Spaces:
Sleeping
Sleeping
Commit
Β·
b47dba5
1
Parent(s):
a102efa
final changes
Browse files- features/__pycache__/calendar.cpython-311.pyc +0 -0
- features/__pycache__/electricity_prices.cpython-311.pyc +0 -0
- features/__pycache__/weather_measures.cpython-311.pyc +0 -0
- notebooks/1_feature_backfill.ipynb +178 -62
- notebooks/2_feature_pipeline.ipynb +120 -55
- notebooks/3_training_pipeline.ipynb +0 -0
- notebooks/4_batch_inference.ipynb +0 -0
- notebooks/model/dk_electricity_model.pkl +0 -0
features/__pycache__/calendar.cpython-311.pyc
CHANGED
Binary files a/features/__pycache__/calendar.cpython-311.pyc and b/features/__pycache__/calendar.cpython-311.pyc differ
|
|
features/__pycache__/electricity_prices.cpython-311.pyc
CHANGED
Binary files a/features/__pycache__/electricity_prices.cpython-311.pyc and b/features/__pycache__/electricity_prices.cpython-311.pyc differ
|
|
features/__pycache__/weather_measures.cpython-311.pyc
CHANGED
Binary files a/features/__pycache__/weather_measures.cpython-311.pyc and b/features/__pycache__/weather_measures.cpython-311.pyc differ
|
|
notebooks/1_feature_backfill.ipynb
CHANGED
@@ -42,8 +42,8 @@
|
|
42 |
"name": "stdout",
|
43 |
"output_type": "stream",
|
44 |
"text": [
|
45 |
-
"/Users/
|
46 |
-
"/Users/
|
47 |
]
|
48 |
}
|
49 |
],
|
@@ -953,15 +953,15 @@
|
|
953 |
" <td>2024-05-10 19:00:00</td>\n",
|
954 |
" <td>2024-05-10</td>\n",
|
955 |
" <td>19</td>\n",
|
956 |
-
" <td>
|
957 |
-
" <td>
|
958 |
" <td>0.0</td>\n",
|
959 |
" <td>0.0</td>\n",
|
960 |
" <td>0.0</td>\n",
|
961 |
-
" <td>
|
962 |
-
" <td>
|
963 |
-
" <td>
|
964 |
-
" <td>
|
965 |
" </tr>\n",
|
966 |
" <tr>\n",
|
967 |
" <th>116</th>\n",
|
@@ -969,15 +969,15 @@
|
|
969 |
" <td>2024-05-10 20:00:00</td>\n",
|
970 |
" <td>2024-05-10</td>\n",
|
971 |
" <td>20</td>\n",
|
972 |
-
" <td>
|
973 |
-
" <td>
|
974 |
" <td>0.0</td>\n",
|
975 |
" <td>0.0</td>\n",
|
976 |
" <td>0.0</td>\n",
|
977 |
-
" <td>
|
978 |
-
" <td>
|
979 |
-
" <td>4
|
980 |
-
" <td>
|
981 |
" </tr>\n",
|
982 |
" <tr>\n",
|
983 |
" <th>117</th>\n",
|
@@ -985,15 +985,15 @@
|
|
985 |
" <td>2024-05-10 21:00:00</td>\n",
|
986 |
" <td>2024-05-10</td>\n",
|
987 |
" <td>21</td>\n",
|
988 |
-
" <td>
|
989 |
-
" <td>
|
990 |
" <td>0.0</td>\n",
|
991 |
" <td>0.0</td>\n",
|
992 |
" <td>0.0</td>\n",
|
993 |
-
" <td>
|
994 |
-
" <td>
|
995 |
-
" <td>
|
996 |
-
" <td>
|
997 |
" </tr>\n",
|
998 |
" <tr>\n",
|
999 |
" <th>118</th>\n",
|
@@ -1001,15 +1001,15 @@
|
|
1001 |
" <td>2024-05-10 22:00:00</td>\n",
|
1002 |
" <td>2024-05-10</td>\n",
|
1003 |
" <td>22</td>\n",
|
1004 |
-
" <td>
|
1005 |
-
" <td>
|
1006 |
-
" <td>0.0</td>\n",
|
1007 |
" <td>0.0</td>\n",
|
1008 |
" <td>0.0</td>\n",
|
1009 |
" <td>0.0</td>\n",
|
1010 |
-
" <td>
|
1011 |
-
" <td>
|
1012 |
-
" <td>
|
|
|
1013 |
" </tr>\n",
|
1014 |
" <tr>\n",
|
1015 |
" <th>119</th>\n",
|
@@ -1017,15 +1017,15 @@
|
|
1017 |
" <td>2024-05-10 23:00:00</td>\n",
|
1018 |
" <td>2024-05-10</td>\n",
|
1019 |
" <td>23</td>\n",
|
1020 |
-
" <td>8
|
1021 |
-
" <td>
|
1022 |
" <td>0.0</td>\n",
|
1023 |
" <td>0.0</td>\n",
|
1024 |
" <td>0.0</td>\n",
|
1025 |
-
" <td>
|
1026 |
-
" <td>
|
1027 |
-
" <td>
|
1028 |
-
" <td>
|
1029 |
" </tr>\n",
|
1030 |
" </tbody>\n",
|
1031 |
"</table>\n",
|
@@ -1033,25 +1033,25 @@
|
|
1033 |
],
|
1034 |
"text/plain": [
|
1035 |
" timestamp datetime date hour temperature_2m \\\n",
