File size: 32,563 Bytes
adf07d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
import copy
import hashlib
import os
import re
import spaces
import subprocess
import torch
import PIL

from pathlib import Path
from threading import Thread
from typing import List, Optional, Tuple
from urllib.parse import urlparse
from PIL import Image

import gradio as gr
from gradio import processing_utils
from gradio_client.client import DEFAULT_TEMP_DIR
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer, logging

from utils import create_model_inputs


subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

DEVICE = torch.device("cuda")
MODELS = {
    "282 - mix1 fixed - opt 23'000": AutoModelForCausalLM.from_pretrained(
        "HuggingFaceM4/idefics2",
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
        token=os.environ["HF_AUTH_TOKEN"],
        revision="a1bc6a2b0f74cde25844144f602dde2808a564d9",
    ).to(DEVICE),
    "286 - mix6 tables - opt 20'000": AutoModelForCausalLM.from_pretrained(
        "HuggingFaceM4/idefics2",
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
        token=os.environ["HF_AUTH_TOKEN"],
        revision="b473d49caa964991b40b79fe7cb27d51d4d023f6",
    ).to(DEVICE),
    # "285 - continued pretraining on text sft - opt 2'000": AutoModelForCausalLM.from_pretrained(
    #     "HuggingFaceM4/idefics2",
    #     trust_remote_code=True,
    #     torch_dtype=torch.bfloat16,
    #     token=os.environ["HF_AUTH_TOKEN"],
    #     revision="b0a2a564e5dc311591886bb375e8d5a1aeaade83",
    # ).to(DEVICE),
}
PROCESSOR = AutoProcessor.from_pretrained(
    "HuggingFaceM4/idefics2",
    token=os.environ["HF_AUTH_TOKEN"],
)
FAKE_TOK_AROUND_IMAGE = "<fake_token_around_image>"
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
EOS_WORDS_IDS = PROCESSOR.tokenizer("<end_of_utterance>", add_special_tokens=False).input_ids + [PROCESSOR.tokenizer.eos_token_id]
IMAGE_SEQ_LEN = list(MODELS.values())[0].config.perceiver_config.resampler_n_latents

SYSTEM_PROMPT = [
#     """The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about the content of visual inputs. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.

# The conversation begins:""",
#     """\nUser:""",
#     "https://i1.pickpik.com/photos/515/906/355/kittens-cats-pet-cute-preview.jpg",
#     "Describe this image.<end_of_utterance>",
#     """\nAssistant: Five kittens are standing together in the center of the photograph. From the left to right, there is one orange kitten, two kittens white and black stripes, and two brown kittens with an orange head. They are in bright green grass and it looks like they are moving forward.<end_of_utterance>""",
#     "\nUser:How about this image?",
#     "https://cdn.pixabay.com/photo/2017/09/25/13/12/puppy-2785074_1280.jpg",
#     "Can you describe it too?<end_of_utterance>",
#     """\nAssistant: A dog is lying on the floor, looking at the camera. It is looking directly at you. The dog has a white body and brown patches on its face and ears. Its eyes are dark. Its nose is black, and it has long, floppy ears, white paws, long fur, big eyes.<end_of_utterance>""",
#     "\nUser: What kind of breed is it?<end_of_utterance>",
#     """\nAssistant: It looks like a Cavalier King Charles Spaniel. These breeds are known for their gentle, affectionate nature. Their long ears and big, brown eyes give them a sweet, expressive face. Cavaliers are small dogs weighing between 13 and 20 pounds. They have a silky, medium-length coat that comes in various colors, including black and tan, tricolor, red and white, or black.<end_of_utterance>""",
#     "\nUser: What can you tell me about this breed of dogs?<end_of_utterance>",
#     """\nAssistant: One specific characteristic of the Cavalier King Charles Spaniel is its friendly and affectionate nature. This breed is known for being extremely sociable and forming strong bonds with their owners. They are often described as "velcro dogs" because they love to be close to their human companions, whether it's sitting on their laps, cuddling on the couch, or simply following them around the house.<end_of_utterance>""",
#     "\nUser: ghjkhjabnufs<end_of_utterance>",
#     """\nAssistant: That doesn’t seem to be a word. Could you ask me another way?<end_of_utterance>""",
#     "\nUser: Do you like Cavalier King Charles Spaniel?<end_of_utterance>",
#     """\nAssistant: I do not have personal opinions as I’m just a computer program. However, cavaliers are known for being excellent family pets due to their gentle and patient demeanor, making them great with children and other pets. Their affectionate nature also makes them ideal therapy dogs, as they can provide comfort and emotional support to those in need.<end_of_utterance>""",
#     "\nUser: How many dogs do you see in this image?",
#     "https://i.dailymail.co.uk/i/pix/2011/07/01/article-2010308-0CD22A8300000578-496_634x414.jpg",
#     "<end_of_utterance>",
#     """\nAssistant: There is no dogs in this image. The picture shows a tennis player jumping to volley the ball.<end_of_utterance>""",
]

