Spaces:
Runtime error
Runtime error
File size: 6,022 Bytes
8c43b94 2b1dfa7 9349523 8c43b94 025efa1 8c43b94 bb1243f 9349523 8c43b94 2b1dfa7 025efa1 8c43b94 8c42239 9dc5640 8c42239 9dc5640 8c42239 9dc5640 8c42239 2b1dfa7 8c42239 025efa1 a10e5ed 8c42239 9e6273b 8c42239 9e6273b 8c42239 8c43b94 2b1dfa7 8c43b94 9e6273b 2b1dfa7 b0d30c3 8c43b94 b0d30c3 8c43b94 258a840 9e6273b 8c43b94 52e0c74 9e6273b ceabeea 52e0c74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import os
from PIL import Image
import torch
import gradio as gr
torch.backends.cudnn.benchmark = True
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
import time
from copy import deepcopy
import imageio
import sys
from PIL import Image
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.utils.common import tensor2im
from e4e.models.psp import pSp
from e4e.models.encoders import psp_encoders
from e4e.models.stylegan2.model import Generator
from huggingface_hub import hf_hub_download
import dlib
from e4e.utils.alignment import align_face
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
resize_dims = (256, 256)
device= 'cpu'
ffhq_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512.pt")
ffhq_ckpt = torch.load(ffhq_model_path, map_location='cpu')
ffhq_latent_avg = ffhq_ckpt['latent_avg'].to(device)
ffhq_opts = ffhq_ckpt['opts']
ffhq_opts['checkpoint_path'] = ffhq_model_path
ffhq_opts= Namespace(**ffhq_opts)
ffhq_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', ffhq_opts)
ffhq_e_filt = {k[len('encoder') + 1:]: v for k, v in ffhq_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
ffhq_encoder.load_state_dict(ffhq_e_filt, strict=True)
ffhq_encoder.eval()
ffhq_encoder.to(device)
ffhq_decoder = Generator(512, 512, 8, channel_multiplier=2)
ffhq_d_filt = {k[len('decoder') + 1:]: v for k, v in ffhq_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
ffhq_decoder.load_state_dict(ffhq_d_filt, strict=True)
ffhq_decoder.eval()
ffhq_decoder.to(device)
dog_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512_dog.pt")
dog_ckpt = torch.load(dog_model_path, map_location='cpu')
dog_latent_avg = dog_ckpt['latent_avg'].to(device)
dog_opts = dog_ckpt['opts']
dog_opts['checkpoint_path'] = dog_model_path
dog_opts= Namespace(**dog_opts)
dog_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', dog_opts)
dog_e_filt = {k[len('encoder') + 1:]: v for k, v in dog_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
dog_encoder.load_state_dict(dog_e_filt, strict=True)
dog_encoder.eval()
dog_encoder.to(device)
dog_decoder = Generator(512, 512, 8, channel_multiplier=2)
dog_d_filt = {k[len('decoder') + 1:]: v for k, v in dog_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
dog_decoder.load_state_dict(dog_d_filt, strict=True)
dog_decoder.eval()
dog_decoder.to(device)
cat_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512_cat.pt")
cat_ckpt = torch.load(cat_model_path, map_location='cpu')
cat_latent_avg = cat_ckpt['latent_avg'].to(device)
cat_opts = cat_ckpt['opts']
cat_opts['checkpoint_path'] = cat_model_path
cat_opts= Namespace(**cat_opts)
cat_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', cat_opts)
cat_e_filt = {k[len('encoder') + 1:]: v for k, v in cat_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
cat_encoder.load_state_dict(cat_e_filt, strict=True)
cat_encoder.eval()
cat_encoder.to(device)
cat_decoder = Generator(512, 512, 8, channel_multiplier=2)
cat_d_filt = {k[len('decoder') + 1:]: v for k, v in cat_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
cat_decoder.load_state_dict(cat_d_filt, strict=True)
cat_decoder.eval()
cat_decoder.to(device)
dlib_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="shape_predictor_68_face_landmarks.dat")
predictor = dlib.shape_predictor(dlib_path)
def run_alignment(image_path):
aligned_image = align_face(filepath=image_path, predictor=predictor)
print("Aligned image has shape: {}".format(aligned_image.size))
return aligned_image
def gen_im(ffhq_codes, dog_codes, cat_codes, model_type='ffhq'):
if model_type=='ffhq':
imgs, _ = ffhq_decoder([ffhq_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
elif model_type=='Dog':
imgs, _ = dog_decoder([dog_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
elif model_type=='Cat':
imgs, _ = cat_decoder([cat_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
else:
imgs, _ = custom_decoder([custom_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
return tensor2im(imgs[0])
def set_seed(rd):
torch.manual_seed(rd)
def inference(img, model):
random_seed = round(time.time() * 1000)
set_seed(random_seed)
try:
img.save('out.jpg')
try:
input_image = run_alignment('out.jpg')
except:
return 'out.jpg'
transformed_image = transform(input_image)
ffhq_codes = ffhq_encoder(transformed_image.unsqueeze(0).to(device).float())
ffhq_codes = ffhq_codes + ffhq_latent_avg.repeat(ffhq_codes.shape[0], 1, 1)
cat_codes = cat_encoder(transformed_image.unsqueeze(0).to(device).float())
cat_codes = cat_codes + cat_latent_avg.repeat(cat_codes.shape[0], 1, 1)
dog_codes = dog_encoder(transformed_image.unsqueeze(0).to(device).float())
dog_codes = dog_codes + dog_latent_avg.repeat(dog_codes.shape[0], 1, 1)
npimage = gen_im(ffhq_codes, dog_codes, cat_codes, model)
imageio.imwrite('filename.jpeg', npimage)
return 'filename.jpeg'
except:
pass
title = "PetBreeder v1.1"
description = "Gradio Demo for PetBreeder. Based on [Colab](https://colab.research.google.com/github/tg-bomze/collection-of-notebooks/blob/master/PetBreeder.ipynb) by [@MLArt](https://t.me/MLArt)."
gr.Interface(inference,
[gr.inputs.Image(type="pil"),
gr.inputs.Dropdown(choices=['Cat','Dog'], type='value', default='Cat', label='Model')],
gr.outputs.Image(type="file"),
title=title,
description=description).launch()
|