Spaces:
Runtime error
Runtime error
Мясников Филипп Сергеевич
commited on
Commit
•
6c92b57
1
Parent(s):
cc78303
fix
Browse files- op/__init__.py +0 -0
- op/conv2d_gradfix.py +227 -0
- op/fused_act.py +86 -0
- op/fused_act_cpu.py +41 -0
- op/upfirdn2d.py +187 -0
- op/upfirdn2d_cpu.py +60 -0
op/__init__.py
ADDED
File without changes
|
op/conv2d_gradfix.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import autograd
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
enabled = True
|
9 |
+
weight_gradients_disabled = False
|
10 |
+
|
11 |
+
|
12 |
+
@contextlib.contextmanager
|
13 |
+
def no_weight_gradients():
|
14 |
+
global weight_gradients_disabled
|
15 |
+
|
16 |
+
old = weight_gradients_disabled
|
17 |
+
weight_gradients_disabled = True
|
18 |
+
yield
|
19 |
+
weight_gradients_disabled = old
|
20 |
+
|
21 |
+
|
22 |
+
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
23 |
+
if could_use_op(input):
|
24 |
+
return conv2d_gradfix(
|
25 |
+
transpose=False,
|
26 |
+
weight_shape=weight.shape,
|
27 |
+
stride=stride,
|
28 |
+
padding=padding,
|
29 |
+
output_padding=0,
|
30 |
+
dilation=dilation,
|
31 |
+
groups=groups,
|
32 |
+
).apply(input, weight, bias)
|
33 |
+
|
34 |
+
return F.conv2d(
|
35 |
+
input=input,
|
36 |
+
weight=weight,
|
37 |
+
bias=bias,
|
38 |
+
stride=stride,
|
39 |
+
padding=padding,
|
40 |
+
dilation=dilation,
|
41 |
+
groups=groups,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
def conv_transpose2d(
|
46 |
+
input,
|
47 |
+
weight,
|
48 |
+
bias=None,
|
49 |
+
stride=1,
|
50 |
+
padding=0,
|
51 |
+
output_padding=0,
|
52 |
+
groups=1,
|
53 |
+
dilation=1,
|
54 |
+
):
|
55 |
+
if could_use_op(input):
|
56 |
+
return conv2d_gradfix(
|
57 |
+
transpose=True,
|
58 |
+
weight_shape=weight.shape,
|
59 |
+
stride=stride,
|
60 |
+
padding=padding,
|
61 |
+
output_padding=output_padding,
|
62 |
+
groups=groups,
|
63 |
+
dilation=dilation,
|
64 |
+
).apply(input, weight, bias)
|
65 |
+
|
66 |
+
return F.conv_transpose2d(
|
67 |
+
input=input,
|
68 |
+
weight=weight,
|
69 |
+
bias=bias,
|
70 |
+
stride=stride,
|
71 |
+
padding=padding,
|
72 |
+
output_padding=output_padding,
|
73 |
+
dilation=dilation,
|
74 |
+
groups=groups,
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
def could_use_op(input):
|
79 |
+
if (not enabled) or (not torch.backends.cudnn.enabled):
|
80 |
+
return False
|
81 |
+
|
82 |
+
if input.device.type != "cuda":
|
83 |
+
return False
|
84 |
+
|
85 |
+
if any(torch.__version__.startswith(x) for x in ["1.7.", "1.8."]):
|
86 |
+
return True
|
87 |
+
|
88 |
+
warnings.warn(
|
89 |
+
f"conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d()."