API_TOKEN = os.getenv("HF_AUTH_TOKEN")
# IDEFICS_LOGO = "https://huggingface.co/spaces/HuggingFaceM4/idefics_playground/resolve/main/IDEFICS_logo.png"
BOT_AVATAR = "IDEFICS_logo.png"


# Monkey patch adapted from gradio.components.image.Image - mostly to make the `save` step optional in `pil_to_temp_file`
def hash_bytes(bytes: bytes):
    sha1 = hashlib.sha1()
    sha1.update(bytes)
    return sha1.hexdigest()


def pil_to_temp_file(img: PIL.Image.Image, dir: str = DEFAULT_TEMP_DIR, format: str = "png") -> str:
    """Save a PIL image into a temp file"""
    bytes_data = processing_utils.encode_pil_to_bytes(img, format)
    temp_dir = Path(dir) / hash_bytes(bytes_data)
    temp_dir.mkdir(exist_ok=True, parents=True)
    filename = str(temp_dir / f"image.{format}")
    if not os.path.exists(filename):
        img.save(filename, pnginfo=processing_utils.get_pil_metadata(img))
    return filename


def add_file(file):
    return file.name, gr.update(label='πŸ–ΌοΈ Uploaded!')


# Utils to handle the image markdown display logic
def split_str_on_im_markdown(string: str) -> List[str]:
    """
    Extract from a string (typically the user prompt string) the potential images from markdown
    Examples:
    - `User:![](/file=/my_temp/chicken_on_money.png)Describe this image.` would become `["User:", "/my_temp/chicken_on_money.png", "Describe this image."]`
    """
    IMAGES_PATTERN = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)")
    parts = []
    cursor = 0
    for pattern in IMAGES_PATTERN.finditer(string):
        start = pattern.start()
        if start != cursor:
            parts.append(string[cursor:start])
        image_url = pattern.group(1)
        if image_url.startswith("/file="):
            image_url = image_url[6:]  # Remove the 'file=' prefix
        parts.append(image_url)
        cursor = pattern.end()
    if cursor != len(string):
        parts.append(string[cursor:])
    return parts


def is_image(string: str) -> bool:
    """
    There are two ways for images: local image path or url.
    """
    return is_url(string) or string.startswith(DEFAULT_TEMP_DIR)


def is_url(string: str) -> bool:
    """
    Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
    invalidated the url
    """
    if " " in string:
        return False
    result = urlparse(string)
    return all([result.scheme, result.netloc])