|
1036 |
-
"115 1715367600000 2024-05-10 19:00:00 2024-05-10 19
|
1037 |
-
"116 1715371200000 2024-05-10 20:00:00 2024-05-10 20
|
1038 |
-
"117 1715374800000 2024-05-10 21:00:00 2024-05-10 21
|
1039 |
-
"118 1715378400000 2024-05-10 22:00:00 2024-05-10 22
|
1040 |
-
"119 1715382000000 2024-05-10 23:00:00 2024-05-10 23 8
|
1041 |
"\n",
|
1042 |
" relative_humidity_2m precipitation rain snowfall weather_code \\\n",
|
1043 |
-
"115
|
1044 |
-
"116
|
1045 |
-
"117
|
1046 |
-
"118
|
1047 |
-
"119
|
1048 |
"\n",
|
1049 |
" cloud_cover wind_speed_10m wind_gusts_10m \n",
|
1050 |
-
"115
|
1051 |
-
"116
|
1052 |
-
"117
|
1053 |
-
"118
|
1054 |
-
"119
|
1055 |
]
|
1056 |
},
|
1057 |
"execution_count": 13,
|
@@ -1366,9 +1366,20 @@
|
|
1366 |
},
|
1367 |
{
|
1368 |
"cell_type": "code",
|
1369 |
-
"execution_count":
|
1370 |
"metadata": {},
|
1371 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1372 |
"source": [
|
1373 |
"# Importing the hopsworks module for interacting with the Hopsworks platform\n",
|
1374 |
"import hopsworks\n",
|
@@ -1400,7 +1411,7 @@
|
|
1400 |
},
|
1401 |
{
|
1402 |
"cell_type": "code",
|
1403 |
-
"execution_count":
|
1404 |
"metadata": {},
|
1405 |
"outputs": [],
|
1406 |
"source": [
|
@@ -1424,9 +1435,44 @@
|
|
1424 |
},
|
1425 |
{
|
1426 |
"cell_type": "code",
|
1427 |
-
"execution_count":
|
1428 |
"metadata": {},
|
1429 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1430 |
"source": [
|
1431 |
"# Inserting the electricity_df into the feature group named electricity_fg\n",
|
1432 |
"electricity_fg.insert(electricity_df)"
|
@@ -1441,7 +1487,7 @@
|
|
1441 |
},
|
1442 |
{
|
1443 |
"cell_type": "code",
|
1444 |
-
"execution_count":
|
1445 |
"metadata": {},
|
1446 |
"outputs": [],
|
1447 |
"source": [
|
@@ -1468,7 +1514,7 @@
|
|
1468 |
},
|
1469 |
{
|
1470 |
"cell_type": "code",
|
1471 |
-
"execution_count":
|
1472 |
"metadata": {},
|
1473 |
"outputs": [],
|
1474 |
"source": [
|
@@ -1485,9 +1531,44 @@
|
|
1485 |
},
|
1486 |
{
|
1487 |
"cell_type": "code",
|
1488 |
-
"execution_count":
|
1489 |
"metadata": {},
|
1490 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1491 |
"source": [
|
1492 |
"# Inserting the weather_df into the feature group named weather_fg\n",
|
1493 |
"weather_fg.insert(historical_weather_df)"
|
@@ -1495,7 +1576,7 @@
|
|
1495 |
},
|
1496 |
{
|
1497 |
"cell_type": "code",
|
1498 |
-
"execution_count":
|
1499 |
"metadata": {},
|
1500 |
"outputs": [],
|
1501 |
"source": [
|
@@ -1523,7 +1604,7 @@
|
|
1523 |
},
|
1524 |
{
|
1525 |
"cell_type": "code",
|
1526 |
-
"execution_count":
|
1527 |
"metadata": {},
|
1528 |
"outputs": [],
|
1529 |
"source": [
|
@@ -1539,9 +1620,44 @@
|
|
1539 |
},
|
1540 |
{
|
1541 |
"cell_type": "code",
|
1542 |
-
"execution_count":
|
1543 |
"metadata": {},
|
1544 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1545 |
"source": [
|
1546 |
"# Inserting the calendar_df into the feature group named danish_calendar_fg\n",
|
1547 |
"danish_calendar_fg.insert(calender_df)"
|
@@ -1549,7 +1665,7 @@
|
|
1549 |
},
|
1550 |
{
|
1551 |
"cell_type": "code",
|
1552 |
-
"execution_count":
|
1553 |
"metadata": {},
|
1554 |
"outputs": [],
|
1555 |
"source": [
|
@@ -1593,7 +1709,7 @@
|
|
1593 |
"name": "python",
|
1594 |
"nbconvert_exporter": "python",
|
1595 |
"pygments_lexer": "ipython3",
|
1596 |
-
"version": "3.11.
