Spaces:
Running
Running
Upload app.py
#2
by
awinml
- opened
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
import transformers
|
4 |
import torch
|
5 |
|
6 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -9,12 +8,11 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
9 |
trust_remote_code=True,
|
10 |
device_map="auto",
|
11 |
low_cpu_mem_usage=True,
|
12 |
-
#offload_folder="/model_files",
|
13 |
)
|
14 |
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct")
|
15 |
|
16 |
|
17 |
-
def
|
18 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
19 |
attention_mask = torch.ones(input_ids.shape)
|
20 |
|
@@ -30,11 +28,14 @@ def create_embedding(input_text):
|
|
30 |
|
31 |
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
32 |
print(output_text)
|
33 |
-
return output_text
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
|
|
38 |
inputs=[
|
39 |
gr.inputs.Textbox(label="Input Text"),
|
40 |
],
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
3 |
import torch
|
4 |
|
5 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
8 |
trust_remote_code=True,
|
9 |
device_map="auto",
|
10 |
low_cpu_mem_usage=True,
|
|
|
11 |
)
|
12 |
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct")
|
13 |
|
14 |
|
15 |
+
def generate_text(input_text):
|
16 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
17 |
attention_mask = torch.ones(input_ids.shape)
|
18 |
|
|
|
28 |
|
29 |
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
30 |
print(output_text)
|
|
|
31 |
|
32 |
+
# Remove Prompt Echo from Generated Text
|
33 |
+
cleaned_output_text = output_text.replace(input_text, "")
|
34 |
+
return cleaned_output_text
|
35 |
|
36 |
+
|
37 |
+
text_generation_interface = gr.Interface(
|
38 |
+
fn=generate_text,
|
39 |
inputs=[
|
40 |
gr.inputs.Textbox(label="Input Text"),
|
41 |
],
|