Spaces:
Runtime error
Runtime error
File size: 19,544 Bytes
0e371d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import numpy as np
import cv2
import pandas as pd
import operator
import matplotlib.pyplot as plt
import os
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import Sequence
from config import yolo_config
def load_weights(model, weights_file_path):
conv_layer_size = 110
conv_output_idxs = [93, 101, 109]
with open(weights_file_path, 'rb') as file:
major, minor, revision, seen, _ = np.fromfile(file, dtype=np.int32, count=5)
bn_idx = 0
for conv_idx in range(conv_layer_size):
conv_layer_name = f'conv2d_{conv_idx}' if conv_idx > 0 else 'conv2d'
bn_layer_name = f'batch_normalization_{bn_idx}' if bn_idx > 0 else 'batch_normalization'
conv_layer = model.get_layer(conv_layer_name)
filters = conv_layer.filters
kernel_size = conv_layer.kernel_size[0]
input_dims = conv_layer.input_shape[-1]
if conv_idx not in conv_output_idxs:
# darknet bn layer weights: [beta, gamma, mean, variance]
bn_weights = np.fromfile(file, dtype=np.float32, count=4 * filters)
# tf bn layer weights: [gamma, beta, mean, variance]
bn_weights = bn_weights.reshape((4, filters))[[1, 0, 2, 3]]
bn_layer = model.get_layer(bn_layer_name)
bn_idx += 1
else:
conv_bias = np.fromfile(file, dtype=np.float32, count=filters)
# darknet shape: (out_dim, input_dims, height, width)
# tf shape: (height, width, input_dims, out_dim)
conv_shape = (filters, input_dims, kernel_size, kernel_size)
conv_weights = np.fromfile(file, dtype=np.float32, count=np.product(conv_shape))
conv_weights = conv_weights.reshape(conv_shape).transpose([2, 3, 1, 0])
if conv_idx not in conv_output_idxs:
conv_layer.set_weights([conv_weights])
bn_layer.set_weights(bn_weights)
else:
conv_layer.set_weights([conv_weights, conv_bias])
if len(file.read()) == 0:
print('all weights read')
else:
print(f'failed to read all weights, # of unread weights: {len(file.read())}')
def get_detection_data(img, model_outputs, class_names):
"""
:param img: target raw image
:param model_outputs: outputs from inference_model
:param class_names: list of object class names
:return:
"""
num_bboxes = model_outputs[-1][0]
boxes, scores, classes = [output[0][:num_bboxes] for output in model_outputs[:-1]]
h, w = img.shape[:2]
df = pd.DataFrame(boxes, columns=['x1', 'y1', 'x2', 'y2'])
df[['x1', 'x2']] = (df[['x1', 'x2']] * w).astype('int64')
df[['y1', 'y2']] = (df[['y1', 'y2']] * h).astype('int64')
df['class_name'] = np.array(class_names)[classes.astype('int64')]
df['score'] = scores
df['w'] = df['x2'] - df['x1']
df['h'] = df['y2'] - df['y1']
print(f'# of bboxes: {num_bboxes}')
return df
def read_annotation_lines(annotation_path, test_size=None, random_seed=5566):
with open(annotation_path) as f:
lines = f.readlines()
if test_size:
return train_test_split(lines, test_size=test_size, random_state=random_seed)
else:
return lines
def draw_bbox(img, detections, cmap, random_color=True, figsize=(10, 10), show_img=True, show_text=True):
"""
Draw bounding boxes on the img.
:param img: BGR img.