|
1597 |
}
|
1598 |
},
|
1599 |
"nbformat": 4,
|
|
|
42 |
"name": "stdout",
|
43 |
"output_type": "stream",
|
44 |
"text": [
|
45 |
+
"/Users/camillahannesbo/Documents/AAU/Master - BDS/2. semester/Data Engineering and Machine learning operations in Business/MLOPs-Assignment-\n",
|
46 |
+
"/Users/camillahannesbo/Documents/AAU/Master - BDS/2. semester/Data Engineering and Machine learning operations in Business/MLOPs-Assignment-/notebooks\n"
|
47 |
]
|
48 |
}
|
49 |
],
|
|
|
953 |
" <td>2024-05-10 19:00:00</td>\n",
|
954 |
" <td>2024-05-10</td>\n",
|
955 |
" <td>19</td>\n",
|
956 |
+
" <td>11.5</td>\n",
|
957 |
+
" <td>68.0</td>\n",
|
958 |
" <td>0.0</td>\n",
|
959 |
" <td>0.0</td>\n",
|
960 |
" <td>0.0</td>\n",
|
961 |
+
" <td>3.0</td>\n",
|
962 |
+
" <td>89.0</td>\n",
|
963 |
+
" <td>5.2</td>\n",
|
964 |
+
" <td>13.0</td>\n",
|
965 |
" </tr>\n",
|
966 |
" <tr>\n",
|
967 |
" <th>116</th>\n",
|
|
|
969 |
" <td>2024-05-10 20:00:00</td>\n",
|
970 |
" <td>2024-05-10</td>\n",
|
971 |
" <td>20</td>\n",
|
972 |
+
" <td>10.5</td>\n",
|
973 |
+
" <td>71.0</td>\n",
|
974 |
" <td>0.0</td>\n",
|
975 |
" <td>0.0</td>\n",
|
976 |
" <td>0.0</td>\n",
|
977 |
+
" <td>3.0</td>\n",
|
978 |
+
" <td>88.0</td>\n",
|
979 |
+
" <td>3.4</td>\n",
|
980 |
+
" <td>8.6</td>\n",
|
981 |
" </tr>\n",
|
982 |
" <tr>\n",
|
983 |
" <th>117</th>\n",
|
|
|
985 |
" <td>2024-05-10 21:00:00</td>\n",
|
986 |
" <td>2024-05-10</td>\n",
|
987 |
" <td>21</td>\n",
|
988 |
+
" <td>9.5</td>\n",
|
989 |
+
" <td>74.0</td>\n",
|
990 |
" <td>0.0</td>\n",
|
991 |
" <td>0.0</td>\n",
|
992 |
" <td>0.0</td>\n",
|
993 |
+
" <td>3.0</td>\n",
|
994 |
+
" <td>87.0</td>\n",
|
995 |
+
" <td>2.5</td>\n",
|
996 |
+
" <td>4.3</td>\n",
|
997 |
" </tr>\n",
|
998 |
" <tr>\n",
|
999 |
" <th>118</th>\n",
|
|
|
1001 |
" <td>2024-05-10 22:00:00</td>\n",
|
1002 |
" <td>2024-05-10</td>\n",
|
1003 |
" <td>22</td>\n",
|
1004 |
+
" <td>8.6</td>\n",
|
1005 |
+
" <td>78.0</td>\n",
|
|
|
1006 |
" <td>0.0</td>\n",
|
1007 |
" <td>0.0</td>\n",
|
1008 |
" <td>0.0</td>\n",
|
1009 |
+
" <td>3.0</td>\n",
|
1010 |
+
" <td>91.0</td>\n",
|
1011 |
+
" <td>2.6</td>\n",
|
1012 |
+
" <td>4.3</td>\n",
|
1013 |
" </tr>\n",
|
1014 |
" <tr>\n",
|
1015 |
" <th>119</th>\n",
|
|
|
1017 |
" <td>2024-05-10 23:00:00</td>\n",
|
1018 |
" <td>2024-05-10</td>\n",
|
1019 |
" <td>23</td>\n",
|
1020 |
+
" <td>7.8</td>\n",
|
1021 |
+
" <td>81.0</td>\n",
|
1022 |
" <td>0.0</td>\n",
|
1023 |
" <td>0.0</td>\n",
|
1024 |
" <td>0.0</td>\n",
|
1025 |
+
" <td>3.0</td>\n",
|
1026 |
+
" <td>96.0</td>\n",
|
1027 |
+
" <td>2.5</td>\n",
|
1028 |
+
" <td>4.3</td>\n",
|
1029 |
" </tr>\n",
|
1030 |
" </tbody>\n",
|
1031 |
"</table>\n",
|
|
|
1033 |
],
|
1034 |
"text/plain": [
|
1035 |
" timestamp datetime date hour temperature_2m \\\n",
|
1036 |
+
"115 1715367600000 2024-05-10 19:00:00 2024-05-10 19 11.5 \n",
|
1037 |
+
"116 1715371200000 2024-05-10 20:00:00 2024-05-10 20 10.5 \n",
|
1038 |
+
"117 1715374800000 2024-05-10 21:00:00 2024-05-10 21 9.5 \n",
|
1039 |
+
"118 1715378400000 2024-05-10 22:00:00 2024-05-10 22 8.6 \n",
|
1040 |
+
"119 1715382000000 2024-05-10 23:00:00 2024-05-10 23 7.8 \n",
|
1041 |
"\n",
|
1042 |
" relative_humidity_2m precipitation rain snowfall weather_code \\\n",
|
1043 |
+
"115 68.0 0.0 0.0 0.0 3.0 \n",
|
1044 |
+
"116 71.0 0.0 0.0 0.0 3.0 \n",
|
1045 |
+
"117 74.0 0.0 0.0 0.0 3.0 \n",
|
1046 |
+
"118 78.0 0.0 0.0 0.0 3.0 \n",
|
1047 |
+
"119 81.0 0.0 0.0 0.0 3.0 \n",
|
1048 |
"\n",
|
1049 |
" cloud_cover wind_speed_10m wind_gusts_10m \n",
|
1050 |
+
"115 89.0 5.2 13.0 \n",
|
1051 |
+
"116 88.0 3.4 8.6 \n",
|
1052 |
+
"117 87.0 2.5 4.3 \n",
|
1053 |
+
"118 91.0 2.6 4.3 \n",
|
1054 |
+
"119 96.0 2.5 4.3 "
|
1055 |
]
|
1056 |
},