|
90 |
+
)
|
91 |
+
|
92 |
+
return False
|
93 |
+
|
94 |
+
|
95 |
+
def ensure_tuple(xs, ndim):
|
96 |
+
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
|
97 |
+
|
98 |
+
return xs
|
99 |
+
|
100 |
+
|
101 |
+
conv2d_gradfix_cache = dict()
|
102 |
+
|
103 |
+
|
104 |
+
def conv2d_gradfix(
|
105 |
+
transpose, weight_shape, stride, padding, output_padding, dilation, groups
|
106 |
+
):
|
107 |
+
ndim = 2
|
108 |
+
weight_shape = tuple(weight_shape)
|
109 |
+
stride = ensure_tuple(stride, ndim)
|
110 |
+
padding = ensure_tuple(padding, ndim)
|
111 |
+
output_padding = ensure_tuple(output_padding, ndim)
|
112 |
+
dilation = ensure_tuple(dilation, ndim)
|
113 |
+
|
114 |
+
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
|
115 |
+
if key in conv2d_gradfix_cache:
|
116 |
+
return conv2d_gradfix_cache[key]
|
117 |
+
|
118 |
+
common_kwargs = dict(
|
119 |
+
stride=stride, padding=padding, dilation=dilation, groups=groups
|
120 |
+
)
|
121 |
+
|
122 |
+
def calc_output_padding(input_shape, output_shape):
|
123 |
+
if transpose:
|
124 |
+
return [0, 0]
|
125 |
+
|
126 |
+
return [
|
127 |
+
input_shape[i + 2]
|
128 |
+
- (output_shape[i + 2] - 1) * stride[i]
|
129 |
+
- (1 - 2 * padding[i])
|
130 |
+
- dilation[i] * (weight_shape[i + 2] - 1)
|
131 |
+
for i in range(ndim)
|
132 |
+
]
|
133 |
+
|
134 |
+
class Conv2d(autograd.Function):
|
135 |
+
@staticmethod
|
136 |
+
def forward(ctx, input, weight, bias):
|
137 |
+
if not transpose:
|
138 |
+
out = F.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
|
139 |
+
|
140 |
+
else:
|
141 |
+
out = F.conv_transpose2d(
|
142 |
+
input=input,
|
143 |
+
weight=weight,
|
144 |
+
bias=bias,
|
145 |
+
output_padding=output_padding,
|
146 |
+
**common_kwargs,
|
147 |
+
)
|
148 |
+
|
149 |
+
ctx.save_for_backward(input, weight)
|
150 |
+
|
151 |
+
return out
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def backward(ctx, grad_output):
|
155 |
+
input, weight = ctx.saved_tensors
|
156 |
+
grad_input, grad_weight, grad_bias = None, None, None
|
157 |
+
|
158 |
+
if ctx.needs_input_grad[0]:
|
159 |
+
p = calc_output_padding(
|
160 |
+
input_shape=input.shape, output_shape=grad_output.shape
|
161 |
+
)
|
162 |
+
grad_input = conv2d_gradfix(
|
163 |
+
transpose=(not transpose),
|
164 |
+
weight_shape=weight_shape,
|
165 |
+
output_padding=p,
|
166 |
+
**common_kwargs,
|
167 |
+
).apply(grad_output, weight, None)
|
168 |
+
|
169 |
+
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
|
170 |
+
grad_weight = Conv2dGradWeight.apply(grad_output, input)
|
171 |
+
|
172 |
+
if ctx.needs_input_grad[2]:
|
173 |
+
grad_bias = grad_output.sum((0, 2, 3))
|
174 |
+
|
175 |
+
return grad_input, grad_weight, grad_bias
|
176 |
+
|
177 |
+
class Conv2dGradWeight(autograd.Function):
|
178 |
+
@staticmethod
|
179 |
+
def forward(ctx, grad_output, input):
|
180 |
+
op = torch._C._jit_get_operation(
|
181 |
+
"aten::cudnn_convolution_backward_weight"
|
182 |
+
if not transpose
|
183 |
+
else "aten::cudnn_convolution_transpose_backward_weight"
|
184 |
+
)
|
185 |
+
flags = [
|
186 |
+
torch.backends.cudnn.benchmark,
|
187 |
+
torch.backends.cudnn.deterministic,
|
188 |
+
torch.backends.cudnn.allow_tf32,
|
189 |
+
]
|
190 |
+
grad_weight = op(
|
191 |
+
weight_shape,
|
192 |
+
grad_output,
|
193 |
+
input,
|
194 |
+
padding,
|
195 |
+
stride,
|
196 |
+
dilation,
|
197 |
+
groups,
|
198 |
+
*flags,
|
199 |
+
)
|
200 |
+
ctx.save_for_backward(grad_output, input)
|
201 |
+
|
202 |
+
return grad_weight
|
203 |
+
|
204 |
+
@staticmethod
|
205 |
+
def backward(ctx, grad_grad_weight):
|
206 |
+
grad_output, input = ctx.saved_tensors
|
207 |
+
grad_grad_output, grad_grad_input = None, None
|
208 |
+
|
209 |
+
if ctx.needs_input_grad[0]:
|
210 |
+
grad_grad_output = Conv2d.apply(input, grad_grad_weight, None)
|
211 |
+
|
212 |
+