:param detections: pandas DataFrame containing detections
:param random_color: assign random color for each objects
:param cmap: object colormap
:param plot_img: if plot img with bboxes
:return: None
"""
img = np.array(img)
scale = max(img.shape[0:2]) / 416
line_width = int(2 * scale)
for _, row in detections.iterrows():
x1, y1, x2, y2, cls, score, w, h = row.values
color = list(np.random.random(size=3) * 255) if random_color else cmap[cls]
cv2.rectangle(img, (x1, y1), (x2, y2), color, line_width)
if show_text:
text = f'{cls} {score:.2f}'
font = cv2.FONT_HERSHEY_DUPLEX
font_scale = max(0.3 * scale, 0.3)
thickness = max(int(1 * scale), 1)
(text_width, text_height) = cv2.getTextSize(text, font, fontScale=font_scale, thickness=thickness)[0]
cv2.rectangle(img, (x1 - line_width//2, y1 - text_height), (x1 + text_width, y1), color, cv2.FILLED)
cv2.putText(img, text, (x1, y1), font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA)
if show_img:
plt.figure(figsize=figsize)
plt.imshow(img)
plt.show()
return img
class DataGenerator(Sequence):
"""
Generates data for Keras
ref: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
"""
def __init__(self,
annotation_lines,
class_name_path,
folder_path,
max_boxes=100,
shuffle=True):
self.annotation_lines = annotation_lines
self.class_name_path = class_name_path
self.num_classes = len([line.strip() for line in open(class_name_path).readlines()])
self.num_gpu = yolo_config['num_gpu']
self.batch_size = yolo_config['batch_size'] * self.num_gpu
self.target_img_size = yolo_config['img_size']
self.anchors = np.array(yolo_config['anchors']).reshape((9, 2))
self.shuffle = shuffle
self.indexes = np.arange(len(self.annotation_lines))
self.folder_path = folder_path
self.max_boxes = max_boxes
self.on_epoch_end()
def __len__(self):
'number of batches per epoch'
return int(np.ceil(len(self.annotation_lines) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
idxs = self.indexes[index * self.batch_size:(index + 1) * self.batch_size]
# Find list of IDs
lines = [self.annotation_lines[i] for i in idxs]
# Generate data
X, y_tensor, y_bbox = self.__data_generation(lines)
return [X, *y_tensor, y_bbox], np.zeros(len(lines))
def on_epoch_end(self):
'Updates indexes after each epoch'
if self.shuffle:
np.random.shuffle(self.indexes)
def __data_generation(self, annotation_lines):
"""
Generates data containing batch_size samples
:param annotation_lines:
:return:
"""
X = np.empty((len(annotation_lines), *self.target_img_size), dtype=np.float32)
y_bbox = np.empty((len(annotation_lines), self.max_boxes, 5), dtype=np.float32) # x1y1x2y2
for i, line in enumerate(annotation_lines):
img_data, box_data = self.get_data(line)
X[i] = img_data
y_bbox[i] = box_data
y_tensor, y_true_boxes_xywh = preprocess_true_boxes(y_bbox, self.target_img_size[:2], self.anchors, self.num_classes)
return X, y_tensor, y_true_boxes_xywh
def get_data(self, annotation_line):
line = annotation_line.split()
img_path = line[0]
img = cv2.imread(os.path.join(self.folder_path, img_path))[:, :, ::-1]
ih, iw = img.shape[:2]
h, w, c = self.target_img_size
boxes = np.array([np.array(list(map(float, box.split(',')))) for box in line[1:]], dtype=np.float32) # x1y1x2y2
scale_w, scale_h = w / iw, h / ih
img = cv2.resize(img, (w, h))
image_data = np.array(img) / 255.
# correct boxes coordinates
box_data = np.zeros((self.max_boxes, 5))
if len(boxes) > 0:
np.random.shuffle(boxes)
boxes = boxes[:self.max_boxes]
boxes[:, [0, 2]] = boxes[:, [0, 2]] * scale_w # + dx
boxes[:, [1, 3]] = boxes[:, [1, 3]] * scale_h # + dy
box_data[:len(boxes)] = boxes
return image_data, box_data
def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
'''Preprocess true boxes to training input format
Parameters
----------
true_boxes: array, shape=(bs, max boxes per img, 5)
Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape.
input_shape: array-like, hw, multiples of 32
anchors: array, shape=(N, 2), (9, wh)
num_classes: int
Returns
-------
y_true: list of array, shape like yolo_outputs, xywh are reletive value
'''
num_stages = 3 # default setting for yolo, tiny yolo will be 2
anchor_mask = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
bbox_per_grid = 3
true_boxes = np.array(true_boxes, dtype='float32')
true_boxes_abs = np.array(true_boxes, dtype='float32')
input_shape = np.array(input_shape, dtype='int32')
true_boxes_xy = (true_boxes_abs[..., 0:2] + true_boxes_abs[..., 2:4]) // 2 # (100, 2)
true_boxes_wh = true_boxes_abs[..., 2:4] - true_boxes_abs[..., 0:2] # (100, 2)
# Normalize x,y,w, h, relative to img size -> (0~1)
true_boxes[..., 0:2] = true_boxes_xy/input_shape[::-1] # xy
true_boxes[..., 2:4] = true_boxes_wh/input_shape[::-1] # wh
bs = true_boxes.shape[0]
grid_sizes = [input_shape//{0:8, 1:16, 2:32}[stage] for stage in range(num_stages)]
y_true = [np.zeros((bs,
grid_sizes[s][0],
grid_sizes[s][1],
bbox_per_grid,
5+num_classes), dtype='float32')
for s in range(num_stages)]
# [(?, 52, 52, 3, 5+num_classes) (?, 26, 26, 3, 5+num_classes) (?, 13, 13, 3, 5+num_classes) ]
y_true_boxes_xywh = np.concatenate((true_boxes_xy, true_boxes_wh), axis=-1)