|
1057 |
"execution_count": 13,
|
|
|
1366 |
},
|
1367 |
{
|
1368 |
"cell_type": "code",
|
1369 |
+
"execution_count": 19,
|
1370 |
"metadata": {},
|
1371 |
+
"outputs": [
|
1372 |
+
{
|
1373 |
+
"name": "stdout",
|
1374 |
+
"output_type": "stream",
|
1375 |
+
"text": [
|
1376 |
+
"Connected. Call `.close()` to terminate connection gracefully.\n",
|
1377 |
+
"\n",
|
1378 |
+
"Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/550040\n",
|
1379 |
+
"Connected. Call `.close()` to terminate connection gracefully.\n"
|
1380 |
+
]
|
1381 |
+
}
|
1382 |
+
],
|
1383 |
"source": [
|
1384 |
"# Importing the hopsworks module for interacting with the Hopsworks platform\n",
|
1385 |
"import hopsworks\n",
|
|
|
1411 |
},
|
1412 |
{
|
1413 |
"cell_type": "code",
|
1414 |
+
"execution_count": 20,
|
1415 |
"metadata": {},
|
1416 |
"outputs": [],
|
1417 |
"source": [
|
|
|
1435 |
},
|
1436 |
{
|
1437 |
"cell_type": "code",
|
1438 |
+
"execution_count": 21,
|
1439 |
"metadata": {},
|
1440 |
+
"outputs": [
|
1441 |
+
{
|
1442 |
+
"name": "stdout",
|
1443 |
+
"output_type": "stream",
|
1444 |
+
"text": [
|
1445 |
+
"Feature Group created successfully, explore it at \n",
|
1446 |
+
"https://c.app.hopsworks.ai:443/p/550040/fs/545863/fg/787801\n"
|
1447 |
+
]
|
1448 |
+
},
|
1449 |
+
{
|
1450 |
+
"name": "stderr",
|
1451 |
+
"output_type": "stream",
|
1452 |
+
"text": [
|
1453 |
+
"Uploading Dataframe: 100.00% |ββββββββββ| Rows 20541/20541 | Elapsed Time: 00:08 | Remaining Time: 00:00\n"
|
1454 |
+
]
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"name": "stdout",
|
1458 |
+
"output_type": "stream",
|
1459 |
+
"text": [
|
1460 |
+
"Launching job: electricity_prices_1_offline_fg_materialization\n",
|
1461 |
+
"Job started successfully, you can follow the progress at \n",
|
1462 |
+
"https://c.app.hopsworks.ai/p/550040/jobs/named/electricity_prices_1_offline_fg_materialization/executions\n"
|
1463 |
+
]
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"data": {
|
1467 |
+
"text/plain": [
|
1468 |
+
"(<hsfs.core.job.Job at 0x12fc0d450>, None)"
|
1469 |
+
]
|
1470 |
+
},
|
1471 |
+
"execution_count": 21,
|
1472 |
+
"metadata": {},
|
1473 |
+
"output_type": "execute_result"
|
1474 |
+
}
|
1475 |
+
],
|
1476 |
"source": [
|
1477 |
"# Inserting the electricity_df into the feature group named electricity_fg\n",
|
1478 |
"electricity_fg.insert(electricity_df)"
|
|
|
1487 |
},
|
1488 |
{
|
1489 |
"cell_type": "code",
|
1490 |
+
"execution_count": 22,
|
1491 |
"metadata": {},
|
1492 |
"outputs": [],
|
1493 |
"source": [
|
|
|
1514 |
},
|
1515 |
{
|
1516 |
"cell_type": "code",
|
1517 |
+
"execution_count": 23,
|
1518 |
"metadata": {},
|
1519 |
"outputs": [],
|
1520 |
"source": [
|
|
|
1531 |
},
|
1532 |
{
|
1533 |
"cell_type": "code",
|
1534 |
+
"execution_count": 24,
|
1535 |
"metadata": {},
|
1536 |
+
"outputs": [
|
1537 |
+
{
|
1538 |
+
"name": "stdout",
|
1539 |
+
"output_type": "stream",
|
1540 |
+
"text": [
|
1541 |
+
"Feature Group created successfully, explore it at \n",
|
1542 |
+
"https://c.app.hopsworks.ai:443/p/550040/fs/545863/fg/786783\n"
|
1543 |
+
]
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"name": "stderr",
|
1547 |
+
"output_type": "stream",
|
1548 |
+
"text": [
|
1549 |
+
"Uploading Dataframe: 100.00% |ββββββββββ| Rows 20520/20520 | Elapsed Time: 00:08 | Remaining Time: 00:00\n"
|
1550 |
+
]
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"name": "stdout",
|
1554 |
+
"output_type": "stream",
|
1555 |
+
"text": [
|
1556 |
+
"Launching job: weather_measurements_1_offline_fg_materialization\n",
|
1557 |
+
"Job started successfully, you can follow the progress at \n",
|
1558 |
+