def isolate_images_urls(prompt_list: List) -> List:
    """
    Convert a full string prompt to the list format expected by the processor.
    In particular, image urls (as delimited by <fake_token_around_image>) should be their own elements.
    From:
    ```
    [
        "bonjour<fake_token_around_image><image:IMG_URL><fake_token_around_image>hello",
        PIL.Image.Image,
        "Aurevoir",
    ]
    ```
    to:
    ```
    [
        "bonjour",
        IMG_URL,
        "hello",
        PIL.Image.Image,
        "Aurevoir",
    ]
    ```
    """
    linearized_list = []
    for prompt in prompt_list:
        # Prompt can be either a string, or a PIL image
        if isinstance(prompt, PIL.Image.Image):
            linearized_list.append(prompt)
        elif isinstance(prompt, str):
            if "<fake_token_around_image>" not in prompt:
                linearized_list.append(prompt)
            else:
                prompt_splitted = prompt.split("<fake_token_around_image>")
                for ps in prompt_splitted:
                    if ps == "":
                        continue
                    if ps.startswith("<image:"):
                        linearized_list.append(ps[7:-1])
                    else:
                        linearized_list.append(ps)
        else:
            raise TypeError(
                f"Unrecognized type for `prompt`. Got {type(type(prompt))}. Was expecting something in [`str`,"
                " `PIL.Image.Image`]"
            )
    return linearized_list


def fetch_images(url_list: str) -> PIL.Image.Image:
    """Fetching images"""
    return PROCESSOR.image_processor.fetch_images(url_list)


def handle_manual_images_in_user_prompt(user_prompt: str) -> List[str]:
    """
    Handle the case of textually manually inputted images (i.e. the `<fake_token_around_image><image:IMG_URL><fake_token_around_image>`) in the user prompt
    by fetching them, saving them locally and replacing the whole sub-sequence the image local path.
    """
    if "<fake_token_around_image>" in user_prompt:
        splitted_user_prompt = isolate_images_urls([user_prompt])
        resulting_user_prompt = []
        for u_p in splitted_user_prompt:
            if is_url(u_p):
                img = fetch_images([u_p])[0]
                tmp_file = pil_to_temp_file(img)
                resulting_user_prompt.append(tmp_file)
            else:
                resulting_user_prompt.append(u_p)
        return resulting_user_prompt
    else:
        return [user_prompt]


def prompt_list_to_markdown(prompt_list: List[str]) -> str:
    """
    Convert a user prompt in the list format (i.e. elements are either a PIL image or a string) into
    the markdown format that is used for the chatbot history and rendering.
    """
    resulting_string = ""
    for elem in prompt_list:
        if is_image(elem):
            if is_url(elem):
                resulting_string += f"![]({elem})"
            else:
                resulting_string += f"![](/file={elem})"
        else:
            resulting_string += elem
    return resulting_string


def prompt_list_to_model_input(prompt_list: List[str]) -> Tuple[str, List[Image.Image]]:
    """
    Create the final input string and image list to feed to the model's processor.
    """
    images = []
    for idx, part in enumerate(prompt_list):
        if is_image(part):
            if is_url(part):
                images.append(fetch_images([part])[0])
            else:
                images.append(Image.open(part))
            prompt_list[idx] = f"{FAKE_TOK_AROUND_IMAGE}{'<image>' * IMAGE_SEQ_LEN}{FAKE_TOK_AROUND_IMAGE}"
    input_text = "".join(prompt_list)
    input_text = input_text.replace(FAKE_TOK_AROUND_IMAGE * 2, FAKE_TOK_AROUND_IMAGE)
    input_text = BOS_TOKEN + input_text.strip()
    return input_text, images


def remove_spaces_around_token(text: str) -> str:
    pattern = r"\s*(<fake_token_around_image>)\s*"
    replacement = r"\1"
    result = re.sub(pattern, replacement, text)
    return result


# Chatbot utils
def format_user_prompt_with_im_history_and_system_conditioning(
    current_user_prompt_str: str, current_image: Optional[str], history: List[Tuple[str, str]]
) -> Tuple[List[str], List[str]]:
    """
    Produces the resulting list that needs to go inside the processor.
    It handles the potential image box input, the history and the system conditionning.
    """
    resulting_list = copy.deepcopy(SYSTEM_PROMPT)

    # Format history
    for turn in history:
        user_utterance, assistant_utterance = turn
        splitted_user_utterance = split_str_on_im_markdown(user_utterance)

        optional_space = ""
        if not is_image(splitted_user_utterance[0]):
            optional_space = " "
        resulting_list.append(f"\nUser:{optional_space}")
        resulting_list.extend(splitted_user_utterance)
        resulting_list.append(f"<end_of_utterance>\nAssistant: {assistant_utterance}")

