File size: 22,705 Bytes
f44db6c
 
 
690bb75
f44db6c
63b0d2d
f44db6c
 
 
f46ac02
 
f44db6c
 
1530ac8
47c116b
db967aa
1530ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6318fa
1530ac8
 
 
 
 
 
 
a6318fa
f44db6c
f46ac02
9264b57
f46ac02
 
 
 
 
4da3f7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f46ac02
a6318fa
1530ac8
 
f46ac02
1530ac8
 
f46ac02
4da3f7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f46ac02
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import requests
import streamlit as st
import os
from huggingface_hub import InferenceClient

API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud'
API_KEY = os.getenv('API_KEY')

headers = {
    "Authorization": f"Bearer {API_KEY}",
    "Content-Type": "application/json"
}

# Prompt Set of Examples:
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."

def StreamLLMChatResponse(prompt):
    endpoint_url = API_URL
    hf_token = API_KEY
    client = InferenceClient(endpoint_url, token=hf_token)
    gen_kwargs = dict(
        max_new_tokens=512,
        top_k=30,
        top_p=0.9,
        temperature=0.2,
        repetition_penalty=1.02,
        stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
    )
    stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
    report=[]
    res_box = st.empty()
    collected_chunks=[]
    collected_messages=[]
    for r in stream:
        if r.token.special:
            continue
        if r.token.text in gen_kwargs["stop_sequences"]:
            break
        collected_chunks.append(r.token.text)
        chunk_message = r.token.text
        collected_messages.append(chunk_message)

        try:
            report.append(r.token.text)
            if len(r.token.text) > 0:
                result="".join(report).strip()
                res_box.markdown(f'*{result}*')
        except:
            st.write(' ')

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    st.markdown(response.json())
    return response.json()

def get_output(prompt):
    return query({"inputs": prompt})





import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
import requests
import time
import re
import textract
import zipfile  # New import for zipping files


from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from templates import css, bot_template, user_template

# page config and sidebar declares up front allow all other functions to see global class variables
st.set_page_config(page_title="GPT Streamlit Document Reasoner", layout="wide")
should_save = st.sidebar.checkbox("💾 Save", value=True)

def generate_filename_old(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")  # Date and time DD-HHMM
    safe_prompt = "".join(x for x in prompt if x.isalnum())[:90]  # Limit file name size and trim whitespace
    return f"{safe_date_time}_{safe_prompt}.{file_type}"  # Return a safe file name

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def transcribe_audio(openai_key, file_path, model):
    OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
    headers = {
        "Authorization": f"Bearer {openai_key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
        transcript = response.json().get('text')
        #st.write('Responses:')
        #st.write(chatResponse)
        filename = generate_filename(transcript, 'txt')
        #create_file(filename, transcript, chatResponse)
        response = chatResponse
        user_prompt = transcript
        create_file(filename, user_prompt, response, should_save)
        return transcript
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return

    # Step 2: Extract base filename without extension
    base_filename, ext = os.path.splitext(filename)

    # Step 3: Check if the response contains Python code
    has_python_code = bool(re.search(r"```python([\s\S]*?)```", response))

    # Step 4: Write files based on type
    if ext in ['.txt', '.htm', '.md']:
        # Create Prompt file
        with open(f"{base_filename}-Prompt.txt", 'w') as file:
            file.write(prompt)
        
        # Create Response file
        with open(f"{base_filename}-Response.md", 'w') as file:
            file.write(response)

        # Create Code file if Python code is present
        if has_python_code:
            # Extract Python code from the response
            python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()

            with open(f"{base_filename}-Code.py", 'w') as file:
                file.write(python_code)


def create_file_old(filename, prompt, response, should_save=True):
    if not should_save:
        return
    if filename.endswith(".txt"):
        with open(filename, 'w') as file:
            file.write(f"{prompt}\n{response}")
    elif filename.endswith(".htm"):
        with open(filename, 'w') as file:
            file.write(f"{prompt}   {response}")
    elif filename.endswith(".md"):
        with open(filename, 'w') as file:
            file.write(f"{prompt}\n\n{response}")
            
def truncate_document(document, length):
    return document[:length]
def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        try:
            data = file.read()
        except:
            st.write('')
            return file_path    
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.py':
        mime_type = 'text/plain'
    elif ext == '.xlsx':
        mime_type = 'text/plain'
    elif ext == '.csv':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href

def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")
    