"https://c.app.hopsworks.ai/p/550040/jobs/named/weather_measurements_1_offline_fg_materialization/executions\n"
|
1559 |
+
]
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"data": {
|
1563 |
+
"text/plain": [
|
1564 |
+
"(<hsfs.core.job.Job at 0x12fbb3b50>, None)"
|
1565 |
+
]
|
1566 |
+
},
|
1567 |
+
"execution_count": 24,
|
1568 |
+
"metadata": {},
|
1569 |
+
"output_type": "execute_result"
|
1570 |
+
}
|
1571 |
+
],
|
1572 |
"source": [
|
1573 |
"# Inserting the weather_df into the feature group named weather_fg\n",
|
1574 |
"weather_fg.insert(historical_weather_df)"
|
|
|
1576 |
},
|
1577 |
{
|
1578 |
"cell_type": "code",
|
1579 |
+
"execution_count": 25,
|
1580 |
"metadata": {},
|
1581 |
"outputs": [],
|
1582 |
"source": [
|
|
|
1604 |
},
|
1605 |
{
|
1606 |
"cell_type": "code",
|
1607 |
+
"execution_count": 26,
|
1608 |
"metadata": {},
|
1609 |
"outputs": [],
|
1610 |
"source": [
|
|
|
1620 |
},
|
1621 |
{
|
1622 |
"cell_type": "code",
|
1623 |
+
"execution_count": 27,
|
1624 |
"metadata": {},
|
1625 |
+
"outputs": [
|
1626 |
+
{
|
1627 |
+
"name": "stdout",
|
1628 |
+
"output_type": "stream",
|
1629 |
+
"text": [
|
1630 |
+
"Feature Group created successfully, explore it at \n",
|
1631 |
+
"https://c.app.hopsworks.ai:443/p/550040/fs/545863/fg/786784\n"
|
1632 |
+
]
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"name": "stderr",
|
1636 |
+
"output_type": "stream",
|
1637 |
+
"text": [
|
1638 |
+
"Uploading Dataframe: 100.00% |ββββββββββ| Rows 1096/1096 | Elapsed Time: 00:05 | Remaining Time: 00:00\n"
|
1639 |
+
]
|
1640 |
+
},
|
1641 |
+
{
|
1642 |
+
"name": "stdout",
|
1643 |
+
"output_type": "stream",
|
1644 |
+
"text": [
|
1645 |
+
"Launching job: dk_calendar_1_offline_fg_materialization\n",
|
1646 |
+
"Job started successfully, you can follow the progress at \n",
|
1647 |
+
"https://c.app.hopsworks.ai/p/550040/jobs/named/dk_calendar_1_offline_fg_materialization/executions\n"
|
1648 |
+
]
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"data": {
|
1652 |
+
"text/plain": [
|
1653 |
+
"(<hsfs.core.job.Job at 0x12fe04690>, None)"
|
1654 |
+
]
|
1655 |
+
},
|
1656 |
+
"execution_count": 27,
|
1657 |
+
"metadata": {},
|
1658 |
+
"output_type": "execute_result"
|
1659 |
+
}
|
1660 |
+
],
|
1661 |
"source": [
|
1662 |
"# Inserting the calendar_df into the feature group named danish_calendar_fg\n",
|
1663 |
"danish_calendar_fg.insert(calender_df)"
|
|
|
1665 |
},
|
1666 |
{
|
1667 |
"cell_type": "code",
|
1668 |
+
"execution_count": 28,
|
1669 |
"metadata": {},
|
1670 |
"outputs": [],
|
1671 |
"source": [
|
|
|
1709 |
"name": "python",
|
1710 |
"nbconvert_exporter": "python",
|
1711 |
"pygments_lexer": "ipython3",
|
1712 |
+
"version": "3.11.9"
|
1713 |
}
|
1714 |
},
|
1715 |
"nbformat": 4,
|
notebooks/2_feature_pipeline.ipynb
CHANGED
@@ -34,8 +34,8 @@
|
|
34 |
"name": "stdout",
|
35 |
"output_type": "stream",
|
36 |
"text": [
|
37 |
-
"/Users/
|
38 |
-
"/Users/
|
39 |
]
|
40 |
}
|
41 |
],
|
@@ -528,15 +528,15 @@
|
|
528 |
" <td>2024-05-10 19:00:00</td>\n",
|
529 |
" <td>2024-05-10</td>\n",
|
530 |
" <td>19</td>\n",
|
531 |
-
" <td>
|
532 |
-
" <td>
|
533 |
" <td>0.0</td>\n",
|
534 |
" <td>0.0</td>\n",
|
535 |
" <td>0.0</td>\n",
|
536 |
-
" <td>
|
537 |
-
" <td>
|
538 |
-
" <td>
|
539 |
-
" <td>
|
540 |
" </tr>\n",
|
541 |
" <tr>\n",
|
542 |
" <th>116</th>\n",
|
@@ -544,15 +544,15 @@
|
|
544 |
" <td>2024-05-10 20:00:00</td>\n",
|
545 |
" <td>2024-05-10</td>\n",
|
546 |
" <td>20</td>\n",
|
547 |
-
" <td>
|
548 |
-
" <td>
|
549 |
" <td>0.0</td>\n",
|
550 |
" <td>0.0</td>\n",
|
551 |
" <td>0.0</td>\n",
|
552 |
-
" <td>
|
553 |
-
" <td>
|
554 |
-
" <td>4
|
555 |
-
" <td>
|
556 |
" </tr>\n",
|
557 |
" <tr>\n",
|
558 |
" <th>117</th>\n",
|
@@ -560,15 +560,15 @@
