Spaces:
Runtime error
Runtime error
Мясников Филипп Сергеевич
commited on
Commit
•
9e6273b
1
Parent(s):
6c92b57
Fix
Browse files
app.py
CHANGED
@@ -2,10 +2,7 @@ import os
|
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
-
import torch
|
6 |
torch.backends.cudnn.benchmark = True
|
7 |
-
from torchvision import transforms, utils
|
8 |
-
from PIL import Image
|
9 |
import math
|
10 |
import random
|
11 |
import numpy as np
|
@@ -18,11 +15,8 @@ import time
|
|
18 |
from copy import deepcopy
|
19 |
import imageio
|
20 |
|
21 |
-
import os
|
22 |
import sys
|
23 |
-
import numpy as np
|
24 |
from PIL import Image
|
25 |
-
import torch
|
26 |
import torchvision.transforms as transforms
|
27 |
from argparse import Namespace
|
28 |
from e4e.utils.common import tensor2im
|
@@ -114,9 +108,9 @@ def run_alignment(image_path):
|
|
114 |
def gen_im(ffhq_codes, dog_codes, cat_codes, model_type='ffhq'):
|
115 |
if model_type=='ffhq':
|
116 |
imgs, _ = ffhq_decoder([ffhq_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
|
117 |
-
elif model_type=='
|
118 |
imgs, _ = dog_decoder([dog_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
|
119 |
-
elif model_type=='
|
120 |
imgs, _ = cat_decoder([cat_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
|
121 |
else:
|
122 |
imgs, _ = custom_decoder([custom_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
|
@@ -125,7 +119,7 @@ def gen_im(ffhq_codes, dog_codes, cat_codes, model_type='ffhq'):
|
|
125 |
def set_seed(rd):
|
126 |
torch.manual_seed(rd)
|
127 |
|
128 |
-
def inference(img):
|
129 |
random_seed = round(time.time() * 1000)
|
130 |
set_seed(random_seed)
|
131 |
|
@@ -143,17 +137,17 @@ def inference(img):
|
|
143 |
dog_codes = dog_encoder(transformed_image.unsqueeze(0).to(device).float())
|
144 |
dog_codes = dog_codes + ffhq_latent_avg.repeat(dog_codes.shape[0], 1, 1)
|
145 |
|
146 |
-
|
147 |
-
npimage = gen_im(ffhq_codes, dog_codes, cat_codes, animal)
|
148 |
|
149 |
imageio.imwrite('filename.jpeg', npimage)
|
150 |
return 'filename.jpeg'
|
151 |
|
152 |
title = "PetBreeder v1.1"
|
153 |
-
description = "Gradio Demo for PetBreeder."
|
154 |
|
155 |
gr.Interface(inference,
|
156 |
-
[gr.inputs.Image(type="pil")
|
|
|
157 |
gr.outputs.Image(type="file"),
|
158 |
title=title,
|
159 |
description=description).launch()
|
|
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
5 |
torch.backends.cudnn.benchmark = True
|
|
|
|
|
6 |
import math
|
7 |
import random
|
8 |
import numpy as np
|
|
|
15 |
from copy import deepcopy
|
16 |
import imageio
|
17 |
|
|
|
18 |
import sys
|
|
|
19 |
from PIL import Image
|
|
|
20 |
import torchvision.transforms as transforms
|
21 |
from argparse import Namespace
|
22 |
from e4e.utils.common import tensor2im
|
|
|
108 |
def gen_im(ffhq_codes, dog_codes, cat_codes, model_type='ffhq'):
|
109 |
if model_type=='ffhq':
|
110 |
imgs, _ = ffhq_decoder([ffhq_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
|
111 |
+
elif model_type=='Dog':
|
112 |
imgs, _ = dog_decoder([dog_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
|
113 |
+
elif model_type=='Cat':
|
114 |
imgs, _ = cat_decoder([cat_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
|
115 |
else:
|
116 |
imgs, _ = custom_decoder([custom_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
|
|
|
119 |
def set_seed(rd):
|
120 |
torch.manual_seed(rd)
|
121 |
|
122 |
+
def inference(img, model):
|
123 |
random_seed = round(time.time() * 1000)
|
124 |
set_seed(random_seed)
|
125 |
|
|
|
137 |
dog_codes = dog_encoder(transformed_image.unsqueeze(0).to(device).float())
|
138 |
dog_codes = dog_codes + ffhq_latent_avg.repeat(dog_codes.shape[0], 1, 1)
|
139 |
|
140 |
+
npimage = gen_im(ffhq_codes, dog_codes, cat_codes, model)
|
|
|
141 |
|
142 |
imageio.imwrite('filename.jpeg', npimage)
|
143 |
return 'filename.jpeg'
|
144 |
|
145 |
title = "PetBreeder v1.1"
|
146 |
+
description = "Gradio Demo for PetBreeder. Based on [Colab](https://colab.research.google.com/github/tg-bomze/collection-of-notebooks/blob/master/PetBreeder.ipynb) by [@MLArt](https://t.me/MLArt)."
|
147 |
|
148 |
gr.Interface(inference,
|
149 |
+
[gr.inputs.Image(type="pil"),
|
150 |
+
gr.inputs.Dropdown(choices=['Cat','Dog'], type='value', default='Cat', label='Model')]
|
151 |
gr.outputs.Image(type="file"),
|
152 |
title=title,
|
153 |
description=description).launch()
|