    # Format current input
    current_user_prompt_str = remove_spaces_around_token(current_user_prompt_str)
    if current_image is None:
        if "![](" in current_user_prompt_str:
            current_user_prompt_list = split_str_on_im_markdown(current_user_prompt_str)
        else:
            current_user_prompt_list = handle_manual_images_in_user_prompt(current_user_prompt_str)

        optional_space = ""
        if not is_image(current_user_prompt_list[0]):
            # Check if the first element is an image (and more precisely a path to an image)
            optional_space = " "
        resulting_list.append(f"\nUser:{optional_space}")
        resulting_list.extend(current_user_prompt_list)
        resulting_list.append("<end_of_utterance>\nAssistant:")
    else:
        # Choosing to put the image first when the image is inputted through the UI, but this is an arbiratrary choice.
        resulting_list.extend(["\nUser:", current_image, f"{current_user_prompt_str}<end_of_utterance>\nAssistant:"])
        current_user_prompt_list = [current_user_prompt_str]

    return resulting_list, current_user_prompt_list


textbox = gr.Textbox(
    placeholder="Upload an image and send a message",
    show_label=False,
    # value="Describe the battle against the fierce dragons.",
    visible=True,
    container=False,
    label="Text input",
    scale=6,
)
with gr.Blocks(title="IDEFICS Playground", theme=gr.themes.Base()) as demo:
    gr.HTML("""<h1 align="center">🐢 IDEFICS Playground</h1>""")
    # with gr.Row(variant="panel"):
    #     with gr.Column(scale=1):
    #         gr.Image(IDEFICS_LOGO, elem_id="banner-image", show_label=False, show_download_button=False)
    #     with gr.Column(scale=5):
    #         gr.HTML("""
    #             <p>This demo showcases <strong>IDEFICS</strong>, a open-access large visual language model. Like GPT-4, the multimodal model accepts arbitrary sequences of image and text inputs and produces text outputs. IDEFICS can answer questions about images, describe visual content, create stories grounded in multiple images, etc.</p>
    #             <p>IDEFICS (which stands for <strong>I</strong>mage-aware <strong>D</strong>ecoder <strong>E</strong>nhanced Γ  la <strong>F</strong>lamingo with <strong>I</strong>nterleaved <strong>C</strong>ross-attention<strong>S</strong>) is an open-access reproduction of <a href="https://huggingface.co/papers/2204.14198">Flamingo</a>, a closed-source visual language model developed by Deepmind. IDEFICS was built solely on publicly available data and models. It is currently the only visual language model of this scale (80 billion parameters) that is available in open-access.</p>
    #             <p>πŸ“š The variants available in this demo were fine-tuned on a mixture of supervised and instruction fine-tuning datasets to make the models more suitable in conversational settings. For more details, we refer to our <a href="https://huggingface.co/blog/idefics">blog post</a>.</p>
    #             <p>πŸ…ΏοΈ <strong>Intended uses:</strong> This demo along with the <a href="https://huggingface.co/models?sort=trending&amp;search=HuggingFaceM4%2Fidefics">supporting models</a> are provided as research artifacts to the community. We detail misuses and out-of-scope uses <a href="https://huggingface.co/HuggingFaceM4/idefics-80b#misuse-and-out-of-scope-use">here</a>.</p>
    #             <p>⛔️ <strong>Limitations:</strong> The model can produce factually incorrect texts, hallucinate facts (with or without an image) and will struggle with small details in images. While the model will tend to refuse answering questionable user requests, it can produce problematic outputs (including racist, stereotypical, and disrespectful texts), in particular when prompted to do so. We encourage users to read our findings from evaluating the model for potential biases in the <a href="https://huggingface.co/HuggingFaceM4/idefics-80b#bias-evaluation">model card</a>.</p>
    #         """)

    with gr.Row(elem_id="model_selector_row"):
        model_selector = gr.Dropdown(
            choices=MODELS.keys(),
            value="284 - neftune - opt 18'500",
            interactive=True,
            show_label=False,
            container=False,
            label="Model",
            visible=True,
        )