|
|
560 |
" <td>2024-05-10 21:00:00</td>\n",
|
561 |
" <td>2024-05-10</td>\n",
|
562 |
" <td>21</td>\n",
|
563 |
-
" <td>
|
564 |
-
" <td>
|
565 |
" <td>0.0</td>\n",
|
566 |
" <td>0.0</td>\n",
|
567 |
" <td>0.0</td>\n",
|
568 |
-
" <td>
|
569 |
-
" <td>
|
570 |
-
" <td>
|
571 |
-
" <td>
|
572 |
" </tr>\n",
|
573 |
" <tr>\n",
|
574 |
" <th>118</th>\n",
|
@@ -576,15 +576,15 @@
|
|
576 |
" <td>2024-05-10 22:00:00</td>\n",
|
577 |
" <td>2024-05-10</td>\n",
|
578 |
" <td>22</td>\n",
|
579 |
-
" <td>
|
580 |
-
" <td>
|
581 |
-
" <td>0.0</td>\n",
|
582 |
" <td>0.0</td>\n",
|
583 |
" <td>0.0</td>\n",
|
584 |
" <td>0.0</td>\n",
|
585 |
-
" <td>
|
586 |
-
" <td>
|
587 |
-
" <td>
|
|
|
588 |
" </tr>\n",
|
589 |
" <tr>\n",
|
590 |
" <th>119</th>\n",
|
@@ -592,15 +592,15 @@
|
|
592 |
" <td>2024-05-10 23:00:00</td>\n",
|
593 |
" <td>2024-05-10</td>\n",
|
594 |
" <td>23</td>\n",
|
595 |
-
" <td>8
|
596 |
-
" <td>
|
597 |
-
" <td>0.0</td>\n",
|
598 |
" <td>0.0</td>\n",
|
599 |
" <td>0.0</td>\n",
|
600 |
" <td>0.0</td>\n",
|
601 |
-
" <td>
|
602 |
-
" <td>
|
603 |
-
" <td>
|
|
|
604 |
" </tr>\n",
|
605 |
" </tbody>\n",
|
606 |
"</table>\n",
|
@@ -615,11 +615,11 @@
|
|
615 |
"3 1714964400000 2024-05-06 03:00:00 2024-05-06 3 9.5 \n",
|
616 |
"4 1714968000000 2024-05-06 04:00:00 2024-05-06 4 9.6 \n",
|
617 |
".. ... ... ... ... ... \n",
|
618 |
-
"115 1715367600000 2024-05-10 19:00:00 2024-05-10 19
|
619 |
-
"116 1715371200000 2024-05-10 20:00:00 2024-05-10 20
|
620 |
-
"117 1715374800000 2024-05-10 21:00:00 2024-05-10 21
|
621 |
-
"118 1715378400000 2024-05-10 22:00:00 2024-05-10 22
|
622 |
-
"119 1715382000000 2024-05-10 23:00:00 2024-05-10 23 8
|
623 |
"\n",
|
624 |
" relative_humidity_2m precipitation rain snowfall weather_code \\\n",
|
625 |
"0 93.0 0.2 0.2 0.0 51.0 \n",
|
@@ -628,11 +628,11 @@
|
|
628 |
"3 91.0 0.0 0.0 0.0 3.0 \n",
|
629 |
"4 92.0 0.0 0.0 0.0 3.0 \n",
|
630 |
".. ... ... ... ... ... \n",
|
631 |
-
"115
|
632 |
-
"116
|
633 |
-
"117
|
634 |
-
"118
|
635 |
-
"119
|
636 |
"\n",
|
637 |
" cloud_cover wind_speed_10m wind_gusts_10m \n",
|
638 |
"0 100.0 14.4 24.8 \n",
|
@@ -641,11 +641,11 @@
|
|
641 |
"3 100.0 13.0 23.4 \n",
|
642 |
"4 100.0 14.0 24.1 \n",
|
643 |
".. ... ... ... \n",
|
644 |
-
"115
|
645 |
-
"116
|
646 |
-
"117
|
647 |
-
"118
|
648 |
-
"119
|
649 |
"\n",
|
650 |
"[120 rows x 13 columns]"
|
651 |
]
|
@@ -671,9 +671,20 @@
|
|
671 |
},
|
672 |
{
|
673 |
"cell_type": "code",
|
674 |
-
"execution_count":
|
675 |
"metadata": {},
|
676 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
677 |
"source": [
|
678 |
"# Importing the hopsworks module for interacting with the Hopsworks platform\n",
|
679 |
"import hopsworks\n",
|
@@ -687,7 +698,7 @@
|
|
687 |
},
|
688 |
{
|
689 |
"cell_type": "code",
|
690 |
-
"execution_count":
|
691 |
"metadata": {},
|
692 |
"outputs": [],
|
693 |
"source": [
|
@@ -713,9 +724,36 @@
|
|
713 |
},
|
714 |
{
|
715 |
"cell_type": "code",
|
716 |
-
"execution_count":
|
717 |
"metadata": {},
|
718 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
719 |
"source": [
|
720 |
"# Inserting the electricity_df into the feature group named electricity_fg\n",
|
721 |
"electricity_fg.insert(electricity_df, \n",
|
@@ -724,9 +762,36 @@
|
|
724 |
},
|
725 |
{
|
726 |
"cell_type": "code",
|
727 |
-
"execution_count":
|
728 |
"metadata": {},
|
729 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
730 |
"source": [
|
731 |
"# Inserting the weather_df into the feature group named weather_fg\n",
|
732 |
"weather_fg.insert(weather_forecast_df, \n",
|
@@ -760,7 +825,7 @@
|
|
760 |
"name": "python",
|
761 |
"nbconvert_exporter": "python",
|
762 |
"pygments_lexer": "ipython3",
|
763 |
-
"version": "3.11.
