Spaces:
Sleeping
Sleeping
File size: 58,420 Bytes
4025ff4 ea4ecaf d988e19 74e9e3e 5e93f20 ea4ecaf 5e93f20 4fc9f07 5e93f20 4fc9f07 5e93f20 d988e19 ea4ecaf 5b822b6 8145b83 5b822b6 adff9d4 b47dba5 45b89de adff9d4 0974d3a adff9d4 0974d3a 5e93f20 1f6629c 72e66c8 0974d3a 72e66c8 adff9d4 5e93f20 8145b83 5e93f20 d988e19 4025ff4 4fc9f07 d988e19 4025ff4 66accd2 5e93f20 66accd2 5e93f20 66accd2 d988e19 66accd2 4025ff4 4fc9f07 4025ff4 ea4ecaf 5e93f20 4025ff4 d988e19 4025ff4 8ade2e2 4025ff4 0974d3a d988e19 f62fe9f 72e66c8 d988e19 72e66c8 edc01aa d988e19 4025ff4 72e66c8 1f6629c 72e66c8 1f6629c 72e66c8 4025ff4 30e4480 72e66c8 1f6629c 72e66c8 1f00acb 30e4480 72e66c8 1f6629c 72e66c8 4025ff4 1f00acb 30e4480 72e66c8 1f6629c 72e66c8 4025ff4 1f00acb 30e4480 72e66c8 1f6629c 72e66c8 4025ff4 1f00acb 30e4480 72e66c8 1f6629c 72e66c8 4025ff4 1f6629c 4025ff4 d988e19 4025ff4 0974d3a 72e66c8 4025ff4 d988e19 ea4ecaf 72e66c8 1f6629c 72e66c8 1f6629c 72e66c8 8145b83 1f6629c a130c8d 72e66c8 8145b83 1f6629c a130c8d 72e66c8 8145b83 1f6629c a130c8d 72e66c8 8145b83 1f6629c a130c8d 72e66c8 8145b83 1f6629c a130c8d 72e66c8 1f6629c 8145b83 1f6629c a130c8d 72e66c8 d988e19 72e66c8 ea4ecaf 0974d3a 72e66c8 ea4ecaf d988e19 4025ff4 72e66c8 8145b83 1f6629c 72e66c8 8145b83 66accd2 8145b83 72e66c8 edc01aa 5e93f20 72e66c8 edc01aa 4fc9f07 72e66c8 4fc9f07 edc01aa 72e66c8 0974d3a edc01aa 72e66c8 edc01aa 0974d3a edc01aa d988e19 faea8e4 0974d3a d988e19 f62fe9f 0974d3a 72e66c8 d988e19 72e66c8 faea8e4 d988e19 edc01aa 72e66c8 1f6629c edc01aa 1f6629c edc01aa 30e4480 faea8e4 1f6629c edc01aa 72e66c8 edc01aa 72e66c8 edc01aa 30e4480 faea8e4 1f6629c edc01aa 72e66c8 edc01aa 72e66c8 edc01aa 30e4480 faea8e4 1f6629c edc01aa 72e66c8 edc01aa 72e66c8 edc01aa 30e4480 faea8e4 1f6629c edc01aa 72e66c8 edc01aa 72e66c8 edc01aa 30e4480 faea8e4 1f6629c edc01aa 72e66c8 edc01aa 72e66c8 edc01aa 1f6629c edc01aa 72e66c8 edc01aa 72e66c8 edc01aa d988e19 edc01aa ea4ecaf 0974d3a 72e66c8 ea4ecaf edc01aa e5f0117 d988e19 edc01aa 72e66c8 1f6629c 72e66c8 1f6629c 72e66c8 8145b83 1f6629c 8145b83 f62fe9f 840b77e 5e93f20 8145b83 72e66c8 8145b83 1f6629c 8145b83 226c394 5e93f20 8145b83 72e66c8 8145b83 1f6629c 8145b83 226c394 5e93f20 8145b83 72e66c8 8145b83 1f6629c 8145b83 226c394 8145b83 72e66c8 8145b83 1f6629c 8145b83 226c394 8145b83 72e66c8 1f6629c 8145b83 72e66c8 8145b83 72e66c8 8145b83 72e66c8 d988e19 72e66c8 0974d3a 72e66c8 d988e19 72e66c8 8145b83 1f6629c 72e66c8 8145b83 66accd2 72e66c8 5e93f20 72e66c8 54e965b 0974d3a 54e965b 30e4480 66accd2 d988e19 30e4480 d988e19 72e66c8 0974d3a 72e66c8 d988e19 72e66c8 1f6629c edc01aa 1f6629c e5f0117 edc01aa 8145b83 1f6629c 8145b83 1f6629c 8145b83 5e93f20 8145b83 edc01aa 8145b83 1f6629c 8145b83 f62fe9f 1f6629c 5e93f20 8145b83 edc01aa 8145b83 1f6629c 8145b83 f62fe9f 66accd2 5e93f20 8145b83 edc01aa 8145b83 226c394 8145b83 1f6629c 66accd2 5e93f20 8145b83 edc01aa 8145b83 1f6629c 8145b83 54e965b 0974d3a 5e93f20 8145b83 72e66c8 1f6629c 8145b83 72e66c8 8145b83 72e66c8 8145b83 72e66c8 d988e19 72e66c8 5e93f20 72e66c8 d988e19 72e66c8 1f6629c 72e66c8 1f6629c 72e66c8 30e4480 8145b83 1f6629c b47dba5 66accd2 b47dba5 72e66c8 30e4480 8145b83 1f6629c b47dba5 66accd2 b47dba5 72e66c8 30e4480 8145b83 1f6629c b47dba5 66accd2 b47dba5 72e66c8 30e4480 8145b83 1f6629c b47dba5 66accd2 8145b83 b47dba5 72e66c8 30e4480 8145b83 1f6629c b47dba5 66accd2 b47dba5 edc01aa 1f6629c b47dba5 e5f0117 72e66c8 b47dba5 edc01aa 72e66c8 b47dba5 edc01aa d988e19 edc01aa e5f0117 5e93f20 72e66c8 d988e19 72e66c8 30e4480 1f6629c 72e66c8 30e4480 1f6629c 66accd2 1f6629c 66accd2 72e66c8 5e93f20 72e66c8 e5f0117 0974d3a d988e19 e5f0117 d988e19 e5f0117 fa08585 5e93f20 66accd2 fa08585 d988e19 fa08585 adff9d4 9162fb4 1f6629c 9162fb4 66accd2 adff9d4 1f6629c 9162fb4 66accd2 adff9d4 1f6629c 9162fb4 1f6629c 9162fb4 66accd2 adff9d4 1f6629c 9162fb4 1f6629c 9162fb4 66accd2 adff9d4 1f6629c 9162fb4 1f6629c 9162fb4 66accd2 adff9d4 1f6629c 9162fb4 1f6629c 9162fb4 66accd2 adff9d4 66accd2 adff9d4 d988e19 adff9d4 fa08585 5e93f20 72e66c8 ea4ecaf d988e19 72e66c8 9162fb4 1f6629c 9162fb4 66accd2 72e66c8 1f6629c 9162fb4 1f6629c 9162fb4 66accd2 72e66c8 1f6629c 9162fb4 1f6629c 9162fb4 66accd2 72e66c8 1f6629c 9162fb4 1f6629c 9162fb4 66accd2 72e66c8 1f6629c 9162fb4 1f6629c 9162fb4 66accd2 72e66c8 1f6629c 9162fb4 1f6629c 9162fb4 66accd2 72e66c8 66accd2 72e66c8 d988e19 72e66c8 5e93f20 72e66c8 1f6629c d988e19 1f6629c 9162fb4 66accd2 1f6629c 5e93f20 4f67208 8ade2e2 b47dba5 8ade2e2 b47dba5 8ade2e2 d988e19 8ade2e2 d988e19 8ade2e2 5e93f20 8ade2e2 d988e19 8ade2e2 5e93f20 8ade2e2 b47dba5 8ade2e2 1f6629c 8ade2e2 1f6629c 8ade2e2 1f6629c 8ade2e2 b47dba5 8ade2e2 b47dba5 8ade2e2 1f6629c 8ade2e2 4f67208 f62fe9f 4f67208 b47dba5 ea4ecaf 88359f7 ea4ecaf 1f6629c 5e93f20 1f6629c 5e93f20 1f6629c 4f67208 0974d3a 1f6629c 4f67208 66accd2 ea4ecaf b47dba5 72e66c8 1f6629c 72e66c8 1f6629c d988e19 72e66c8 b47dba5 72e66c8 b47dba5 72e66c8 1f6629c 72e66c8 b47dba5 72e66c8 1f6629c 5e93f20 1f6629c 72e66c8 0974d3a 1f6629c 72e66c8 b47dba5 