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
        
    start_time = time.time()
    report = []
    res_box = st.empty()
    collected_chunks = []
    collected_messages = []

    for chunk in openai.ChatCompletion.create(
        model='gpt-3.5-turbo',
        messages=conversation,
        temperature=0.5,
        stream=True  
    ):
        
        collected_chunks.append(chunk)  # save the event response
        chunk_message = chunk['choices'][0]['delta']  # extract the message
        collected_messages.append(chunk_message)  # save the message
        
        content=chunk["choices"][0].get("delta",{}).get("content")
        
        try:
            report.append(content)
            if len(content) > 0:
                result = "".join(report).strip()
                #result = result.replace("\n", "")        
                res_box.markdown(f'*{result}*') 
        except:
            st.write(' ')
        
    full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
    st.write("Elapsed time:")
    st.write(time.time() - start_time)
    return full_reply_content

def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(file_content)>0:
        conversation.append({'role': 'assistant', 'content': file_content})
    response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
    return response['choices'][0]['message']['content']

def extract_mime_type(file):
    # Check if the input is a string
    if isinstance(file, str):
        pattern = r"type='(.*?)'"
        match = re.search(pattern, file)
        if match:
            return match.group(1)
        else:
            raise ValueError(f"Unable to extract MIME type from {file}")
    # If it's not a string, assume it's a streamlit.UploadedFile object
    elif isinstance(file, streamlit.UploadedFile):
        return file.type
    else:
        raise TypeError("Input should be a string or a streamlit.UploadedFile object")

from io import BytesIO
import re

def extract_file_extension(file):
    # get the file name directly from the UploadedFile object
    file_name = file.name
    pattern = r".*?\.(.*?)$"
    match = re.search(pattern, file_name)
    if match:
        return match.group(1)
    else:
        raise ValueError(f"Unable to extract file extension from {file_name}")

def pdf2txt(docs):
    text = ""
    for file in docs:
        file_extension = extract_file_extension(file)
        # print the file extension
        st.write(f"File type extension: {file_extension}")

        # read the file according to its extension
        try:
            if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
                text += file.getvalue().decode('utf-8')
            elif file_extension.lower() == 'pdf':
                from PyPDF2 import PdfReader
                pdf = PdfReader(BytesIO(file.getvalue()))
                for page in range(len(pdf.pages)):
                    text += pdf.pages[page].extract_text() # new PyPDF2 syntax
        except Exception as e:
            st.write(f"Error processing file {file.name}: {e}")

    return text

def pdf2txt_old(pdf_docs):
    st.write(pdf_docs)
    for file in pdf_docs:
        mime_type = extract_mime_type(file)
        st.write(f"MIME type of file: {mime_type}")
    
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

def txt2chunks(text):
    text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
    return text_splitter.split_text(text)

def vector_store(text_chunks):
    key = os.getenv('OPENAI_API_KEY')
    embeddings = OpenAIEmbeddings(openai_api_key=key)
    return FAISS.from_texts(texts=text_chunks, embedding=embeddings)

def get_chain(vectorstore):
    llm = ChatOpenAI()
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)

def process_user_input(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']
    for i, message in enumerate(st.session_state.chat_history):
        template = user_template if i % 2 == 0 else bot_template
        st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
        # Save file output from PDF query results
        filename = generate_filename(user_question, 'txt')
        #create_file(filename, user_question, message.content)
        response = message.content
        user_prompt = user_question
        create_file(filename, user_prompt, response, should_save)       
        #st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

def divide_prompt(prompt, max_length):
    words = prompt.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        if len(word) + current_length <= max_length:
            current_length += len(word) + 1  # Adding 1 to account for spaces
            current_chunk.append(word)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
    chunks.append(' '.join(current_chunk))  # Append the final chunk
    return chunks

def create_zip_of_files(files):
    """
    Create a zip file from a list of files.
    """
    zip_name = "all_files.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name


def get_zip_download_link(zip_file):
    """
    Generate a link to download the zip file.
    """
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
    return href



def main():
    st.title("Medical Llama Test Bench with Inference Endpoints Llama 7B")
    prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
    example_input = st.text_input("Enter your example text:", value=prompt)

    if st.button("Run Prompt With Dr Llama"):
        StreamLLMChatResponse(example_input)