|
764 |
},
|
765 |
"orig_nbformat": 4
|
766 |
},
|
|
|
34 |
"name": "stdout",
|
35 |
"output_type": "stream",
|
36 |
"text": [
|
37 |
+
"/Users/camillahannesbo/Documents/AAU/Master - BDS/2. semester/Data Engineering and Machine learning operations in Business/MLOPs-Assignment-\n",
|
38 |
+
"/Users/camillahannesbo/Documents/AAU/Master - BDS/2. semester/Data Engineering and Machine learning operations in Business/MLOPs-Assignment-/notebooks\n"
|
39 |
]
|
40 |
}
|
41 |
],
|
|
|
528 |
" <td>2024-05-10 19:00:00</td>\n",
|
529 |
" <td>2024-05-10</td>\n",
|
530 |
" <td>19</td>\n",
|
531 |
+
" <td>11.5</td>\n",
|
532 |
+
" <td>68.0</td>\n",
|
533 |
" <td>0.0</td>\n",
|
534 |
" <td>0.0</td>\n",
|
535 |
" <td>0.0</td>\n",
|
536 |
+
" <td>3.0</td>\n",
|
537 |
+
" <td>89.0</td>\n",
|
538 |
+
" <td>5.2</td>\n",
|
539 |
+
" <td>13.0</td>\n",
|
540 |
" </tr>\n",
|
541 |
" <tr>\n",
|
542 |
" <th>116</th>\n",
|
|
|
544 |
" <td>2024-05-10 20:00:00</td>\n",
|
545 |
" <td>2024-05-10</td>\n",
|
546 |
" <td>20</td>\n",
|
547 |
+
" <td>10.5</td>\n",
|
548 |
+
" <td>71.0</td>\n",
|
549 |
" <td>0.0</td>\n",
|
550 |
" <td>0.0</td>\n",
|
551 |
" <td>0.0</td>\n",
|
552 |
+
" <td>3.0</td>\n",
|
553 |
+
" <td>88.0</td>\n",
|
554 |
+
" <td>3.4</td>\n",
|
555 |
+
" <td>8.6</td>\n",
|
556 |
" </tr>\n",
|
557 |
" <tr>\n",
|
558 |
" <th>117</th>\n",
|
|
|
560 |
" <td>2024-05-10 21:00:00</td>\n",
|
561 |
" <td>2024-05-10</td>\n",
|
562 |
" <td>21</td>\n",
|
563 |
+
" <td>9.5</td>\n",
|
564 |
+
" <td>74.0</td>\n",
|
565 |
" <td>0.0</td>\n",
|
566 |
" <td>0.0</td>\n",
|
567 |
" <td>0.0</td>\n",
|
568 |
+
" <td>3.0</td>\n",
|
569 |
+
" <td>87.0</td>\n",
|
570 |
+
" <td>2.5</td>\n",
|
571 |
+
" <td>4.3</td>\n",
|
572 |
" </tr>\n",
|
573 |
" <tr>\n",
|
574 |
" <th>118</th>\n",
|
|
|
576 |
" <td>2024-05-10 22:00:00</td>\n",
|
577 |
" <td>2024-05-10</td>\n",
|
578 |
" <td>22</td>\n",
|
579 |
+
" <td>8.6</td>\n",
|
580 |
+
" <td>78.0</td>\n",
|
|
|
581 |
" <td>0.0</td>\n",
|
582 |
" <td>0.0</td>\n",
|
583 |
" <td>0.0</td>\n",
|
584 |
+
" <td>3.0</td>\n",
|
585 |
+
" <td>91.0</td>\n",
|
586 |
+
" <td>2.6</td>\n",
|
587 |
+
" <td>4.3</td>\n",
|
588 |
" </tr>\n",
|
589 |
" <tr>\n",
|
590 |
" <th>119</th>\n",
|
|
|
592 |
" <td>2024-05-10 23:00:00</td>\n",
|
593 |
" <td>2024-05-10</td>\n",
|
594 |
" <td>23</td>\n",
|
595 |
+
" <td>7.8</td>\n",
|
596 |
+
" <td>81.0</td>\n",
|
|
|
597 |
" <td>0.0</td>\n",
|
598 |
" <td>0.0</td>\n",
|
599 |
" <td>0.0</td>\n",
|
600 |
+
" <td>3.0</td>\n",
|
601 |
+
" <td>96.0</td>\n",
|
602 |
+
" <td>2.5</td>\n",
|
603 |
+
" <td>4.3</td>\n",
|
604 |
" </tr>\n",
|
605 |
" </tbody>\n",
|
606 |
"</table>\n",
|
|
|
615 |
"3 1714964400000 2024-05-06 03:00:00 2024-05-06 3 9.5 \n",
|
616 |
"4 1714968000000 2024-05-06 04:00:00 2024-05-06 4 9.6 \n",
|
617 |
".. ... ... ... ... ... \n",
|
618 |
+
"115 1715367600000 2024-05-10 19:00:00 2024-05-10 19 11.5 \n",
|
619 |
+
"116 1715371200000 2024-05-10 20:00:00 2024-05-10 20 10.5 \n",
|
620 |
+
"117 1715374800000 2024-05-10 21:00:00 2024-05-10 21 9.5 \n",
|
621 |
+
"118 1715378400000 2024-05-10 22:00:00 2024-05-10 22 8.6 \n",
|
622 |
+
"119 1715382000000 2024-05-10 23:00:00 2024-05-10 23 7.8 \n",
|
623 |
"\n",
|
624 |
" relative_humidity_2m precipitation rain snowfall weather_code \\\n",
|
625 |
"0 93.0 0.2 0.2 0.0 51.0 \n",
|
|
|
628 |
"3 91.0 0.0 0.0 0.0 3.0 \n",
|
629 |
"4 92.0 0.0 0.0 0.0 3.0 \n",
|
630 |
".. ... ... ... ... ... \n",
|
631 |
+
"115 68.0 0.0 0.0 0.0 3.0 \n",
|
632 |
+
"116 71.0 0.0 0.0 0.0 3.0 \n",
|
633 |
+
"117 74.0 0.0 0.0 0.0 3.0 \n",
|
634 |
+
"118 78.0 0.0 0.0 0.0 3.0 \n",
|
635 |
+
"119 81.0 0.0 0.0 0.0 3.0 \n",
|
636 |
"\n",
|
637 |
" cloud_cover wind_speed_10m wind_gusts_10m \n",
|
638 |
"0 100.0 14.4 24.8 \n",
|
|
|
641 |
"3 100.0 13.0 23.4 \n",
|
642 |
"4 100.0 14.0 24.1 \n",
|
643 |
".. ... ... ... \n",
|
644 |
+
"115 89.0 5.2 13.0 \n",
|
645 |
+
"116 88.0 3.4 8.6 \n",
|
646 |
+