edc01aa 1f6629c 795bc0f edc01aa d988e19 edc01aa b47dba5 4f67208 b47dba5 4f67208 5e93f20 1f6629c 4f67208 b47dba5 4f67208 1f6629c 4f67208 1f6629c 5e93f20 4f67208 0974d3a 1f6629c edc01aa 4025ff4 4fc9f07 4025ff4 4fc9f07 0974d3a 4fc9f07 4025ff4 b47dba5 4025ff4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# <span style=\"font-width:bold; font-size: 3rem; color:#2656a3;\">**Msc. BDS Module - Data Engineering and Machine Learning Operations in Business (MLOPs)** </span> <span style=\"font-width:bold; font-size: 3rem; color:#333;\">- Part 01: Feature Backfill</span>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The project uses [Hopsworks](https://www.hopsworks.ai) as the platform to store features in the **Hopworks Feature Store** and save a trained model in **Hopworks Model Registry**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style='color:#2656a3'> ποΈ The notebook is divided into the following sections:\n",
"1. Loading the data and process features.\n",
"2. Connecting to Hopsworks Feature Store.\n",
"3. Creating feature groups and uploading them to the feature store."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style='color:#2656a3'> βοΈ Import of Libraries and Packages\n",
"\n",
"We start by accessing the folder we have created that holds the functions (incl. live API calls and data preprocessing) we need for electricity prices, weather measures, and the Danish calendar. Then, we proceed to import some of the necessary libraries and warnings to avoid unnecessary distractions and keep output clean."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/Users/camillahannesbo/Documents/AAU/Master - BDS/2. semester/Data Engineering and Machine learning operations in Business/MLOPs-Assignment-\n",
"/Users/camillahannesbo/Documents/AAU/Master - BDS/2. semester/Data Engineering and Machine learning operations in Business/MLOPs-Assignment-/notebooks\n"
]
}
],
"source": [
"# First we go one back in our directory to access the folder with our functions\n",
"%cd ..\n",
"\n",
"# Now we import the functions from the features folder\n",
"# This is the functions we have created to generate features for electricity prices, weather measures, and the danish calendar\n",
"from features import electricity_prices, weather_measures, calendar\n",
"\n",
"# We go back into the notebooks folder\n",
"%cd notebooks"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Importing pandas for data handling\n",
"import pandas as pd\n",
"\n",
"# Ignore warnings\n",
"import warnings \n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style=\"color:#2656a3;\"> π½ Loading the Historical Data\n",
"\n",
"The data used comes from the following different sources:\n",
"\n",
"- Hourly electricity prices in Denmark per day on price area DK1 from [Energinet](https://www.energidataservice.dk). Located in the folder folder `features/electricity_prices`.\n",
"- Different meteorological observations based on Aalborg Denmark from [Open Meteo](https://www.open-meteo.com). Located in the folder `features/weather_measures`.\n",
"- Weather Forecast based on Aalborg Denmark from [Open Meteo](https://www.open-meteo.com). Located in the folder `features/weather_measures`. (This data is used later to parse new real-time weather data)\n",
"- Danish calendar that categorizes dates into types based on whether it is a weekday or not. This file is made manually by the group and is located in the folder `data` inside this repository.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### <span style=\"color:#2656a3;\">πΈ Electricity Prices per day from Energinet\n",
"The first dataset we load is hourly electricity prices per day from Energinet/Dataservice."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Fetching historical electricity prices for area DK1 from January 1, 2022\n",
"# Note: The end date is currently left out to retrieve data up to the day before present date \n",
"# Today is not included in the data as it is not historical data\n",
"electricity_df = electricity_prices.electricity_prices(\n",
" historical=True, \n",
" area=[\"DK1\"], \n",
" start='2022-01-01'\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>timestamp</th>\n",
" <th>datetime</th>\n",
" <th>date</th>\n",
" <th>hour</th>\n",
" <th>dk1_spotpricedkk_kwh</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1640995200000</td>\n",
" <td>2022-01-01 00:00:00</td>\n",
" <td>2022-01-01</td>\n",
" <td>0</td>\n",
" <td>0.37220</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1640998800000</td>\n",
" <td>2022-01-01 01:00:00</td>\n",
" <td>2022-01-01</td>\n",
" <td>1</td>\n",
" <td>0.30735</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1641002400000</td>\n",
" <td>2022-01-01 02:00:00</td>\n",
" <td>2022-01-01</td>\n",
" <td>2</td>\n",
" <td>0.32141</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1641006000000</td>\n",
" <td>2022-01-01 03:00:00</td>\n",
" <td>2022-01-01</td>\n",
" <td>3</td>\n",