# clip ---

    openai.api_key = os.getenv('OPENAI_API_KEY')

    # File type for output, model choice
    menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
    choice = st.sidebar.selectbox("Output File Type:", menu)
    model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))

    # Audio, transcribe, GPT:
    filename = save_and_play_audio(audio_recorder)
    if filename is not None:
        transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
        filename = None

    # prompt interfaces
    user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)

    # file section interface for prompts against large documents as context
    collength, colupload = st.columns([2,3])  # adjust the ratio as needed
    with collength:
        max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
    with colupload:
        uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])


    # Document section chat
        
    document_sections = deque()
    document_responses = {}
    if uploaded_file is not None:
        file_content = read_file_content(uploaded_file, max_length)
        document_sections.extend(divide_document(file_content, max_length))
    if len(document_sections) > 0:
        if st.button("👁️ View Upload"):
            st.markdown("**Sections of the uploaded file:**")
            for i, section in enumerate(list(document_sections)):
                st.markdown(f"**Section {i+1}**\n{section}")
        st.markdown("**Chat with the model:**")
        for i, section in enumerate(list(document_sections)):
            if i in document_responses:
                st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
            else:
                if st.button(f"Chat about Section {i+1}"):
                    st.write('Reasoning with your inputs...')
                    response = chat_with_model(user_prompt, section, model_choice) # *************************************
                    st.write('Response:')
                    st.write(response)
                    document_responses[i] = response
                    filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                    create_file(filename, user_prompt, response, should_save)
                    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    if st.button('💬 Chat'):
        st.write('Reasoning with your inputs...')
        
        #response = chat_with_model(user_prompt, ''.join(list(document_sections,)), model_choice) # *************************************

        # Divide the user_prompt into smaller sections
        user_prompt_sections = divide_prompt(user_prompt, max_length)
        full_response = ''
        for prompt_section in user_prompt_sections:
            # Process each section with the model
            response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
            full_response += response + '\n'  # Combine the responses
        
        #st.write('Response:')
        #st.write(full_response)

        response = full_response
        st.write('Response:')
        st.write(response)
        
        filename = generate_filename(user_prompt, choice)
        create_file(filename, user_prompt, response, should_save)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    all_files = glob.glob("*.*")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order

    # Added "Delete All" button
    if st.sidebar.button("🗑 Delete All"):
        for file in all_files:
            os.remove(file)
        st.experimental_rerun()

    # Added "Download All" button
    if st.sidebar.button("⬇️ Download All"):
        zip_file = create_zip_of_files(all_files)
        st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
        
    # Sidebar of Files Saving History and surfacing files as context of prompts and responses
    file_contents=''
    next_action=''
    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])  # adjust the ratio as needed
        with col1:
            if st.button("🌐", key="md_"+file):  # md emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='md'
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("📂", key="open_"+file):  # open emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='open'
        with col4:
            if st.button("🔍", key="read_"+file):  # search emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='search'
        with col5:
            if st.button("🗑", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()
                
    if len(file_contents) > 0:
        if next_action=='open':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
        if next_action=='md':
            st.markdown(file_contents)
        if next_action=='search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            st.write('Reasoning with your inputs...')
            response = chat_with_model(user_prompt, file_contents, model_choice)
            filename = generate_filename(file_contents, choice)
            create_file(filename, user_prompt, response, should_save)

            st.experimental_rerun()
            #st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
                

load_dotenv()
st.write(css, unsafe_allow_html=True)

st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
    process_user_input(user_question)

with st.sidebar:
    st.subheader("Your documents")
    docs = st.file_uploader("import documents", accept_multiple_files=True)
    with st.spinner("Processing"):
        raw = pdf2txt(docs)
        if len(raw) > 0:
            length = str(len(raw))
            text_chunks = txt2chunks(raw)
            vectorstore = vector_store(text_chunks)
            st.session_state.conversation = get_chain(vectorstore)
            st.markdown('# AI Search Index of Length:' + length + ' Created.')  # add timing
            filename = generate_filename(raw, 'txt')
            create_file(filename, raw, '', should_save)
            #create_file(filename, raw, '')





if __name__ == "__main__":
    main()