Spaces:
Runtime error
Runtime error
File size: 9,116 Bytes
aecc4fc 545ca80 aecc4fc 545ca80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
#In streamlit and python edit this example and add tracking of the option selections by adding buttons for the three choice sets for options. Also save the values to text file and show full history after an option is recorded. import streamlit as st
import spacy
import wikipediaapi
import wikipedia
from wikipedia.exceptions import DisambiguationError
from transformers import TFAutoModel, AutoTokenizer
import numpy as np
import pandas as pd
import faiss
import datetime
import time
st.markdown("""
Scene 1: The Enchanted Castle
You arrive at the enchanted castle, surrounded by a forest of thorns. You have heard stories of a beautiful princess asleep within, waiting for someone to awaken her.
Option 1: Try to make your way through the thorns.
Option 2: Look for another way in.
Sentiment: Feels like harsher trials after passive sleep.
---
Scene 2: The Castle's Secrets
If you made it past the thorns, you discover that the castle is full of hidden chambers, each containing a different trial.
These trials are designed to test your limits, reveal your inner most desires, and help you understand the suffering of humankind.
Option 1: Enter the first chamber.
Option 2: Continue exploring the castle.
Sentiment: Comedy ending in marriage.
---
Scene 3: The Princess's Awakening
After navigating the castle's trials, you finally reach the chamber where the princess lies sleeping.
You are faced with the decision of how to awaken her, knowing that your actions will determine the nature of your relationship with her.
Option 1: Awaken her with a gentle kiss.
Option 2: Awaken her through a more assertive act like lifting her up.
Sentiment: Heart forged awakening with different implications depending on context.
""")
try:
nlp = spacy.load("en_core_web_sm")
except:
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
wh_words = ['what', 'who', 'how', 'when', 'which']
def get_concepts(text):
text = text.lower()
doc = nlp(text)
concepts = []
for chunk in doc.noun_chunks:
if chunk.text not in wh_words:
concepts.append(chunk.text)
return concepts
def get_passages(text, k=100):
doc = nlp(text)
passages = []
passage_len = 0
passage = ""
sents = list(doc.sents)
for i in range(len(sents)):
sen = sents[i]
passage_len += len(sen)
if passage_len >= k:
passages.append(passage)
passage = sen.text
passage_len = len(sen)
continue
elif i == (len(sents) - 1):
passage += " " + sen.text
passages.append(passage)
passage = ""
passage_len = 0
continue
passage += " " + sen.text
return passages
def get_dicts_for_dpr(concepts, n_results=20, k=100):
dicts = []
for concept in concepts:
wikis = wikipedia.search(concept, results=n_results)
st.write(f"{concept} No of Wikis: {len(wikis)}")
for wiki in wikis:
try:
html_page = wikipedia.page(title=wiki, auto_suggest=False)
except DisambiguationError:
continue
htmlResults = html_page.content
passages = get_passages(htmlResults, k=k)
for passage in passages:
i_dicts = {}
i_dicts['text'] = passage
i_dicts['title'] = wiki
dicts.append(i_dicts)
return dicts
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
def get_title_text_combined(passage_dicts):
res = []
for p in passage_dicts:
res.append(tuple((p['title'], p['text'])))
return res
def extracted_passage_embeddings(processed_passages, max_length=156):
passage_inputs = p_tokenizer.batch_encode_plus(
processed_passages,
add_special_tokens=True,
truncation=True,
padding="max_length",
max_length=max_length,
return_token_type_ids=True
)
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']),
np.array(passage_inputs['token_type_ids'])],
batch_size=64,
verbose=1)
return passage_embeddings
def extracted_query_embeddings(queries, max_length=64):
query_inputs = q_tokenizer.batch_encode_plus(
queries,
add_special_tokens=True,
truncation=True,
padding="max_length",
max_length=max_length,
return_token_type_ids=True
)
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']),
np.array(query_inputs['attention_mask']),
np.array(query_inputs['token_type_ids'])],
batch_size=1,
verbose=1)
return query_embeddings
def get_pagetext(page):
s = str(page).replace("/t","")
return s
def get_wiki_summary(search):
wiki_wiki = wikipediaapi.Wikipedia('en')
page = wiki_wiki.page(search)
def get_wiki_summaryDF(search):
wiki_wiki = wikipediaapi.Wikipedia('en')
page = wiki_wiki.page(search)
isExist = page.exists()
if not isExist:
return isExist, "Not found", "Not found", "Not found", "Not found"
pageurl = page.fullurl
pagetitle = page.title
pagesummary = page.summary[0:60]
pagetext = get_pagetext(page.text)
backlinks = page.backlinks
linklist = ""
for link in backlinks.items():
pui = link[0]
linklist += pui + " , "
a=1
categories = page.categories
categorylist = ""
for category in categories.items():
pui = category[0]
categorylist += pui + " , "
a=1
links = page.links
linklist2 = ""
for link in links.items():
pui = link[0]
linklist2 += pui + " , "
a=1
sections = page.sections
ex_dic = {
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"],
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ]
}
df = pd.DataFrame(ex_dic)
return df
def save_message(name, message):
now = datetime.datetime.now()
timestamp = now.strftime("%Y-%m-%d %H:%M:%S")
with open("chat.txt", "a") as f:
f.write(f"{timestamp} - {name}: {message}\n")
def press_release():
st.markdown("""ππ Breaking News! π’π£
Introducing StreamlitWikipediaChat - the ultimate way to chat with Wikipedia and the whole world at the same time! πππ
Are you tired of reading boring articles on Wikipedia? Do you want to have some fun while learning new things? Then StreamlitWikipediaChat is just the thing for you! ππ»
With StreamlitWikipediaChat, you can ask Wikipedia anything you want and get instant responses! Whether you want to know the capital of Madagascar or how to make a delicious chocolate cake, Wikipedia has got you covered. π°π
But that's not all! You can also chat with other people from around the world who are using StreamlitWikipediaChat at the same time. It's like a virtual classroom where you can learn from and teach others. ππ¨βπ«π©βπ«
And the best part? StreamlitWikipediaChat is super easy to use! All you have to do is type in your question and hit send. That's it! π€―π
So, what are you waiting for? Join the fun and start chatting with Wikipedia and the world today! ππ
StreamlitWikipediaChat - where learning meets fun! π€π""")
def main():
st.title("Streamlit Chat")
name = st.text_input("Enter your name")
message = st.text_input("Enter a topic to share from Wikipedia")
if st.button("Submit"):
# wiki
df = get_wiki_summaryDF(message)
save_message(name, message)
save_message(name, df)
st.text("Message sent!")
st.text("Chat history:")
with open("chat.txt", "a+") as f:
f.seek(0)
chat_history = f.read()
#st.text(chat_history)
st.markdown(chat_history)
countdown = st.empty()
t = 60
while t:
mins, secs = divmod(t, 60)
countdown.text(f"Time remaining: {mins:02d}:{secs:02d}")
time.sleep(1)
t -= 1
if t == 0:
countdown.text("Time's up!")
with open("chat.txt", "a+") as f:
f.seek(0)
chat_history = f.read()
#st.text(chat_history)
st.markdown(chat_history)
press_release()
t = 60
if __name__ == "__main__":
main()
|