" <td>0.33806</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1641009600000</td>\n",
" <td>2022-01-01 04:00:00</td>\n",
" <td>2022-01-01</td>\n",
" <td>4</td>\n",
" <td>0.28013</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" timestamp datetime date hour dk1_spotpricedkk_kwh\n",
"0 1640995200000 2022-01-01 00:00:00 2022-01-01 0 0.37220\n",
"1 1640998800000 2022-01-01 01:00:00 2022-01-01 1 0.30735\n",
"2 1641002400000 2022-01-01 02:00:00 2022-01-01 2 0.32141\n",
"3 1641006000000 2022-01-01 03:00:00 2022-01-01 3 0.33806\n",
"4 1641009600000 2022-01-01 04:00:00 2022-01-01 4 0.28013"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the first 5 rows of the electricity dataframe\n",
"electricity_df.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>timestamp</th>\n",
" <th>datetime</th>\n",
" <th>date</th>\n",
" <th>hour</th>\n",
" <th>dk1_spotpricedkk_kwh</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>20536</th>\n",
" <td>1714935600000</td>\n",
" <td>2024-05-05 19:00:00</td>\n",
" <td>2024-05-05</td>\n",
" <td>19</td>\n",
" <td>0.71783</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20537</th>\n",
" <td>1714939200000</td>\n",
" <td>2024-05-05 20:00:00</td>\n",
" <td>2024-05-05</td>\n",
" <td>20</td>\n",
" <td>0.83478</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20538</th>\n",
" <td>1714942800000</td>\n",
" <td>2024-05-05 21:00:00</td>\n",
" <td>2024-05-05</td>\n",
" <td>21</td>\n",
" <td>0.80204</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20539</th>\n",
" <td>1714946400000</td>\n",
" <td>2024-05-05 22:00:00</td>\n",
" <td>2024-05-05</td>\n",
" <td>22</td>\n",
" <td>0.73647</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20540</th>\n",
" <td>1714950000000</td>\n",
" <td>2024-05-05 23:00:00</td>\n",
" <td>2024-05-05</td>\n",
" <td>23</td>\n",
" <td>0.66136</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" timestamp datetime date hour \\\n",
"20536 1714935600000 2024-05-05 19:00:00 2024-05-05 19 \n",
"20537 1714939200000 2024-05-05 20:00:00 2024-05-05 20 \n",
"20538 1714942800000 2024-05-05 21:00:00 2024-05-05 21 \n",
"20539 1714946400000 2024-05-05 22:00:00 2024-05-05 22 \n",
"20540 1714950000000 2024-05-05 23:00:00 2024-05-05 23 \n",
"\n",
" dk1_spotpricedkk_kwh \n",
"20536 0.71783 \n",
"20537 0.83478 \n",
"20538 0.80204 \n",
"20539 0.73647 \n",
"20540 0.66136 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the last 5 rows of the electricity dataframe\n",
"electricity_df.tail(5)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 20541 entries, 0 to 20540\n",
"Data columns (total 5 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 timestamp 20541 non-null int64 \n",
" 1 datetime 20541 non-null datetime64[ns]\n",
" 2 date 20541 non-null object \n",
" 3 hour 20541 non-null int64 \n",
" 4 dk1_spotpricedkk_kwh 20541 non-null float64 \n",
"dtypes: datetime64[ns](1), float64(1), int64(2), object(1)\n",
"memory usage: 802.5+ KB\n"
]
}
],
"source": [
"# Show the information for the electricity dataframe\n",
"electricity_df.info()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### <span style=\"color:#2656a3;\"> π€ Weather measurements from Open Meteo\n",
"Next weather measurements from Open Meteo is fetched."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### <span style=\"color:#2656a3;\"> π°οΈ Historical Weather Measures"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Fetching historical weather measurements from January 1, 2022\n",
"# Note: The end date is currently left out to retrieve data up to the day before present date \n",
"# Today is not included in the data as it is not historical data\n",
"historical_weather_df = weather_measures.historical_weather_measures(\n",
" historical=True, \n",
" start = '2022-01-01'\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>timestamp</th>\n",
" <th>datetime</th>\n",
" <th>date</th>\n",
" <th>hour</th>\n",
" <th>temperature_2m</th>\n",
" <th>relative_humidity_2m</th>\n",
" <th>precipitation</th>\n",
" <th>rain</th>\n",
" <th>snowfall</th>\n",
" <th>weather_code</th>\n",
" <th>cloud_cover</th>\n",
" <th>wind_speed_10m</th>\n",
" <th>wind_gusts_10m</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1640995200000</td>\n",
" <td>2022-01-01 00:00:00</td>\n",
" <td>2022-01-01</td>\n",
" <td>0</td>\n",
" <td>6.7</td>\n",
" <td>100.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>16.2</td>\n",
" <td>36.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1640998800000</td>\n",
" <td>2022-01-01 01:00:00</td>\n",
" <td>2022-01-01</td>\n",
" <td>1</td>\n",
" <td>6.6</td>\n",
" <td>100.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>16.2</td>\n",
" <td>30.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1641002400000</td>\n",
" <td>2022-01-01 02:00:00</td>\n",
" <td>2022-01-01</td>\n",
" <td>2</td>\n",
" <td>6.7</td>\n",
" <td>99.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>15.5</td>\n",
" <td>30.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1641006000000</td>\n",