"117 87.0 2.5 4.3 \n",
|
647 |
+
"118 91.0 2.6 4.3 \n",
|
648 |
+
"119 96.0 2.5 4.3 \n",
|
649 |
"\n",
|
650 |
"[120 rows x 13 columns]"
|
651 |
]
|
|
|
671 |
},
|
672 |
{
|
673 |
"cell_type": "code",
|
674 |
+
"execution_count": 7,
|
675 |
"metadata": {},
|
676 |
+
"outputs": [
|
677 |
+
{
|
678 |
+
"name": "stdout",
|
679 |
+
"output_type": "stream",
|
680 |
+
"text": [
|
681 |
+
"Connected. Call `.close()` to terminate connection gracefully.\n",
|
682 |
+
"\n",
|
683 |
+
"Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/550040\n",
|
684 |
+
"Connected. Call `.close()` to terminate connection gracefully.\n"
|
685 |
+
]
|
686 |
+
}
|
687 |
+
],
|
688 |
"source": [
|
689 |
"# Importing the hopsworks module for interacting with the Hopsworks platform\n",
|
690 |
"import hopsworks\n",
|
|
|
698 |
},
|
699 |
{
|
700 |
"cell_type": "code",
|
701 |
+
"execution_count": 8,
|
702 |
"metadata": {},
|
703 |
"outputs": [],
|
704 |
"source": [
|
|
|
724 |
},
|
725 |
{
|
726 |
"cell_type": "code",
|
727 |
+
"execution_count": 9,
|
728 |
"metadata": {},
|
729 |
+
"outputs": [
|
730 |
+
{
|
731 |
+
"name": "stderr",
|
732 |
+
"output_type": "stream",
|
733 |
+
"text": [
|
734 |
+
"Uploading Dataframe: 100.00% |ββββββββββ| Rows 24/24 | Elapsed Time: 00:06 | Remaining Time: 00:00\n"
|
735 |
+
]
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"name": "stdout",
|
739 |
+
"output_type": "stream",
|
740 |
+
"text": [
|
741 |
+
"Launching job: electricity_prices_1_offline_fg_materialization\n",
|
742 |
+
"Job started successfully, you can follow the progress at \n",
|
743 |
+
"https://c.app.hopsworks.ai/p/550040/jobs/named/electricity_prices_1_offline_fg_materialization/executions\n"
|
744 |
+
]
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"data": {
|
748 |
+
"text/plain": [
|
749 |
+
"(<hsfs.core.job.Job at 0x13aea7b90>, None)"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
"execution_count": 9,
|
753 |
+
"metadata": {},
|
754 |
+
"output_type": "execute_result"
|
755 |
+
}
|
756 |
+
],
|
757 |
"source": [
|
758 |
"# Inserting the electricity_df into the feature group named electricity_fg\n",
|
759 |
"electricity_fg.insert(electricity_df, \n",
|
|
|
762 |
},
|
763 |
{
|
764 |
"cell_type": "code",
|
765 |
+
"execution_count": 10,
|
766 |
"metadata": {},
|
767 |
+
"outputs": [
|
768 |
+
{
|
769 |
+
"name": "stderr",
|
770 |
+
"output_type": "stream",
|
771 |
+
"text": [
|
772 |
+
"Uploading Dataframe: 100.00% |ββββββββββ| Rows 120/120 | Elapsed Time: 00:06 | Remaining Time: 00:00\n"
|
773 |
+
]
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"name": "stdout",
|
777 |
+
"output_type": "stream",
|
778 |
+
"text": [
|
779 |
+
"Launching job: weather_measurements_1_offline_fg_materialization\n",
|
780 |
+
"Job started successfully, you can follow the progress at \n",
|
781 |
+
"https://c.app.hopsworks.ai/p/550040/jobs/named/weather_measurements_1_offline_fg_materialization/executions\n"
|
782 |
+
]
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"data": {
|
786 |
+
"text/plain": [
|
787 |
+
"(<hsfs.core.job.Job at 0x13aea7d50>, None)"
|
788 |
+
]
|
789 |
+
},
|
790 |
+
"execution_count": 10,
|
791 |
+
"metadata": {},
|
792 |
+
"output_type": "execute_result"
|
793 |
+
}
|
794 |
+
],
|
795 |
"source": [
|
796 |
"# Inserting the weather_df into the feature group named weather_fg\n",
|
797 |
"weather_fg.insert(weather_forecast_df, \n",
|
|
|
825 |
"name": "python",
|
826 |
"nbconvert_exporter": "python",
|
827 |
"pygments_lexer": "ipython3",
|
828 |
+
"version": "3.11.9"
|
829 |
},
|
830 |
"orig_nbformat": 4
|
831 |
},
|
notebooks/3_training_pipeline.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/4_batch_inference.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/model/dk_electricity_model.pkl
CHANGED
Binary files a/notebooks/model/dk_electricity_model.pkl and b/notebooks/model/dk_electricity_model.pkl differ
|
|