    imagebox = gr.Image(type="filepath", label="Image input", visible=False)

    with gr.Row():
        # def prefetch_images_in_history(user_prompt_str):
        #     """
        #     Pre-fetch the images that are passed in the chatbot default history.
        #     """
        #     return prompt_list_to_markdown(handle_manual_images_in_user_prompt(user_prompt_str))

        chatbot = gr.Chatbot(
            elem_id="chatbot",
            label="IDEFICS",
            visible=True,
            height=750,
            avatar_images=[None, BOT_AVATAR]
        )

    with gr.Group():
        with gr.Row():
                textbox.render()
                submit_btn = gr.Button(value="▢️ Submit", visible=True)
                clear_btn = gr.ClearButton([textbox, imagebox, chatbot], value="🧹 Clear")
                regenerate_btn = gr.Button(value="πŸ”„ Regenerate", visible=True)
                upload_btn = gr.UploadButton("πŸ“ Upload image", file_types=["image"])

    with gr.Row():
        with gr.Accordion("Advanced settings", open=False, visible=True) as parameter_row:
            max_new_tokens = gr.Slider(
                minimum=8,
                maximum=1024,
                value=512,
                step=1,
                interactive=True,
                label="Maximum number of new tokens to generate",
            )
            repetition_penalty = gr.Slider(
                minimum=0.01,
                maximum=5.0,
                value=1.0,
                step=0.01,
                interactive=True,
                label="Repetition penalty",
                info="1.0 is equivalent to no penalty",
            )
            decoding_strategy = gr.Radio(
                [
                    "Greedy",
                    "Top P Sampling",
                ],
                value="Greedy",
                label="Decoding strategy",
                interactive=True,
                info="Higher values is equivalent to sampling more low-probability tokens.",
            )
            temperature = gr.Slider(
                minimum=0.0,
                maximum=5.0,
                value=0.4,
                step=0.1,
                interactive=True,
                visible=False,
                label="Sampling temperature",
                info="Higher values will produce more diverse outputs.",
            )
            decoding_strategy.change(
                fn=lambda selection: gr.Slider(
                    visible=(
                        selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                    )
                ),
                inputs=decoding_strategy,
                outputs=temperature,
            )
            top_p = gr.Slider(
                minimum=0.01,
                maximum=0.99,
                value=0.8,
                step=0.01,
                interactive=True,
                visible=False,
                label="Top P",
                info="Higher values is equivalent to sampling more low-probability tokens.",
            )
            decoding_strategy.change(
                fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
                inputs=decoding_strategy,
                outputs=top_p,
            )

    @spaces.GPU(duration=180)
    def model_inference(
        model_selector,
        user_prompt_str,
        chat_history,
        image,
        decoding_strategy,
        temperature,
        max_new_tokens,
        repetition_penalty,
        top_p,
    ):
        if user_prompt_str.strip() == "" and image is None:
            return "", None, chat_history

        formated_prompt_list, user_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
            current_user_prompt_str=user_prompt_str.strip(),
            current_image=image,
            history=chat_history,
        )

        streamer = TextIteratorStreamer(
            PROCESSOR.tokenizer,
            skip_prompt=True,
        )

        # Common parameters to all decoding strategies
        # This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
        generation_args = {
            "max_new_tokens": max_new_tokens,
            "repetition_penalty": repetition_penalty,
            "bad_words_ids": BAD_WORDS_IDS,
            "eos_token_id": EOS_WORDS_IDS,
            "streamer": streamer,
        }

        assert decoding_strategy in [
            "Greedy",
            "Top P Sampling",
        ]
        if decoding_strategy == "Greedy":
            generation_args["do_sample"] = False
        elif decoding_strategy == "Top P Sampling":
            generation_args["temperature"] = temperature
            generation_args["do_sample"] = True
            generation_args["top_p"] = top_p

        if image is None:
            # Case where there is no image OR the image is passed as `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`
            chat_history.append([prompt_list_to_markdown(user_prompt_list), ''])
        else:
            # Case where the image is passed through the Image Box.
            # Convert the image into base64 for both passing it through the chat history and
            # displaying the image inside the same bubble as the text.
            chat_history.append(
                [
                    f"{prompt_list_to_markdown([image] + user_prompt_list)}",
                    '',
                ]
            )