" <td>2022-01-01 03:00:00</td>\n",
" <td>2022-01-01</td>\n",
" <td>3</td>\n",
" <td>6.7</td>\n",
" <td>100.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>12.7</td>\n",
" <td>28.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1641009600000</td>\n",
" <td>2022-01-01 04:00:00</td>\n",
" <td>2022-01-01</td>\n",
" <td>4</td>\n",
" <td>6.7</td>\n",
" <td>99.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>10.6</td>\n",
" <td>23.8</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" timestamp datetime date hour temperature_2m \\\n",
"0 1640995200000 2022-01-01 00:00:00 2022-01-01 0 6.7 \n",
"1 1640998800000 2022-01-01 01:00:00 2022-01-01 1 6.6 \n",
"2 1641002400000 2022-01-01 02:00:00 2022-01-01 2 6.7 \n",
"3 1641006000000 2022-01-01 03:00:00 2022-01-01 3 6.7 \n",
"4 1641009600000 2022-01-01 04:00:00 2022-01-01 4 6.7 \n",
"\n",
" relative_humidity_2m precipitation rain snowfall weather_code \\\n",
"0 100.0 0.0 0.0 0.0 3.0 \n",
"1 100.0 0.0 0.0 0.0 3.0 \n",
"2 99.0 0.0 0.0 0.0 3.0 \n",
"3 100.0 0.0 0.0 0.0 3.0 \n",
"4 99.0 0.0 0.0 0.0 3.0 \n",
"\n",
" cloud_cover wind_speed_10m wind_gusts_10m \n",
"0 100.0 16.2 36.0 \n",
"1 100.0 16.2 30.2 \n",
"2 100.0 15.5 30.6 \n",
"3 100.0 12.7 28.8 \n",
"4 100.0 10.6 23.8 "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the first 5 rows of the weather dataframe\n",
"historical_weather_df.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>timestamp</th>\n",
" <th>datetime</th>\n",
" <th>date</th>\n",
" <th>hour</th>\n",
" <th>temperature_2m</th>\n",
" <th>relative_humidity_2m</th>\n",
" <th>precipitation</th>\n",
" <th>rain</th>\n",
" <th>snowfall</th>\n",
" <th>weather_code</th>\n",
" <th>cloud_cover</th>\n",
" <th>wind_speed_10m</th>\n",
" <th>wind_gusts_10m</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>20515</th>\n",
" <td>1714849200000</td>\n",
" <td>2024-05-04 19:00:00</td>\n",
" <td>2024-05-04</td>\n",
" <td>19</td>\n",
" <td>12.2</td>\n",
" <td>88.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>1.6</td>\n",
" <td>4.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20516</th>\n",
" <td>1714852800000</td>\n",
" <td>2024-05-04 20:00:00</td>\n",
" <td>2024-05-04</td>\n",
" <td>20</td>\n",
" <td>11.4</td>\n",
" <td>92.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>70.0</td>\n",
" <td>1.5</td>\n",
" <td>2.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20517</th>\n",
" <td>1714856400000</td>\n",
" <td>2024-05-04 21:00:00</td>\n",
" <td>2024-05-04</td>\n",
" <td>21</td>\n",
" <td>10.7</td>\n",
" <td>96.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>64.0</td>\n",
" <td>0.4</td>\n",
" <td>2.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20518</th>\n",
" <td>1714860000000</td>\n",
" <td>2024-05-04 22:00:00</td>\n",
" <td>2024-05-04</td>\n",
" <td>22</td>\n",
" <td>10.1</td>\n",
" <td>100.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>2.4</td>\n",
" <td>3.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20519</th>\n",
" <td>1714863600000</td>\n",
" <td>2024-05-04 23:00:00</td>\n",
" <td>2024-05-04</td>\n",
" <td>23</td>\n",
" <td>9.9</td>\n",
" <td>100.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>2.9</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" timestamp datetime date hour temperature_2m \\\n",
"20515 1714849200000 2024-05-04 19:00:00 2024-05-04 19 12.2 \n",
"20516 1714852800000 2024-05-04 20:00:00 2024-05-04 20 11.4 \n",
"20517 1714856400000 2024-05-04 21:00:00 2024-05-04 21 10.7 \n",
"20518 1714860000000 2024-05-04 22:00:00 2024-05-04 22 10.1 \n",
"20519 1714863600000 2024-05-04 23:00:00 2024-05-04 23 9.9 \n",
"\n",
" relative_humidity_2m precipitation rain snowfall weather_code \\\n",
"20515 88.0 0.0 0.0 0.0 3.0 \n",
"20516 92.0 0.0 0.0 0.0 2.0 \n",
"20517 96.0 0.0 0.0 0.0 2.0 \n",
"20518 100.0 0.0 0.0 0.0 3.0 \n",
"20519 100.0 0.0 0.0 0.0 3.0 \n",
"\n",
" cloud_cover wind_speed_10m wind_gusts_10m \n",
"20515 100.0 1.6 4.3 \n",
"20516 70.0 1.5 2.2 \n",
"20517 64.0 0.4 2.5 \n",
"20518 100.0 2.4 3.2 \n",
"20519 100.0 2.9 4.0 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the last 5 rows of the weather dataframe\n",
"historical_weather_df.tail(5)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 20520 entries, 0 to 20519\n",
"Data columns (total 13 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 timestamp 20520 non-null int64 \n",
" 1 datetime 20520 non-null datetime64[ns]\n",
" 2 date 20520 non-null object \n",
" 3 hour 20520 non-null int64 \n",
" 4 temperature_2m 20520 non-null float64 \n",
" 5 relative_humidity_2m 20520 non-null float64 \n",
" 6 precipitation 20520 non-null float64 \n",
" 7 rain 20520 non-null float64 \n",
" 8 snowfall 20520 non-null float64 \n",
" 9 weather_code 20520 non-null float64 \n",
" 10 cloud_cover 20520 non-null float64 \n",
" 11 wind_speed_10m 20520 non-null float64 \n",
" 12 wind_gusts_10m 20520 non-null float64 \n",
"dtypes: datetime64[ns](1), float64(9), int64(2), object(1)\n",