if ctx.needs_input_grad[1]:
|
213 |
+
p = calc_output_padding(
|
214 |
+
input_shape=input.shape, output_shape=grad_output.shape
|
215 |
+
)
|
216 |
+
grad_grad_input = conv2d_gradfix(
|
217 |
+
transpose=(not transpose),
|
218 |
+
weight_shape=weight_shape,
|
219 |
+
output_padding=p,
|
220 |
+
**common_kwargs,
|
221 |
+
).apply(grad_output, grad_grad_weight, None)
|
222 |
+
|
223 |
+
return grad_grad_output, grad_grad_input
|
224 |
+
|
225 |
+
conv2d_gradfix_cache[key] = Conv2d
|
226 |
+
|
227 |
+
return Conv2d
|
op/fused_act.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.autograd import Function
|
6 |
+
from torch.utils.cpp_extension import load
|
7 |
+
|
8 |
+
|
9 |
+
module_path = os.path.dirname(__file__)
|
10 |
+
fused = load(
|
11 |
+
'fused',
|
12 |
+
sources=[
|
13 |
+
os.path.join(module_path, 'fused_bias_act.cpp'),
|
14 |
+
os.path.join(module_path, 'fused_bias_act_kernel.cu'),
|
15 |
+
],
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
20 |
+
@staticmethod
|
21 |
+
def forward(ctx, grad_output, out, negative_slope, scale):
|
22 |
+
ctx.save_for_backward(out)
|
23 |
+
ctx.negative_slope = negative_slope
|
24 |
+
ctx.scale = scale
|
25 |
+
|
26 |
+
empty = grad_output.new_empty(0)
|
27 |
+
|
28 |
+
grad_input = fused.fused_bias_act(
|
29 |
+
grad_output, empty, out, 3, 1, negative_slope, scale
|
30 |
+
)
|
31 |
+
|
32 |
+
dim = [0]
|
33 |
+
|
34 |
+
if grad_input.ndim > 2:
|
35 |
+
dim += list(range(2, grad_input.ndim))
|
36 |
+
|
37 |
+
grad_bias = grad_input.sum(dim).detach()
|
38 |
+
|
39 |
+
return grad_input, grad_bias
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def backward(ctx, gradgrad_input, gradgrad_bias):
|
43 |
+
out, = ctx.saved_tensors
|
44 |
+
gradgrad_out = fused.fused_bias_act(
|
45 |
+
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
|
46 |
+
)
|
47 |
+
|
48 |
+
return gradgrad_out, None, None, None
|
49 |
+
|
50 |
+
|
51 |
+
class FusedLeakyReLUFunction(Function):
|
52 |
+
@staticmethod
|
53 |
+
def forward(ctx, input, bias, negative_slope, scale):
|
54 |
+
empty = input.new_empty(0)
|
55 |
+
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
|
56 |
+
ctx.save_for_backward(out)
|
57 |
+
ctx.negative_slope = negative_slope
|
58 |
+
ctx.scale = scale
|
59 |
+
|
60 |
+
return out
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def backward(ctx, grad_output):
|
64 |
+
out, = ctx.saved_tensors
|
65 |
+
|
66 |
+
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
67 |
+
grad_output, out, ctx.negative_slope, ctx.scale
|
68 |
+
)
|
69 |
+
|
70 |
+
return grad_input, grad_bias, None, None
|
71 |
+
|
72 |
+
|
73 |
+
class FusedLeakyReLU(nn.Module):
|
74 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
78 |
+
self.negative_slope = negative_slope
|
79 |
+
self.scale = scale
|
80 |
+
|
81 |
+
def forward(self, input):
|
82 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
83 |
+
|
84 |
+
|
85 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
86 |
+
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
op/fused_act_cpu.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.autograd import Function
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
module_path = os.path.dirname(__file__)
|
10 |
+
|
11 |
+
|
12 |
+
class FusedLeakyReLU(nn.Module):
|
13 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
17 |
+
self.negative_slope = negative_slope
|
18 |
+
self.scale = scale
|
19 |
+
|
20 |
+
def forward(self, input):
|
21 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
22 |
+
|
23 |
+
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
|
24 |
+
if input.device.type == "cpu":
|
25 |
+
if bias is not None:
|
26 |
+
rest_dim = [1] * (input.ndim - bias.ndim - 1)
|
27 |
+
return (
|
28 |
+
F.leaky_relu(
|
29 |
+
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
|
30 |
+
)
|
31 |
+
* scale
|
32 |
