NAB3t7eWLdunVR/+fJllJaWqsXHwsIC/v7+avGxtLSEr6+v1CY4OBh6enrIzs5uucnooBdffBH79u3D+fPnAQAnTpxARkYGBg0aBIDx0QQDTQ+AqCWUlZWhrq5O7RsvANja2uLcuXMaGlXrpFKpMHXqVAQEBKBbt24AgNLSUrRp0waWlpZqbW1tbVFaWiq1aSx+9XX092zZsgXHjh3DkSNHGtQxPpp16dIlfPbZZ4iNjcW7776LI0eOYMqUKWjTpg3Cw8Ol69vY9b87Ph06dFCrNzAwgJWVFePzN82ZMwcKhQJubm7Q19dHXV0dFi9ejLCwMABgfDSAyS0RtaioqCicPn0aGRkZmh4K/X9XrlxBTEwMUlNTYWRkpOnh0F+oVCr4+vriww8/BAB4e3vj9OnTWLNmDcLDwzU8Otq2bRs2b96ML7/8Es899xzy8vIwdepUODg4MD4awm0J1Cq0b98e+vr6De7u/v3332FnZ6ehUbU+0dHR2L17Nw4cOICnn35aKrezs0NNTQ1u3ryp1v7u+NjZ2TUav/o6ar7c3FxcvXoVzz//PAwMDGBgYID09HSsWLECBgYGsLW1ZXw0yN7eHl27dlUrc3d3R3FxMYD/u773+nyzs7PD1atX1epra2tx/fp1xudvmjlzJubMmYM33ngDHh4eeOuttzBt2jQkJCQAYHw0gckttQpt2rSBj48P9u3bJ5WpVCrs27cPPXv21ODIWgchBKKjo7Fjxw7s378fLi4uavU+Pj6Qy+Vq8SkoKEBxcbEUn549e+LUqVNq3wBSU1Nhbm7e4Bs/PZz+/fvj1KlTyMvLk16+vr4ICwuTvmZ8NCcgIKDBo/POnz+Pjh07AgBcXFxgZ2enFh+FQoHs7Gy1+Ny8eRO5ublSm/3790OlUsHf378FZqG7qqqqoKennk7p6+tDpVIBYHw0QtN3tBG1lC1btghDQ0ORnJwszp49KyZMmCAsLS3V7u6mx2PixInCwsJCpKWliZKSEulVVVUltXnnnXeEk5OT2L9/vzh69Kjo2bOn6Nmzp1Rf/6ipl156SeTl5Ym9e/cKGxsbPmrqMbn7aQlCMD6alJOTIwwMDMTixYvFhQsXxObNm4WJiYnYtGmT1CYxMVFYWlqK7777Tpw8eVIMHTq00UdNeXt7i+zsbJGRkSFcXV35qKlHIDw8XDz11FPSo8C+/fZb0b59ezFr1iypDePTspjcUquycuVK4eTkJNq0aSP8/PzE4cOHNT2kVgFAo68NGzZIbf78808xadIk0a5dO2FiYiKGDRsmSkpK1M5TVFQkBg0aJIyNjUX79u3F9OnThVKpbOHZtA5/TW4ZH8363//9X9GtWzdhaGgo3NzcxOeff65Wr1KpxNy5c4Wtra0wNDQU/fv3FwUFBWpt/vjjDzF69GhhZmYmzM3NxdixY8WtW7dacho6SaFQiJiYGOHk5CSMjIzEM888I9577z21R+AxPi1LJsRdf0KDiIiIiOgJxj23RERERKQzmNwSERERkc5gcktEREREOoPJLRERERHpDCa3RERERKQzmNwSERERkc5gcktEREREOoPJLRERERHpDCa3RETUoiIiIiCTyRq8Ll68qOmhEZEOMND0AIiIqPUZOHAgNmzYoFZmY2OjodGoUyqVkMvlmh4GETUTV26JiKjFGRoaws7OTu2lr6/faNuff/4ZQ4YMQbt27WBqaornnnsOKSkpUv2ZM2fw8ssvw9zcHG3btkXv3r1RWFgIAFCpVPjggw/w9NNPw9DQEF5eXti7d6/Ut6ioCDKZDFu3bkVgYCCMjIywefNmAMC///1vuLu7w8jICG5ubvj0008f4xUhokeFK7dERKTVoqKiUFNTg59++gmmpqY4e/YszMzMAAC//vor+vTpg6CgIOzfvx/m5ubIzMxEbW0tAOCTTz5BUlIS1q5dC29vb6xfvx6vvPIKzpw5A1dXV+k95syZg6SkJHh7e0sJ7rx587Bq1Sp4e3vj+PHjiIyMhKmpKcLDwzVyHYjowciEEELTgyAiotYjIiICmzZtgpGRkVQ2aNAgfP3114227969O0aMGIH58+c3qHv33XexZcsWFBQUNLqV4KmnnkJUVBTeffddqczPzw89evTA6tWrUVRUBBcXFyxfvhwxMTFSm06dOmHhwoUYPXq0VLZo0SKkpKTg0KFDzZo3EbUMrtwSEVGL69u3Lz777DPp2NTUtMm2U6ZMwcSJE/HDDz8gODgYI0aMQPfu3QEAeXl56N27d6OJrUKhwG+//YaAgAC18oCAAJw4cUKtzNfXV/q6srIShYWFGDduHCIjI6Xy2tpaWFhYPNxEiajFMbklIqIWZ2pqik6dOj1Q2/HjxyMkJAR79uzBDz/8gISEBCQlJWHy5MkwNjZ+ZOOpV1FRAQBYt24d/P391do1tS+YiLQHbygjIiKt5+joiHfeeQfffvstpk+fjnXr1gG4s2Xh4MGDUCqVDfqYm5vDwcEBmZmZauWZmZno2rVrk+9la2sLBwcHXLp0CZ06dVJ7ubi4PNqJEdEjx5VbIiLSalOnTsWgQYPQuXNn3LhxAwcOHIC7uzsAIDo6GitXrsQbb7yBuLg4WFhY4PDhw/Dz80OXLl0wc+ZMzJ8/H88++yy8vLywYcMG5OXlSU9EaMqCBQswZcoUWFhYYODAgaiursbRo0dx48YNxMbGtsS0iaiZmNwSEZFWq6urQ1RUFH755ReYm5tj4MCBWLZsGQDA2toa+/fvx8yZMxEYGAh9fX14eXlJ+2ynTJmC8vJyTJ8+HVevXkXXrl2xa9cutSclNGb8+PEwMTHBkiVLMHPmTJiamsLDwwNTp0593NMlor+JT0sgIiIiIp3BPbdEREREpDOY3BIRERGRzmByS0REREQ6g8ktEREREekMJrdEREREpDOY3BIRERGRzmByS0REREQ6g8ktEREREekMJrdEREREpDOY3BIRERGRzmByS0REREQ6g8ktEREREemM/wctKfOaKKx62QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Import the plot_importance function from XGBoost\n",
"from xgboost import plot_importance\n",
"\n",
"# Plot feature importances using the plot_importance function from XGBoost\n",
"plot_importance(\n",
" model, \n",
" max_num_features=25, # Display the top 25 most important features\n",
")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As shown in the above feature importance plot features like `temperature`, `day`, `hour` and `month` are most important for predicting the dependent variable. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style='color:#2656a3'>π Model Registry</span>\n",
"\n",
"The Model Registry in Hopsworks enable us to store the trained model. The model registry centralizes model management, enabling models to be securely accessed and governed. We can also save model metrics with the model, enabling the user to understand performance of the model on test (or unseen) data."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"# Importing the libraries for saving the model\n",