"memory usage: 2.2+ MB\n"
]
}
],
"source": [
"# Show the information for the weather dataframe\n",
"historical_weather_df.info()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### <span style=\"color:#2656a3;\"> π Forecast Weather Measures\n",
"Weather Forecast from Open Meteo is now being fetched. This data is used in the `2_feature_pipeline` to parse in new real-time weather data."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Fetching weather forecast measures for the next 5 days\n",
"weather_forecast_df = weather_measures.forecast_weather_measures(\n",
" forecast_length=5\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>timestamp</th>\n",
" <th>datetime</th>\n",
" <th>date</th>\n",
" <th>hour</th>\n",
" <th>temperature_2m</th>\n",
" <th>relative_humidity_2m</th>\n",
" <th>precipitation</th>\n",
" <th>rain</th>\n",
" <th>snowfall</th>\n",
" <th>weather_code</th>\n",
" <th>cloud_cover</th>\n",
" <th>wind_speed_10m</th>\n",
" <th>wind_gusts_10m</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1714953600000</td>\n",
" <td>2024-05-06 00:00:00</td>\n",
" <td>2024-05-06</td>\n",
" <td>0</td>\n",
" <td>9.6</td>\n",
" <td>93.0</td>\n",
" <td>0.2</td>\n",
" <td>0.2</td>\n",
" <td>0.0</td>\n",
" <td>51.0</td>\n",
" <td>100.0</td>\n",
" <td>14.4</td>\n",
" <td>24.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1714957200000</td>\n",
" <td>2024-05-06 01:00:00</td>\n",
" <td>2024-05-06</td>\n",
" <td>1</td>\n",
" <td>9.7</td>\n",
" <td>93.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>14.0</td>\n",
" <td>24.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1714960800000</td>\n",
" <td>2024-05-06 02:00:00</td>\n",
" <td>2024-05-06</td>\n",
" <td>2</td>\n",
" <td>9.5</td>\n",
" <td>91.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>14.0</td>\n",
" <td>24.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1714964400000</td>\n",
" <td>2024-05-06 03:00:00</td>\n",
" <td>2024-05-06</td>\n",
" <td>3</td>\n",
" <td>9.5</td>\n",
" <td>91.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>13.0</td>\n",
" <td>23.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1714968000000</td>\n",
" <td>2024-05-06 04:00:00</td>\n",
" <td>2024-05-06</td>\n",
" <td>4</td>\n",
" <td>9.6</td>\n",
" <td>92.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>100.0</td>\n",
" <td>14.0</td>\n",
" <td>24.1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" timestamp datetime date hour temperature_2m \\\n",
"0 1714953600000 2024-05-06 00:00:00 2024-05-06 0 9.6 \n",
"1 1714957200000 2024-05-06 01:00:00 2024-05-06 1 9.7 \n",
"2 1714960800000 2024-05-06 02:00:00 2024-05-06 2 9.5 \n",
"3 1714964400000 2024-05-06 03:00:00 2024-05-06 3 9.5 \n",
"4 1714968000000 2024-05-06 04:00:00 2024-05-06 4 9.6 \n",
"\n",
" relative_humidity_2m precipitation rain snowfall weather_code \\\n",
"0 93.0 0.2 0.2 0.0 51.0 \n",
"1 93.0 0.0 0.0 0.0 3.0 \n",
"2 91.0 0.0 0.0 0.0 3.0 \n",
"3 91.0 0.0 0.0 0.0 3.0 \n",
"4 92.0 0.0 0.0 0.0 3.0 \n",
"\n",
" cloud_cover wind_speed_10m wind_gusts_10m \n",
"0 100.0 14.4 24.8 \n",
"1 100.0 14.0 24.8 \n",
"2 100.0 14.0 24.8 \n",
"3 100.0 13.0 23.4 \n",
"4 100.0 14.0 24.1 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the first 5 rows of the weather forecast dataframe\n",
"weather_forecast_df.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>timestamp</th>\n",
" <th>datetime</th>\n",
" <th>date</th>\n",
" <th>hour</th>\n",
" <th>temperature_2m</th>\n",
" <th>relative_humidity_2m</th>\n",
" <th>precipitation</th>\n",
" <th>rain</th>\n",
" <th>snowfall</th>\n",
" <th>weather_code</th>\n",
" <th>cloud_cover</th>\n",
" <th>wind_speed_10m</th>\n",
" <th>wind_gusts_10m</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>115</th>\n",
" <td>1715367600000</td>\n",
" <td>2024-05-10 19:00:00</td>\n",
" <td>2024-05-10</td>\n",
" <td>19</td>\n",
" <td>11.5</td>\n",
" <td>68.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>89.0</td>\n",
" <td>5.2</td>\n",
" <td>13.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>116</th>\n",
" <td>1715371200000</td>\n",
" <td>2024-05-10 20:00:00</td>\n",
" <td>2024-05-10</td>\n",
" <td>20</td>\n",
" <td>10.5</td>\n",
" <td>71.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>88.0</td>\n",
" <td>3.4</td>\n",
" <td>8.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>117</th>\n",
" <td>1715374800000</td>\n",
" <td>2024-05-10 21:00:00</td>\n",
" <td>2024-05-10</td>\n",
" <td>21</td>\n",
" <td>9.5</td>\n",
" <td>74.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>87.0</td>\n",
" <td>2.5</td>\n",
" <td>4.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>118</th>\n",
" <td>1715378400000</td>\n",
" <td>2024-05-10 22:00:00</td>\n",
" <td>2024-05-10</td>\n",
" <td>22</td>\n",
" <td>8.6</td>\n",
" <td>78.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>91.0</td>\n",
" <td>2.6</td>\n",
" <td>4.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>119</th>\n",
" <td>1715382000000</td>\n",
