Spaces:
Running
Running
File size: 1,239 Bytes
7b18d60 502159a eb134bd 7b18d60 68a9c43 eb134bd 68a9c43 eb134bd 68a9c43 eb134bd 7b18d60 ebd3d99 65129d9 ebd3d99 6aaee7d ebd3d99 eb134bd ebd3d99 eb134bd 7b18d60 eb134bd 65129d9 eb134bd 7b18d60 4020721 7b18d60 eb134bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import time
from transformers import pipeline
import torch
# Check if GPU is available
use_gpu = torch.cuda.is_available()
# Configure the pipeline to use the GPU if available
if use_gpu:
p = pipeline("automatic-speech-recognition",
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h", device=0)
else:
p = pipeline("automatic-speech-recognition",
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h")
def transcribe(audio, state="", uploaded_audio=None):
if uploaded_audio is not None:
audio = uploaded_audio
if not audio:
return state, state # Return a meaningful message
try:
time.sleep(3)
text = p(audio)["text"]
state += text + "\n"
return state, state
except Exception as e:
return "An error occurred during transcription.", state # Handle other exceptions
gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath"),
'state',
gr.inputs.Audio(label="Upload Audio File", type="filepath", source="upload")
],
outputs=[
"textbox",
"state"
],
live=True).launch()
|