# Expand dim to apply broadcasting.
anchors = np.expand_dims(anchors, 0) # (1, 9 , 2)
anchor_maxes = anchors / 2. # (1, 9 , 2)
anchor_mins = -anchor_maxes # (1, 9 , 2)
valid_mask = true_boxes_wh[..., 0] > 0 # (1, 100)
for batch_idx in range(bs):
# Discard zero rows.
wh = true_boxes_wh[batch_idx, valid_mask[batch_idx]] # (# of bbox, 2)
num_boxes = len(wh)
if num_boxes == 0: continue
wh = np.expand_dims(wh, -2) # (# of bbox, 1, 2)
box_maxes = wh / 2. # (# of bbox, 1, 2)
box_mins = -box_maxes # (# of bbox, 1, 2)
# Compute IoU between each anchors and true boxes for responsibility assignment
intersect_mins = np.maximum(box_mins, anchor_mins) # (# of bbox, 9, 2)
intersect_maxes = np.minimum(box_maxes, anchor_maxes)
intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = np.prod(intersect_wh, axis=-1) # (9,)
box_area = wh[..., 0] * wh[..., 1] # (# of bbox, 1)
anchor_area = anchors[..., 0] * anchors[..., 1] # (1, 9)
iou = intersect_area / (box_area + anchor_area - intersect_area) # (# of bbox, 9)
# Find best anchor for each true box
best_anchors = np.argmax(iou, axis=-1) # (# of bbox,)
for box_idx in range(num_boxes):
best_anchor = best_anchors[box_idx]
for stage in range(num_stages):
if best_anchor in anchor_mask[stage]:
x_offset = true_boxes[batch_idx, box_idx, 0]*grid_sizes[stage][1]
y_offset = true_boxes[batch_idx, box_idx, 1]*grid_sizes[stage][0]
# Grid Index
grid_col = np.floor(x_offset).astype('int32')
grid_row = np.floor(y_offset).astype('int32')
anchor_idx = anchor_mask[stage].index(best_anchor)
class_idx = true_boxes[batch_idx, box_idx, 4].astype('int32')
# y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 0] = x_offset - grid_col # x
# y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 1] = y_offset - grid_row # y
# y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, :4] = true_boxes_abs[batch_idx, box_idx, :4] # abs xywh
y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, :2] = true_boxes_xy[batch_idx, box_idx, :] # abs xy
y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 2:4] = true_boxes_wh[batch_idx, box_idx, :] # abs wh
y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 4] = 1 # confidence
y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 5+class_idx] = 1 # one-hot encoding
# smooth
# onehot = np.zeros(num_classes, dtype=np.float)
# onehot[class_idx] = 1.0
# uniform_distribution = np.full(num_classes, 1.0 / num_classes)
# delta = 0.01
# smooth_onehot = onehot * (1 - delta) + delta * uniform_distribution
# y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 5:] = smooth_onehot
return y_true, y_true_boxes_xywh
"""
Calculate the AP given the recall and precision array
1st) We compute a version of the measured precision/recall curve with
precision monotonically decreasing
2nd) We compute the AP as the area under this curve by numerical integration.