" <td>2024-05-10 23:00:00</td>\n",
" <td>2024-05-10</td>\n",
" <td>23</td>\n",
" <td>7.8</td>\n",
" <td>81.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>96.0</td>\n",
" <td>2.5</td>\n",
" <td>4.3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" timestamp datetime date hour temperature_2m \\\n",
"115 1715367600000 2024-05-10 19:00:00 2024-05-10 19 11.5 \n",
"116 1715371200000 2024-05-10 20:00:00 2024-05-10 20 10.5 \n",
"117 1715374800000 2024-05-10 21:00:00 2024-05-10 21 9.5 \n",
"118 1715378400000 2024-05-10 22:00:00 2024-05-10 22 8.6 \n",
"119 1715382000000 2024-05-10 23:00:00 2024-05-10 23 7.8 \n",
"\n",
" relative_humidity_2m precipitation rain snowfall weather_code \\\n",
"115 68.0 0.0 0.0 0.0 3.0 \n",
"116 71.0 0.0 0.0 0.0 3.0 \n",
"117 74.0 0.0 0.0 0.0 3.0 \n",
"118 78.0 0.0 0.0 0.0 3.0 \n",
"119 81.0 0.0 0.0 0.0 3.0 \n",
"\n",
" cloud_cover wind_speed_10m wind_gusts_10m \n",
"115 89.0 5.2 13.0 \n",
"116 88.0 3.4 8.6 \n",
"117 87.0 2.5 4.3 \n",
"118 91.0 2.6 4.3 \n",
"119 96.0 2.5 4.3 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the last 5 rows of the weather forecast dataframe\n",
"weather_forecast_df.tail(5)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 120 entries, 0 to 119\n",
"Data columns (total 13 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 timestamp 120 non-null int64 \n",
" 1 datetime 120 non-null datetime64[ns]\n",
" 2 date 120 non-null object \n",
" 3 hour 120 non-null int64 \n",
" 4 temperature_2m 120 non-null float64 \n",
" 5 relative_humidity_2m 120 non-null float64 \n",
" 6 precipitation 120 non-null float64 \n",
" 7 rain 120 non-null float64 \n",
" 8 snowfall 120 non-null float64 \n",
" 9 weather_code 120 non-null float64 \n",
" 10 cloud_cover 120 non-null float64 \n",
" 11 wind_speed_10m 120 non-null float64 \n",
" 12 wind_gusts_10m 120 non-null float64 \n",
"dtypes: datetime64[ns](1), float64(9), int64(2), object(1)\n",
"memory usage: 12.3+ KB\n"
]
}
],
"source": [
"# Show the information for the weather weather forecast dataframe\n",
"weather_forecast_df.info()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### <span style=\"color:#2656a3;\"> ποΈ Calendar of Danish workdays and holidays \n",
"Lastly, the calendar data is being loaded in. The calendar data includes a `workday` attribute indicating whether the date is a workday or not. This column has been encoded from categorical variables into numerical form in the folder `features/weather_measures`. `1` indicating a workday and `0` indicating a non-workday. "
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"# Fetching the Danish calendar from January 1, 2022 to December 31, 2024 \n",
"calender_df = calendar.dk_calendar()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>date</th>\n",
" <th>dayofweek</th>\n",
" <th>day</th>\n",
" <th>month</th>\n",
" <th>year</th>\n",
" <th>workday</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2022-01-01</td>\n",
" <td>5</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2022</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2022-01-02</td>\n",
" <td>6</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>2022</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2022-01-03</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>2022</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2022-01-04</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>2022</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2022-01-05</td>\n",
" <td>2</td>\n",
" <td>5</td>\n",
" <td>1</td>\n",
" <td>2022</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" date dayofweek day month year workday\n",
"0 2022-01-01 5 1 1 2022 0\n",
"1 2022-01-02 6 2 1 2022 0\n",
"2 2022-01-03 0 3 1 2022 1\n",
"3 2022-01-04 1 4 1 2022 1\n",
"4 2022-01-05 2 5 1 2022 1"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the first 5 rows of the calendar dataframe\n",
"calender_df.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>date</th>\n",
" <th>dayofweek</th>\n",
" <th>day</th>\n",
" <th>month</th>\n",
" <th>year</th>\n",
" <th>workday</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1091</th>\n",
" <td>2024-12-27</td>\n",
" <td>4</td>\n",
" <td>27</td>\n",
" <td>12</td>\n",
" <td>2024</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1092</th>\n",
" <td>2024-12-28</td>\n",
" <td>5</td>\n",
" <td>28</td>\n",
" <td>12</td>\n",
" <td>2024</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1093</th>\n",
" <td>2024-12-29</td>\n",
" <td>6</td>\n",
" <td>29</td>\n",
" <td>12</td>\n",
" <td>2024</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1094</th>\n",
" <td>2024-12-30</td>\n",
" <td>0</td>\n",
" <td>30</td>\n",
" <td>12</td>\n",
" <td>2024</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1095</th>\n",
" <td>2024-12-31</td>\n",
" <td>1</td>\n",
" <td>31</td>\n",
" <td>12</td>\n",
" <td>2024</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" date dayofweek day month year workday\n",
