Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,381 Bytes
fd012a7 86f7f0a 1079729 0db6e6a 183a87e 86f7f0a fd012a7 48914a6 fd012a7 48914a6 fd012a7 86f7f0a 183a87e fd012a7 86f7f0a fd012a7 86f7f0a 183a87e 1079729 0db6e6a 86f7f0a 0db6e6a 86f7f0a 0db6e6a 86f7f0a 0db6e6a 86f7f0a 0db6e6a 86f7f0a 0db6e6a 86f7f0a 0db6e6a 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 7406325 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 0db6e6a fd012a7 86f7f0a 294c6ec 0db6e6a 86f7f0a 294c6ec 0db6e6a 86f7f0a 294c6ec 0db6e6a 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec 86f7f0a 294c6ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
from typing import Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from peft import PeftConfig, LoraModel, load_peft_weights, set_peft_model_state_dict
from transformers import LlamaModel, LlamaConfig, DynamicCache
from transformers.integrations import PeftAdapterMixin
from midi_tokenizer import MIDITokenizerV1, MIDITokenizerV2, MIDITokenizer
config_name_list = ["tv1-medium", "tv2-medium", "tv2o-medium", "tv2-large", "tv2o-large"]
class MIDIModelConfig:
def __init__(self, tokenizer: Union[MIDITokenizerV1, MIDITokenizerV2],
net_config: LlamaConfig, net_token_config: LlamaConfig):
self.tokenizer = tokenizer
self.net_config = net_config
self.net_token_config = net_token_config
self.n_embd = net_token_config.hidden_size
@staticmethod
def get_config(tokenizer_ver="v2", optimise_midi=True, n_layer=12, n_head=16, n_embd=1024, n_inner=4096):
tokenizer = MIDITokenizer(tokenizer_ver)
tokenizer.set_optimise_midi(optimise_midi)
net_config = LlamaConfig(vocab_size=tokenizer.vocab_size,
hidden_size=n_embd, num_attention_heads=n_head,
num_hidden_layers=n_layer, intermediate_size=n_inner,
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096,
use_cache=False)
net_token_config = LlamaConfig(vocab_size=tokenizer.vocab_size,
hidden_size=n_embd, num_attention_heads=n_head // 4,
num_hidden_layers=n_layer // 4, intermediate_size=n_inner // 4,
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096,
use_cache=False)
return MIDIModelConfig(tokenizer, net_config, net_token_config)
@staticmethod
def from_name(name="tv2o-medium"):
tv, size = name.split("-")
tv = tv[1:]
if tv[-1] == "o":
o = True
tv = tv[:-1]
else:
o = False
if tv not in ["v1", "v2"]:
raise ValueError(f"Unknown tokenizer version {tv}")
if size == "medium":
return MIDIModelConfig.get_config(tokenizer_ver=tv, optimise_midi=o,
n_layer=12, n_head=16, n_embd=1024, n_inner=4096)
elif size == "large":
return MIDIModelConfig.get_config(tokenizer_ver=tv, optimise_midi=o,
n_layer=24, n_head=16, n_embd=1024, n_inner=4096)
else:
raise ValueError(f"Unknown model size {size}")
class MIDIModel(nn.Module, PeftAdapterMixin):
def __init__(self, config: MIDIModelConfig, *args, **kwargs):
super(MIDIModel, self).__init__()
self.tokenizer = config.tokenizer
self.net = LlamaModel(config.net_config)
self.net_token = LlamaModel(config.net_token_config)
self.lm_head = nn.Linear(config.n_embd, self.tokenizer.vocab_size, bias=False)
self.device = "cpu"
def to(self, *args, **kwargs):
if "device" in kwargs:
self.device = kwargs["device"]
return super(MIDIModel, self).to(*args, **kwargs)
def peft_loaded(self):
return self._hf_peft_config_loaded
def load_merge_lora(self, model_id):
peft_config = PeftConfig.from_pretrained(model_id)
model = LoraModel(self, peft_config, adapter_name="default")
adapter_state_dict = load_peft_weights(model_id, device=self.device)
set_peft_model_state_dict(self, adapter_state_dict, "default")
return model.merge_and_unload()
def forward_token(self, hidden_state=None, x=None, cache=None):
"""
:param hidden_state: (batch_size, n_embd)
:param x: (batch_size, token_sequence_length)
:param cache: Cache
