Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
import time
|
3 |
-
import torch
|
4 |
from transformers import pipeline
|
5 |
-
import
|
6 |
|
7 |
# Check if GPU is available
|
8 |
use_gpu = torch.cuda.is_available()
|
9 |
|
|
|
10 |
# Configure the pipeline to use the GPU if available
|
11 |
if use_gpu:
|
12 |
p = pipeline("automatic-speech-recognition",
|
13 |
-
|
14 |
else:
|
15 |
p = pipeline("automatic-speech-recognition",
|
16 |
-
|
17 |
-
|
18 |
-
chunk_size = 10 # Adjust the chunk size as needed
|
19 |
|
20 |
def transcribe(audio, state="", uploaded_audio=None):
|
21 |
if uploaded_audio is not None:
|
22 |
audio = uploaded_audio
|
23 |
if not audio:
|
24 |
return state, state # Return a meaningful message
|
25 |
-
|
26 |
try:
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
state += text + "\n"
|
31 |
-
else:
|
32 |
-
chunks = [audio[i:i + chunk_size] for i in range(0, len(audio), chunk_size)]
|
33 |
-
for chunk in chunks:
|
34 |
-
text = p(chunk)["text"]
|
35 |
-
state += text + "\n"
|
36 |
-
time.sleep(1) # Simulate processing time for each chunk
|
37 |
return state, state
|
38 |
except Exception as e:
|
39 |
return "An error occurred during transcription.", state # Handle other exceptions
|
40 |
|
|
|
|
|
|
|
41 |
gr.Interface(
|
42 |
fn=transcribe,
|
43 |
inputs=[
|
44 |
-
gr.inputs.Audio(source="microphone", type="
|
45 |
'state',
|
46 |
-
gr.inputs.Audio(label="Upload Audio File", type="
|
47 |
],
|
48 |
outputs=[
|
49 |
"textbox",
|
50 |
"state"
|
51 |
],
|
52 |
-
live=True
|
53 |
-
).launch()
|
54 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import time
|
|
|
3 |
from transformers import pipeline
|
4 |
+
import torch
|
5 |
|
6 |
# Check if GPU is available
|
7 |
use_gpu = torch.cuda.is_available()
|
8 |
|
9 |
+
|
10 |
# Configure the pipeline to use the GPU if available
|
11 |
if use_gpu:
|
12 |
p = pipeline("automatic-speech-recognition",
|
13 |
+
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h", device=0)
|
14 |
else:
|
15 |
p = pipeline("automatic-speech-recognition",
|
16 |
+
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h")
|
17 |
+
|
|
|
18 |
|
19 |
def transcribe(audio, state="", uploaded_audio=None):
|
20 |
if uploaded_audio is not None:
|
21 |
audio = uploaded_audio
|
22 |
if not audio:
|
23 |
return state, state # Return a meaningful message
|
|
|
24 |
try:
|
25 |
+
time.sleep(3)
|
26 |
+
text = p(audio)["text"]
|
27 |
+
state += text + "\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
return state, state
|
29 |
except Exception as e:
|
30 |
return "An error occurred during transcription.", state # Handle other exceptions
|
31 |
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
gr.Interface(
|
36 |
fn=transcribe,
|
37 |
inputs=[
|
38 |
+
gr.inputs.Audio(source="microphone", type="filepath"),
|
39 |
'state',
|
40 |
+
gr.inputs.Audio(label="Upload Audio File", type="filepath", source="upload")
|
41 |
],
|
42 |
outputs=[
|
43 |
"textbox",
|
44 |
"state"
|
45 |
],
|
46 |
+
live=True).launch()
|
|
|
|