"1091 2024-12-27 4 27 12 2024 1\n",
"1092 2024-12-28 5 28 12 2024 0\n",
"1093 2024-12-29 6 29 12 2024 0\n",
"1094 2024-12-30 0 30 12 2024 1\n",
"1095 2024-12-31 1 31 12 2024 1"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the last 5 rows of the calendar dataframe\n",
"calender_df.tail(5)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 1096 entries, 0 to 1095\n",
"Data columns (total 6 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 date 1096 non-null object\n",
" 1 dayofweek 1096 non-null int64 \n",
" 2 day 1096 non-null int64 \n",
" 3 month 1096 non-null int64 \n",
" 4 year 1096 non-null int64 \n",
" 5 workday 1096 non-null int64 \n",
"dtypes: int64(5), object(1)\n",
"memory usage: 51.5+ KB\n"
]
}
],
"source": [
"# Show the information for the calendar dataframe\n",
"calender_df.info()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style=\"color:#2656a3;\"> π‘ Connecting to Hopsworks Feature Store\n",
"\n",
"We connect to Hopsworks Feature Store so we can access and create feature groups."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connected. Call `.close()` to terminate connection gracefully.\n",
"\n",
"Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/550040\n",
"Connected. Call `.close()` to terminate connection gracefully.\n"
]
}
],
"source": [
"# Importing the hopsworks module for interacting with the Hopsworks platform\n",
"import hopsworks\n",
"\n",
"# Logging into the Hopsworks project\n",
"project = hopsworks.login()\n",
"\n",
"# Getting the feature store from the project\n",
"fs = project.get_feature_store()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### <span style=\"color:#2656a3;\"> πͺ Creating Feature Groups\n",
"A feature group can be seen as a collection of conceptually related features. In this case we create feature groups for the \n",
"- eletricity price data,\n",
"- weather data,\n",
"- calendar data.\n",
"\n",
"We specify a `primary_key` as `date` and `timestamp`, so we are able to join them when we create a dataset for training later in part `3_training_pipeline`.\n",
"We define a name and a short describtion of the feature group's contents and a version number. \n",
"\n",
"`event_time` is specifyed as `timestamp`. If event_time is set the feature group can be used for point-in-time joins.\n",
"\n",
"We've set `online_enabled` to `True` to enable accessing the feature group through the Online API for a Feature View."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"# Creating the feature group for the electricity prices\n",
"electricity_fg = fs.get_or_create_feature_group(\n",
" name=\"electricity_prices\",\n",
" version=1,\n",
" description=\"Electricity prices from Energidata API\",\n",
" primary_key=[\"date\",\"timestamp\"], \n",
" online_enabled=True,\n",
" event_time=\"timestamp\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have now outlined metadata for the feature group. Data hasn't been stored yet, and there's no schema defined. To store data persistently for the feature group, we populate it with its associated data using the `insert` function."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Feature Group created successfully, explore it at \n",
"https://c.app.hopsworks.ai:443/p/550040/fs/545863/fg/787801\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Uploading Dataframe: 100.00% |ββββββββββ| Rows 20541/20541 | Elapsed Time: 00:08 | Remaining Time: 00:00\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Launching job: electricity_prices_1_offline_fg_materialization\n",
"Job started successfully, you can follow the progress at \n",
"https://c.app.hopsworks.ai/p/550040/jobs/named/electricity_prices_1_offline_fg_materialization/executions\n"
]
},
{
"data": {
"text/plain": [
"(<hsfs.core.job.Job at 0x12fc0d450>, None)"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Inserting the electricity_df into the feature group named electricity_fg\n",
"electricity_fg.insert(electricity_df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We make a descriptions for each feature we put into the feature group. In this way we are adding more information and documentation to the user."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# List of descriptions for electricity features\n",
"electricity_feature_descriptions = [\n",
" {\"name\": \"timestamp\", \"description\": \"Timestamp of the event time\"},\n",
" {\"name\": \"date\", \"description\": \"Date of the electricity measurement\"},\n",
" {\"name\": \"datetime\", \"description\": \"Date and time of the electricity measurement\"},\n",
" {\"name\": \"hour\", \"description\": \"Hour of the day\"},\n",
" {\"name\": \"dk1_spotpricedkk_kwh\", \"description\": \"Spot price in DKK per KWH\"}, \n",
"]\n",
"\n",
"# Updating feature descriptions\n",
"for desc in electricity_feature_descriptions: \n",