:return: (batch_size, 1 + token_sequence_length, vocab_size)
"""
if hidden_state is not None:
#if you use cache, you don't need to pass in hidden_state
hidden_state = hidden_state.unsqueeze(1) # (batch_size, 1, n_embd)
if x is not None:
x = self.net_token.embed_tokens(x)
if hidden_state is not None:
x = torch.cat([hidden_state, x], dim=1)
hidden_state = x
hidden_state = self.net_token.forward(inputs_embeds=hidden_state,
past_key_values=cache,
use_cache=cache is not None).last_hidden_state
return self.lm_head(hidden_state)
def forward(self, x, cache = None):
"""
:param x: (batch_size, midi_sequence_length, token_sequence_length)
:param cache: Cache
:return: hidden (batch_size, midi_sequence_length, n_embd)
"""
# merge token sequence
x = self.net.embed_tokens(x)
x = x.sum(dim=-2)
x = self.net.forward(inputs_embeds=x,
past_key_values=cache,
use_cache=cache is not None)
return x.last_hidden_state
def sample_top_p_k(self, probs, p, k, generator=None):
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device)
mask[:k] = 1
probs_sort = probs_sort * mask
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
shape = probs_sort.shape
next_token = torch.multinomial(probs_sort.reshape(-1, shape[-1]),
num_samples=1, generator=generator).reshape(*shape[:-1], 1)
next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1])
return next_token
@torch.inference_mode()
def generate(self, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20, generator=None):
tokenizer = self.tokenizer
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=self.device)
input_tensor[0, 0] = tokenizer.bos_id # bos
input_tensor = input_tensor.unsqueeze(0)
input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
else:
if len(prompt.shape) == 2:
prompt = prompt[None, :]
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
elif prompt.shape[0] == 1:
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
raise ValueError(f"invalid shape for prompt, {prompt.shape}")
prompt = prompt[..., :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device)
cur_len = input_tensor.shape[1]
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
cache1 = DynamicCache()
with bar:
while cur_len < max_len:
end = [False] * batch_size
hidden = self.forward(input_tensor[:,-1:], cache=cache1)[:, -1]
next_token_seq = None
event_names = [""] * batch_size
cache2 = DynamicCache()
for i in range(max_token_seq):
mask = torch.zeros((batch_size, tokenizer.vocab_size), dtype=torch.int64, device=self.device)
for b in range(batch_size):
if end[b]:
mask[b, tokenizer.pad_id] = 1
continue
if i == 0:
mask[b, list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1
else:
param_names = tokenizer.events[event_names[b]]
if i > len(param_names):
mask[b, tokenizer.pad_id] = 1
continue
mask[b, tokenizer.parameter_ids[param_names[i - 1]]] = 1
mask = mask.unsqueeze(1)
x = next_token_seq
if i != 0:
# cached
hidden = None
x = x[:, -1:]
logits = self.forward_token(hidden, x, cache=cache2)[:, -1:]
scores = torch.softmax(logits / temp, dim=-1) * mask
samples = self.sample_top_p_k(scores, top_p, top_k, generator=generator)
if i == 0:
next_token_seq = samples
for b in range(batch_size):
if end[b]:
continue
eid = samples[b].item()
if eid == tokenizer.eos_id:
end[b] = True
else:
event_names[b] = tokenizer.id_events[eid]
else:
next_token_seq = torch.cat([next_token_seq, samples], dim=1)
if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]):
break
if next_token_seq.shape[1] < max_token_seq:
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
"constant", value=tokenizer.pad_id)
next_token_seq = next_token_seq.unsqueeze(1)
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
cur_len += 1
bar.update(1)
if all(end):
break
return input_tensor.cpu().numpy()
|