+
)
|
33 |
+
|
34 |
+
else:
|
35 |
+
return F.leaky_relu(input, negative_slope=0.2) * scale
|
36 |
+
|
37 |
+
else:
|
38 |
+
return FusedLeakyReLUFunction.apply(
|
39 |
+
input.contiguous(), bias, negative_slope, scale
|
40 |
+
)
|
41 |
+
|
op/upfirdn2d.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.autograd import Function
|
5 |
+
from torch.utils.cpp_extension import load
|
6 |
+
|
7 |
+
|
8 |
+
module_path = os.path.dirname(__file__)
|
9 |
+
upfirdn2d_op = load(
|
10 |
+
'upfirdn2d',
|
11 |
+
sources=[
|
12 |
+
os.path.join(module_path, 'upfirdn2d.cpp'),
|
13 |
+
os.path.join(module_path, 'upfirdn2d_kernel.cu'),
|
14 |
+
],
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
class UpFirDn2dBackward(Function):
|
19 |
+
@staticmethod
|
20 |
+
def forward(
|
21 |
+
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
|
22 |
+
):
|
23 |
+
|
24 |
+
up_x, up_y = up
|
25 |
+
down_x, down_y = down
|
26 |
+
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
|
27 |
+
|
28 |
+
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
|
29 |
+
|
30 |
+
grad_input = upfirdn2d_op.upfirdn2d(
|
31 |
+
grad_output,
|
32 |
+
grad_kernel,
|
33 |
+
down_x,
|
34 |
+
down_y,
|
35 |
+
up_x,
|
36 |
+
up_y,
|
37 |
+
g_pad_x0,
|
38 |
+
g_pad_x1,
|
39 |
+
g_pad_y0,
|
40 |
+
g_pad_y1,
|
41 |
+
)
|
42 |
+
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
|
43 |
+
|
44 |
+
ctx.save_for_backward(kernel)
|
45 |
+
|
46 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
47 |
+
|
48 |
+
ctx.up_x = up_x
|
49 |
+
ctx.up_y = up_y
|
50 |
+
ctx.down_x = down_x
|
51 |
+
ctx.down_y = down_y
|
52 |
+
ctx.pad_x0 = pad_x0
|
53 |
+
ctx.pad_x1 = pad_x1
|
54 |
+
ctx.pad_y0 = pad_y0
|
55 |
+
ctx.pad_y1 = pad_y1
|
56 |
+
ctx.in_size = in_size
|
57 |
+
ctx.out_size = out_size
|
58 |
+
|
59 |
+
return grad_input
|
60 |
+
|
61 |
+
@staticmethod
|
62 |
+
def backward(ctx, gradgrad_input):
|
63 |
+
kernel, = ctx.saved_tensors
|
64 |
+
|
65 |
+
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
66 |
+
|
67 |
+
gradgrad_out = upfirdn2d_op.upfirdn2d(
|
68 |
+
gradgrad_input,
|
69 |
+
kernel,
|
70 |
+
ctx.up_x,
|
71 |
+
ctx.up_y,
|
72 |
+
ctx.down_x,
|
73 |
+
ctx.down_y,
|
74 |
+
ctx.pad_x0,
|
75 |
+
ctx.pad_x1,
|
76 |
+
ctx.pad_y0,
|
77 |
+
ctx.pad_y1,
|
78 |
+
)
|
79 |
+
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
|
80 |
+
gradgrad_out = gradgrad_out.view(
|
81 |
+
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
|
82 |
+
)
|
83 |
+
|
84 |
+
return gradgrad_out, None, None, None, None, None, None, None, None
|
85 |
+
|
86 |
+
|
87 |
+
class UpFirDn2d(Function):
|
88 |
+
@staticmethod
|
89 |
+
def forward(ctx, input, kernel, up, down, pad):
|
90 |
+
up_x, up_y = up
|
91 |
+
down_x, down_y = down
|
92 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
93 |
+
|
94 |
+
kernel_h, kernel_w = kernel.shape
|
95 |
+
batch, channel, in_h, in_w = input.shape
|
96 |
+
ctx.in_size = input.shape
|
97 |
+
|
98 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
99 |
+
|
100 |
+
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
|
101 |
+
|
102 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
103 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
104 |
+
ctx.out_size = (out_h, out_w)
|
105 |
+
|
106 |
+
ctx.up = (up_x, up_y)
|
107 |
+
ctx.down = (down_x, down_y)
|
108 |
+
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
|
109 |
+
|
110 |
+
g_pad_x0 = kernel_w - pad_x0 - 1
|
111 |
+
g_pad_y0 = kernel_h - pad_y0 - 1
|
112 |
+
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
|
113 |
+
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
|
114 |
+
|
115 |
+
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
|
116 |
+
|
117 |
+
out = upfirdn2d_op.upfirdn2d(
|
118 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
119 |
+
)
|
120 |
+
# out = out.view(major, out_h, out_w, minor)
|