"""
def voc_ap(rec, prec):
"""
--- Official matlab code VOC2012---
mrec=[0 ; rec ; 1];
mpre=[0 ; prec ; 0];
for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
end
i=find(mrec(2:end)~=mrec(1:end-1))+1;
ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
rec.insert(0, 0.0) # insert 0.0 at begining of list
rec.append(1.0) # insert 1.0 at end of list
mrec = rec[:]
prec.insert(0, 0.0) # insert 0.0 at begining of list
prec.append(0.0) # insert 0.0 at end of list
mpre = prec[:]
"""
This part makes the precision monotonically decreasing
(goes from the end to the beginning)
matlab: for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
"""
# matlab indexes start in 1 but python in 0, so I have to do:
# range(start=(len(mpre) - 2), end=0, step=-1)
# also the python function range excludes the end, resulting in:
# range(start=(len(mpre) - 2), end=-1, step=-1)
for i in range(len(mpre)-2, -1, -1):
mpre[i] = max(mpre[i], mpre[i+1])
"""
This part creates a list of indexes where the recall changes
matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
"""
i_list = []
for i in range(1, len(mrec)):
if mrec[i] != mrec[i-1]:
i_list.append(i) # if it was matlab would be i + 1
"""
The Average Precision (AP) is the area under the curve
(numerical integration)
matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
ap = 0.0
for i in i_list:
ap += ((mrec[i]-mrec[i-1])*mpre[i])
return ap, mrec, mpre
"""
Draw plot using Matplotlib
"""
def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
# sort the dictionary by decreasing value, into a list of tuples
sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
print(sorted_dic_by_value)
# unpacking the list of tuples into two lists
sorted_keys, sorted_values = zip(*sorted_dic_by_value)
#
if true_p_bar != "":
"""
Special case to draw in:
- green -> TP: True Positives (object detected and matches ground-truth)
- red -> FP: False Positives (object detected but does not match ground-truth)
- pink -> FN: False Negatives (object not detected but present in the ground-truth)
"""
fp_sorted = []
tp_sorted = []
for key in sorted_keys:
fp_sorted.append(dictionary[key] - true_p_bar[key])
tp_sorted.append(true_p_bar[key])
plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive')
plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted)
# add legend
plt.legend(loc='lower right')
"""
Write number on side of bar
"""
fig = plt.gcf() # gcf - get current figure
axes = plt.gca()
r = fig.canvas.get_renderer()
for i, val in enumerate(sorted_values):
fp_val = fp_sorted[i]
tp_val = tp_sorted[i]
fp_str_val = " " + str(fp_val)
tp_str_val = fp_str_val + " " + str(tp_val)
# trick to paint multicolor with offset:
# first paint everything and then repaint the first number
t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
if i == (len(sorted_values)-1): # largest bar
adjust_axes(r, t, fig, axes)
else:
plt.barh(range(n_classes), sorted_values, color=plot_color)
"""
Write number on side of bar
"""
fig = plt.gcf() # gcf - get current figure
axes = plt.gca()
r = fig.canvas.get_renderer()
for i, val in enumerate(sorted_values):
str_val = " " + str(val) # add a space before
if val < 1.0:
str_val = " {0:.2f}".format(val)
t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
# re-set axes to show number inside the figure
if i == (len(sorted_values)-1): # largest bar
adjust_axes(r, t, fig, axes)
# set window title
fig.canvas.set_window_title(window_title)
# write classes in y axis
tick_font_size = 12
plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
"""
Re-scale height accordingly
"""
init_height = fig.get_figheight()
# comput the matrix height in points and inches
dpi = fig.dpi
height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
height_in = height_pt / dpi
# compute the required figure height
top_margin = 0.15 # in percentage of the figure height
bottom_margin = 0.05 # in percentage of the figure height
figure_height = height_in / (1 - top_margin - bottom_margin)
# set new height
if figure_height > init_height:
fig.set_figheight(figure_height)
# set plot title
plt.title(plot_title, fontsize=14)
# set axis titles
# plt.xlabel('classes')
plt.xlabel(x_label, fontsize='large')
# adjust size of window
fig.tight_layout()
# save the plot
fig.savefig(output_path)
# show image
# if to_show:
plt.show()
# close the plot
# plt.close()
"""
Plot - adjust axes
"""
def adjust_axes(r, t, fig, axes):
# get text width for re-scaling
bb = t.get_window_extent(renderer=r)
text_width_inches = bb.width / fig.dpi
# get axis width in inches
current_fig_width = fig.get_figwidth()
new_fig_width = current_fig_width + text_width_inches
propotion = new_fig_width / current_fig_width
# get axis limit
x_lim = axes.get_xlim()
axes.set_xlim([x_lim[0], x_lim[1]*propotion])
def read_txt_to_list(path):
# open txt file lines to a list
with open(path) as f:
content = f.readlines()
# remove whitespace characters like `\n` at the end of each line
content = [x.strip() for x in content]
return content |