        # Creating model inputs
        input_text, images = prompt_list_to_model_input(formated_prompt_list)
        inputs = create_model_inputs([input_text], [images])
        inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
        generation_args.update(inputs)

        thread = Thread(
            target=MODELS[model_selector].generate,
            kwargs=generation_args,
        )

        thread.start()
        acc_text = ""
        for idx, text_token in enumerate(streamer):

            acc_text += text_token
            last_turn = chat_history.pop(-1)
            last_turn[-1] += acc_text
            if last_turn[-1].endswith("\nUser"):
                # Safeguard: sometimes (rarely), the model won't generate the token `<end_of_utterance>` and will go directly to generating `\nUser:`
                # It will thus stop the generation on `\nUser:`. But when it exits, it will have already generated `\nUser`
                # This post-processing ensures that we don't have an additional `\nUser` wandering around.
                last_turn[-1] = last_turn[-1][:-5]
            chat_history.append(last_turn)
            yield "", None, chat_history
            acc_text = ""

    def process_example(message, image):
        """
        Same as `model_inference` but in greedy mode and with the 80b-instruct.
        Specifically for pre-computing the default examples.
        """
        model_selector = "284 - neftune - opt 18'500"
        user_prompt_str = message
        chat_history = []
        max_new_tokens = 512

        formated_prompt_list, user_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
            current_user_prompt_str=user_prompt_str.strip(),
            current_image=image,
            history=chat_history,
        )

        # Common parameters to all decoding strategies
        # This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
        generation_args = {
            "max_new_tokens": max_new_tokens,
            "repetition_penalty": None,
            "bad_words_ids": BAD_WORDS_IDS,
            "eos_token_id": EOS_WORDS_IDS,
            "do_sample": False,
        }

        if image is None:
            # Case where there is no image OR the image is passed as `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`
            chat_history.append([prompt_list_to_markdown(user_prompt_list), ''])
        else:
            # Case where the image is passed through the Image Box.
            # Convert the image into base64 for both passing it through the chat history and
            # displaying the image inside the same bubble as the text.
            chat_history.append(
                [
                    f"{prompt_list_to_markdown([image] + user_prompt_list)}",
                    '',
                ]
            )

        # Creating model inputs
        input_text, images = prompt_list_to_model_input(formated_prompt_list)
        inputs = create_model_inputs([input_text], [images])
        inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
        generation_args.update(inputs)

        generated_ids = MODELS[model_selector].generate(**generation_args)
        generated_text = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]

        if generated_text.endswith("\nUser"):
            generated_text = generated_text[:-5]

        last_turn = chat_history.pop(-1)
        last_turn[-1] += generated_text
        chat_history.append(last_turn)
        return "", None, chat_history

    textbox.submit(
        fn=model_inference,
        inputs=[
            model_selector,
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            temperature,
            max_new_tokens,
            repetition_penalty,
            top_p,
        ],
        outputs=[textbox, imagebox, chatbot],
    )
    submit_btn.click(
        fn=model_inference,
        inputs=[
            model_selector,
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            temperature,
            max_new_tokens,
            repetition_penalty,
            top_p,
        ],
        outputs=[
            textbox,
            imagebox,
            chatbot,
        ],
    )

    def remove_last_turn(chat_history):
        if len(chat_history) == 0:
            return gr.Update(), gr.Update()
        last_interaction = chat_history[-1]
        chat_history = chat_history[:-1]
        chat_update = gr.update(value=chat_history)
        text_update = gr.update(value=last_interaction[0])
        return chat_update, text_update

    regenerate_btn.click(fn=remove_last_turn, inputs=chatbot, outputs=[chatbot, textbox]).then(
        fn=model_inference,
        inputs=[
            model_selector,
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            temperature,
            max_new_tokens,
            repetition_penalty,
            top_p,
        ],
        outputs=[
            textbox,
            imagebox,
            chatbot,
        ],
    )

    upload_btn.upload(add_file, [upload_btn], [imagebox, upload_btn], queue=False)
    submit_btn.click(lambda : gr.update(label='πŸ“ Upload image', interactive=True), [], upload_btn)
    textbox.submit(lambda : gr.update(label='πŸ“ Upload image', interactive=True), [], upload_btn)
    clear_btn.click(lambda : gr.update(label='πŸ“ Upload image', interactive=True), [], upload_btn)

