Spaces:
Runtime error
Runtime error
File size: 6,531 Bytes
7a07ff9 640a27b 843b14b 640a27b f0cf9b0 640a27b 843b14b 88c9af4 f0cf9b0 843b14b f0cf9b0 0166058 f0cf9b0 f9f0452 f0cf9b0 843b14b f0cf9b0 843b14b f0cf9b0 88c9af4 f0cf9b0 0166058 f0cf9b0 0166058 843b14b f0cf9b0 843b14b f0cf9b0 843b14b f0cf9b0 843b14b f0cf9b0 843b14b f0cf9b0 0166058 f0cf9b0 843b14b f0cf9b0 88c9af4 f0cf9b0 843b14b f0cf9b0 843b14b 88c9af4 843b14b f0cf9b0 843b14b 88c9af4 f0cf9b0 843b14b 88c9af4 843b14b 0166058 843b14b 88c9af4 843b14b 0166058 843b14b 88c9af4 843b14b f0cf9b0 843b14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import sys
sys.path.insert(0,'stable_diffusion')
import gradio as gr
from train_esd import train_esd
from convertModels import convert_ldm_unet_checkpoint, create_unet_diffusers_config
from omegaconf import OmegaConf
from StableDiffuser import StableDiffuser
from diffusers import UNet2DConditionModel
ckpt_path = "stable_diffusion/models/ldm/sd-v1-4-full-ema.ckpt"
config_path = "stable_diffusion/configs/stable-diffusion/v1-inference.yaml"
diffusers_config_path = "stable_diffusion/config.json"
class Demo:
def __init__(self) -> None:
self.training = False
self.generating = False
with gr.Blocks() as demo:
self.layout()
demo.queue(concurrency_count=10).launch()
def disable(self):
return [gr.update(interactive=False), gr.update(interactive=False)]
def layout(self):
with gr.Row():
with gr.Column(scale=1) as training_column:
self.prompt_input = gr.Text(
placeholder="Enter prompt...",
label="Prompt to Erase",
info="Prompt corresponding to concept to erase"
)
self.train_method_input = gr.Dropdown(
choices=['noxattn', 'selfattn', 'xattn', 'full'],
value='xattn',
label='Train Method',
info='Method of training'
)
self.neg_guidance_input = gr.Number(
value=1,
label="Negative Guidance",
info='Guidance of negative training used to train'
)
self.iterations_input = gr.Number(
value=1000,
precision=0,
label="Iterations",
info='iterations used to train'
)
self.lr_input = gr.Number(
value=1e-5,
label="Learning Rate",
info='Learning rate used to train'
)
self.progress_bar = gr.Text(interactive=False, label="Training Progress")
self.train_button = gr.Button(
value="Train",
)
with gr.Column(scale=2) as inference_column:
with gr.Row():
with gr.Column(scale=4):
self.prompt_input_infr = gr.Text(
placeholder="Enter prompt...",
label="Prompt",
info="Prompt to generate"
)
with gr.Column(scale=1):
self.seed_infr = gr.Number(
label="Seed",
value=42
)
with gr.Row():
self.image_new = gr.Image(
label="New Image",
interactive=False
)
self.image_orig = gr.Image(
label="Orig Image",
interactive=False
)
with gr.Row():
self.infr_button = gr.Button(
value="Generate",
interactive=False
)
self.infr_button.click(self.inference, inputs = [
self.prompt_input_infr,
self.seed_infr
],
outputs=[
self.image_new,
self.image_orig
]
)
self.train_button.click(self.disable,
outputs=[self.train_button, self.infr_button]
)
self.train_button.click(self.train, inputs = [
self.prompt_input,
self.train_method_input,
self.neg_guidance_input,
self.iterations_input,
self.lr_input
],
outputs=[self.train_button, self.infr_button, self.progress_bar]
)
def train(self, prompt, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):
if self.training:
return [None, None, None]
else:
self.training = True
model_orig, model_edited = train_esd(prompt,
train_method,
3,
neg_guidance,
iterations,
lr,
config_path,
ckpt_path,
diffusers_config_path,
['cuda', 'cuda']
)
original_config = OmegaConf.load(config_path)
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = 4
unet_config = create_unet_diffusers_config(original_config, image_size=512)
model_edited_sd = convert_ldm_unet_checkpoint(model_edited.state_dict(), unet_config)
model_orig_sd = convert_ldm_unet_checkpoint(model_orig.state_dict(), unet_config)
self.init_inference(model_edited_sd, model_orig_sd, unet_config)
return [gr.update(interactive=True), gr.update(interactive=True), None]
def init_inference(self, model_edited_sd, model_orig_sd, unet_config):
self.model_edited_sd = model_edited_sd
self.model_orig_sd = model_orig_sd
self.diffuser = StableDiffuser(42)
self.diffuser.unet = UNet2DConditionModel(**unet_config)
self.diffuser.to('cuda')
self.training = False
def inference(self, prompt, seed, pbar = gr.Progress(track_tqdm=True)):
if self.generating:
return [None, None]
else:
self.generating = True
self.diffuser.unet.load_state_dict(self.model_orig_sd)
self.diffuser._seed = seed
images = self.diffuser(
prompt,
n_steps=50,
reseed=True
)
orig_image = images[0][0]
self.diffuser.unet.load_state_dict(self.model_edited_sd)
images = self.diffuser(
prompt,
n_steps=50,
reseed=True
)
edited_image = images[0][0]
self.generating = False
return edited_image, orig_image
demo = Demo()
|