" electricity_fg.update_feature_description(desc[\"name\"], desc[\"description\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We replicate the process for both the `weather_fg` and `danish_holidays_fg` by establishing feature groups and inserting the dataframes into their respective feature groups."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# Creating the feature group for the weather data\n",
"weather_fg = fs.get_or_create_feature_group(\n",
" name=\"weather_measurements\",\n",
" version=1,\n",
" description=\"Weather measurements from Open Meteo API\",\n",
" primary_key=[\"date\", \"timestamp\"], \n",
" online_enabled=True,\n",
" event_time=\"timestamp\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Feature Group created successfully, explore it at \n",
"https://c.app.hopsworks.ai:443/p/550040/fs/545863/fg/786783\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Uploading Dataframe: 100.00% |ββββββββββ| Rows 20520/20520 | Elapsed Time: 00:08 | Remaining Time: 00:00\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Launching job: weather_measurements_1_offline_fg_materialization\n",
"Job started successfully, you can follow the progress at \n",
"https://c.app.hopsworks.ai/p/550040/jobs/named/weather_measurements_1_offline_fg_materialization/executions\n"
]
},
{
"data": {
"text/plain": [
"(<hsfs.core.job.Job at 0x12fbb3b50>, None)"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Inserting the weather_df into the feature group named weather_fg\n",
"weather_fg.insert(historical_weather_df)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"# List of descriptions for weather features\n",
"weather_feature_descriptions = [\n",
" {\"name\": \"timestamp\", \"description\": \"Timestamp for the weather measurement\"},\n",
" {\"name\": \"date\", \"description\": \"Date of the weather measurement\"},\n",
" {\"name\": \"datetime\", \"description\": \"Date and time of the weather measurement\"},\n",
" {\"name\": \"hour\", \"description\": \"Hour of the day\"},\n",
" {\"name\": \"temperature_2m\", \"description\": \"Temperature at 2m above ground\"},\n",
" {\"name\": \"relative_humidity_2m\", \"description\": \"Relative humidity at 2m above ground\"},\n",
" {\"name\": \"precipitation\", \"description\": \"Precipitation\"},\n",
" {\"name\": \"rain\", \"description\": \"Rain\"},\n",
" {\"name\": \"snowfall\", \"description\": \"Snowfall\"}, \n",
" {\"name\": \"weather_code\", \"description\": \"Weather code\"}, \n",
" {\"name\": \"cloud_cover\", \"description\": \"Cloud cover\"}, \n",
" {\"name\": \"wind_speed_10m\", \"description\": \"Wind speed at 10m above ground\"}, \n",
" {\"name\": \"wind_gusts_10m\", \"description\": \"Wind gusts at 10m above ground\"}, \n",
"]\n",
"\n",
"# Updating feature descriptions\n",
"for desc in weather_feature_descriptions: \n",
" weather_fg.update_feature_description(desc[\"name\"], desc[\"description\"])"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"# Creating the feature group for the danish calendar\n",
"danish_calendar_fg = fs.get_or_create_feature_group(\n",
" name=\"dk_calendar\",\n",
" version=1,\n",
" description=\"Danish calendar\",\n",
" primary_key=[\"date\"],\n",
" online_enabled=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Feature Group created successfully, explore it at \n",
"https://c.app.hopsworks.ai:443/p/550040/fs/545863/fg/786784\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Uploading Dataframe: 100.00% |ββββββββββ| Rows 1096/1096 | Elapsed Time: 00:05 | Remaining Time: 00:00\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Launching job: dk_calendar_1_offline_fg_materialization\n",
"Job started successfully, you can follow the progress at \n",
"https://c.app.hopsworks.ai/p/550040/jobs/named/dk_calendar_1_offline_fg_materialization/executions\n"
]
},
{
"data": {
"text/plain": [
"(<hsfs.core.job.Job at 0x12fe04690>, None)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Inserting the calendar_df into the feature group named danish_calendar_fg\n",
"danish_calendar_fg.insert(calender_df)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"# List of descriptions for danish_calendar features\n",
"danish_calendar_feature_descriptions = [\n",
" {\"name\": \"date\", \"description\": \"Date in the calendar\"},\n",
" {\"name\": \"day\", \"description\": \"Day number of the week. Monday is 0 and Sunday is 6\"},\n",
" {\"name\": \"month\", \"description\": \"Month number of the year\"},\n",
" {\"name\": \"workday\", \"description\": \"Workday or not a workday. Workday is 1 and not a workday is 0\"},\n",
"]\n",
"\n",
"# Updating feature descriptions\n",
"for desc in danish_calendar_feature_descriptions: \n",
" danish_calendar_fg.update_feature_description(desc[\"name\"], desc[\"description\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"## <span style=\"color:#2656a3;\">βοΈ **Next:** Part 02: Feature Pipeline </span>\n",
"\n",
"Next we will generate new data for the Feature Groups."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "bds-streamlit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|