121 |
+
out = out.view(-1, channel, out_h, out_w)
|
122 |
+
|
123 |
+
return out
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def backward(ctx, grad_output):
|
127 |
+
kernel, grad_kernel = ctx.saved_tensors
|
128 |
+
|
129 |
+
grad_input = UpFirDn2dBackward.apply(
|
130 |
+
grad_output,
|
131 |
+
kernel,
|
132 |
+
grad_kernel,
|
133 |
+
ctx.up,
|
134 |
+
ctx.down,
|
135 |
+
ctx.pad,
|
136 |
+
ctx.g_pad,
|
137 |
+
ctx.in_size,
|
138 |
+
ctx.out_size,
|
139 |
+
)
|
140 |
+
|
141 |
+
return grad_input, None, None, None, None
|
142 |
+
|
143 |
+
|
144 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
145 |
+
out = UpFirDn2d.apply(
|
146 |
+
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
|
147 |
+
)
|
148 |
+
|
149 |
+
return out
|
150 |
+
|
151 |
+
|
152 |
+
def upfirdn2d_native(
|
153 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
154 |
+
):
|
155 |
+
_, in_h, in_w, minor = input.shape
|
156 |
+
kernel_h, kernel_w = kernel.shape
|
157 |
+
|
158 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
159 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
160 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
161 |
+
|
162 |
+
out = F.pad(
|
163 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
164 |
+
)
|
165 |
+
out = out[
|
166 |
+
:,
|
167 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
168 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
169 |
+
:,
|
170 |
+
]
|
171 |
+
|
172 |
+
out = out.permute(0, 3, 1, 2)
|
173 |
+
out = out.reshape(
|
174 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
175 |
+
)
|
176 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
177 |
+
out = F.conv2d(out, w)
|
178 |
+
out = out.reshape(
|
179 |
+
-1,
|
180 |
+
minor,
|
181 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
182 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
183 |
+
)
|
184 |
+
out = out.permute(0, 2, 3, 1)
|
185 |
+
|
186 |
+
return out[:, ::down_y, ::down_x, :]
|
187 |
+
|
op/upfirdn2d_cpu.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.autograd import Function
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
module_path = os.path.dirname(__file__)
|
10 |
+
|
11 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
12 |
+
out = upfirdn2d_native(
|
13 |
+
input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]
|
14 |
+
)
|
15 |
+
|
16 |
+
return out
|
17 |
+
|
18 |
+
|
19 |
+
def upfirdn2d_native(
|
20 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
21 |
+
):
|
22 |
+
_, channel, in_h, in_w = input.shape
|
23 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
24 |
+
|
25 |
+
_, in_h, in_w, minor = input.shape
|
26 |
+
kernel_h, kernel_w = kernel.shape
|
27 |
+
|
28 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
29 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
30 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
31 |
+
|
32 |
+
out = F.pad(
|
33 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
34 |
+
)
|
35 |
+
out = out[
|
36 |
+
:,
|
37 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
38 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
39 |
+
:,
|
40 |
+
]
|
41 |
+
|
42 |
+
out = out.permute(0, 3, 1, 2)
|
43 |
+
out = out.reshape(
|
44 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
45 |
+
)
|
46 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
47 |
+
out = F.conv2d(out, w)
|
48 |
+
out = out.reshape(
|
49 |
+
-1,
|
50 |
+
minor,
|
51 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
52 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
53 |
+
)
|
54 |
+
out = out.permute(0, 2, 3, 1)
|
55 |
+
out = out[:, ::down_y, ::down_x, :]
|
56 |
+
|
57 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
|
58 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
|
59 |
+
|
60 |
+
return out.view(-1, channel, out_h, out_w)
|