"from hsml.schema import Schema\n",
"from hsml.model_schema import ModelSchema\n",
"import joblib"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connected. Call `.close()` to terminate connection gracefully.\n"
]
}
],
"source": [
"# Retrieving the Model Registry from Hopsworks\n",
"mr = project.get_model_registry()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### <span style=\"color:#ff5f27;\">βοΈ Model Schema</span>\n",
"A model schema defines the structure and format of the input and output data that a machine learning model expects and produces, respectively. It serves as a **blueprint** for understanding how to interact with the model in terms of input features and output predictions. In the context of the Hopsworks platform, a model schema is typically defined using the Schema class, which specifies the features expected in the input data and the target variable in the output data. This schema helps ensure consistency and compatibility between the model and the data it operates on."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"# Imoprt the os library to interact with the operating system\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"# Specify the schema of the model's input and output using the features (X_train) and dependent variable (y_train)\n",
"input_schema = Schema(X_train)\n",
"output_schema = Schema(y_train)\n",
"\n",
"# Create a model schema using the input and output schemas\n",
"model_schema = ModelSchema(input_schema, output_schema)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"# Define the directory path (folder path) where the trained model will be exported\n",
"model_dir = \"model\"\n",
"\n",
"# Check if the directory already exists, if not create it\n",
"if not os.path.isdir(model_dir):\n",
" os.mkdir(model_dir)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['model/dk_electricity_model.pkl']"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Save the XGBoost Regressor model as joblib file in the model directory\n",
"joblib.dump(model, model_dir + \"/dk_electricity_model.pkl\")"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"# Create an entry in the model registry with the specified details \n",
"xgb_model = mr.python.create_model(\n",
" name=\"electricity_price_prediction_model\", # Name of the model\n",
" metrics={ # Evaluation metrics for the model\n",
" \"MSE\": mse,\n",
" \"R squared\": r2,\n",
" \"MAE\": mae,\n",
" },\n",
" model_schema=model_schema, # Schema defining the input and output data structure of the model\n",
" input_example=X_train.sample(), # Example input data for the model\n",
" description=\"DK1 Electricity Price Predictor\" # Description of the model\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Uploading: 100.000%|ββββββββββ| 455148/455148 elapsed<00:02 remaining<00:00 3.33it/s]\n",
"Uploading input_example and model_schema: 33%|ββββ | 2/6 [00:02<00:05, 1.47s/it]DeprecationWarning: np.find_common_type is deprecated. Please use `np.result_type` or `np.promote_types`.\n",
"See https://numpy.org/devdocs/release/1.25.0-notes.html and the docs for more information. (Deprecated NumPy 1.25)\n",
"Uploading: 100.000%|ββββββββββ| 82/82 elapsed<00:01 remaining<00:00\n",
"Uploading: 100.000%|ββββββββββ| 1271/1271 elapsed<00:01 remaining<00:00\n",
"Model export complete: 100%|ββββββββββ| 6/6 [00:11<00:00, 1.88s/it] "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model created, explore it at https://c.app.hopsworks.ai:443/p/550040/models/electricity_price_prediction_model/1\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"Model(name: 'electricity_price_prediction_model', version: 1)"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Upload the model to Hopsworks\n",
"xgb_model.save(model_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style=\"color:#2656a3;\">βοΈ **Next:** Part 04: Batch Inference </span>\n",
"\n",
"Next notebook we will use the registered model to make predictions based on the batch data."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "bds-mlops",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|