    # examples_path = os.path.dirname(__file__)
    # gr.Examples(
    #     examples=[
    #         [
    #             (
    #                 "Which famous person does the person in the image look like? Could you craft an engaging narrative"
    #                 " featuring this character from the image as the main protagonist?"
    #             ),
    #             f"{examples_path}/example_images/obama-harry-potter.jpg",
    #         ],
    #         [
    #             "Can you describe the image? Do you think it's real?",
    #             f"{examples_path}/example_images/rabbit_force.png",
    #         ],
    #         ["Explain this meme to me.", f"{examples_path}/example_images/meme_french.jpg"],
    #         ["Give me a short and easy recipe for this dish.", f"{examples_path}/example_images/recipe_burger.webp"],
    #         [
    #             "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.",
    #             f"{examples_path}/example_images/travel_tips.jpg",
    #         ],
    #         [
    #             "Can you name the characters in the image and give their French names?",
    #             f"{examples_path}/example_images/gaulois.png",
    #         ],
    #         ["Write a complete sales ad for this product.", f"{examples_path}/example_images/product_ad.jpg"],
    #         [
    #             (
    #                 "As an art critic AI assistant, could you describe this painting in details and make a thorough"
    #                 " critic?"
    #             ),
    #             f"{examples_path}/example_images/art_critic.png",
    #         ],
    #         [
    #             "Can you tell me a very short story based on this image?",
    #             f"{examples_path}/example_images/chicken_on_money.png",
    #         ],
    #         ["Write 3 funny meme texts about this image.", f"{examples_path}/example_images/elon_smoking.jpg"],
    #         [
    #             "Who is in this picture? Why do people find it surprising?",
    #             f"{examples_path}/example_images/pope_doudoune.webp",
    #         ],
    #         ["What are the armed baguettes guarding?", f"{examples_path}/example_images/baguettes_guarding_paris.png"],
    #         ["What is this animal and why is it unusual?", f"{examples_path}/example_images/blue_dog.png"],
    #         [
    #             "What is this object and do you think it is horrifying?",
    #             f"{examples_path}/example_images/can_horror.png",
    #         ],
    #         [
    #             (
    #                 "What is this sketch for? How would you make an argument to prove this sketch was made by Picasso"
    #                 " himself?"
    #             ),
    #             f"{examples_path}/example_images/cat_sketch.png",
    #         ],
    #         ["Which celebrity does this claymation figure look like?", f"{examples_path}/example_images/kanye.jpg"],
    #         ["What can you tell me about the cap in this image?", f"{examples_path}/example_images/ironman_cap.png"],
    #         [
    #             "Can you write an advertisement for Coca-Cola based on this image?",
    #             f"{examples_path}/example_images/polar_bear_coke.png",
    #         ],
    #         [
    #             "What is happening in this image? Which famous personality does this person in center looks like?",
    #             f"{examples_path}/example_images/gandhi_selfie.jpg",
    #         ],
    #         [
    #             "What do you think the dog is doing and is it unusual?",
    #             f"{examples_path}/example_images/surfing_dog.jpg",
    #         ],
    #     ],
    #     inputs=[textbox, imagebox],
    #     outputs=[textbox, imagebox, chatbot],
    #     fn=process_example,
    #     cache_examples=False,
    #     examples_per_page=6,
    #     label=(
    #         "Click on any example below to get started.\nFor convenience, the model generations have been"
    #         " pre-computed with `idefics-80b-instruct`."
    #     ),
    # )

demo.queue(max_size=40)
demo.launch()