File size: 11,701 Bytes
912ec24
 
 
 
 
 
 
 
 
 
 
ac04dd1
8546487
 
912ec24
ac04dd1
 
 
 
 
 
 
912ec24
ac04dd1
912ec24
ac04dd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
912ec24
 
 
ac04dd1
 
 
 
 
8546487
 
 
 
ac04dd1
 
912ec24
 
 
 
 
 
 
 
ac04dd1
912ec24
ac04dd1
 
912ec24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac04dd1
912ec24
 
 
 
 
 
 
 
ac04dd1
912ec24
 
 
 
 
 
 
 
 
 
 
 
ac04dd1
912ec24
 
 
 
 
8546487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac04dd1
 
 
 
 
 
 
 
 
912ec24
 
 
 
8546487
 
 
 
 
ac04dd1
 
8546487
 
912ec24
8546487
 
 
 
 
 
ac04dd1
 
 
912ec24
ac04dd1
912ec24
 
 
 
8546487
 
 
 
 
 
912ec24
 
 
ac04dd1
912ec24
ac04dd1
912ec24
 
ac04dd1
912ec24
 
 
 
 
 
ac04dd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
912ec24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac04dd1
 
 
 
 
 
912ec24
 
 
 
 
 
 
ac04dd1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python3
import os
import re
import streamlit as st
import streamlit.components.v1 as components
from urllib.parse import quote
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import base64
import glob
import time

# Page Configuration
st.set_page_config(
    page_title="AI Knowledge Tree Builder ๐Ÿ“ˆ๐ŸŒฟ",
    page_icon="๐ŸŒณโœจ",
    layout="wide",
    initial_sidebar_state="auto",
)

# Predefined Knowledge Trees
trees = {
    "ML Engineering": """
0. ML Engineering ๐ŸŒ
1. Data Preparation
- Load Data ๐Ÿ“Š
- Preprocess Data ๐Ÿ› ๏ธ
2. Model Building
- Train Model ๐Ÿค–
- Evaluate Model ๐Ÿ“ˆ
3. Deployment
- Deploy Model ๐Ÿš€
    """,
    "Health": """
0. Health and Wellness ๐ŸŒฟ
1. Physical Health
- Exercise ๐Ÿ‹๏ธ
- Nutrition ๐ŸŽ
2. Mental Health
- Meditation ๐Ÿง˜
- Therapy ๐Ÿ›‹๏ธ
    """,
}

# Project Seeds
project_seeds = {
    "Code Project": """
0. Code Project ๐Ÿ“‚
1. app.py ๐Ÿ
2. requirements.txt ๐Ÿ“ฆ
3. README.md ๐Ÿ“„
    """,
    "Papers Project": """
0. Papers Project ๐Ÿ“š
1. markdown ๐Ÿ“
2. mermaid ๐Ÿ–ผ๏ธ
3. huggingface.co ๐Ÿค—
    """,
    "AI Project": """
0. AI Project ๐Ÿค–
1. Streamlit Torch Transformers
- Streamlit ๐ŸŒ
- Torch ๐Ÿ”ฅ
- Transformers ๐Ÿค–
2. DistillKit MergeKit Spectrum
- DistillKit ๐Ÿงช
- MergeKit ๐Ÿ”„
- Spectrum ๐Ÿ“Š
3. Transformers Diffusers Datasets
- Transformers ๐Ÿค–
- Diffusers ๐ŸŽจ
- Datasets ๐Ÿ“Š
    """,
}

# Utility Functions
def sanitize_label(label):
    """Remove invalid characters for Mermaid labels."""
    return re.sub(r'[^\w\s-]', '', label).replace(' ', '_')

def sanitize_filename(label):
    """Make a valid filename from a label."""
    return re.sub(r'[^\w\s-]', '', label).replace(' ', '_')

def parse_outline_to_mermaid(outline_text, search_agent):
    """Convert tree outline to Mermaid syntax with clickable nodes."""
    lines = outline_text.strip().split('\n')
    nodes, edges, clicks, stack = [], [], [], []
    for line in lines:
        indent = len(line) - len(line.lstrip())
        level = indent // 4
        label = re.sub(r'^[#*\->\d\.\s]+', '', line.strip())
        if label:
            node_id = f"N{len(nodes)}"
            sanitized_label = sanitize_label(label)
            nodes.append(f'{node_id}["{label}"]')
            search_url = search_urls[search_agent](label)
            clicks.append(f'click {node_id} "{search_url}" _blank')
            if stack:
                parent_level = stack[-1][0]
                if level > parent_level:
                    edges.append(f"{stack[-1][1]} --> {node_id}")
                    stack.append((level, node_id))
                else:
                    while stack and stack[-1][0] >= level:
                        stack.pop()
                    if stack:
                        edges.append(f"{stack[-1][1]} --> {node_id}")
                    stack.append((level, node_id))
            else:
                stack.append((level, node_id))
    return "%%{init: {'themeVariables': {'fontSize': '18px'}}}%%\nflowchart LR\n" + "\n".join(nodes + edges + clicks)

def generate_mermaid_html(mermaid_code):
    """Generate HTML to display Mermaid diagram."""
    return f"""
    <html><head><script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
    <style>.centered-mermaid{{display:flex;justify-content:center;margin:20px auto;}}</style></head>
    <body><div class="mermaid centered-mermaid">{mermaid_code}</div>
    <script>mermaid.initialize({{startOnLoad:true}});</script></body></html>
    """

def grow_tree(base_tree, new_node_name, parent_node):
    """Add a new node to the tree under a specified parent."""
    lines = base_tree.strip().split('\n')
    new_lines = []
    added = False
    for line in lines:
        new_lines.append(line)
        if parent_node in line and not added:
            indent = len(line) - len(line.lstrip())
            new_lines.append(f"{' ' * (indent + 4)}- {new_node_name} ๐ŸŒฑ")
            added = True
    return "\n".join(new_lines)

def get_download_link(file_path, mime_type="text/plain"):
    """Generate a download link for a file."""
    with open(file_path, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    return f'<a href="data:{mime_type};base64,{b64}" download="{file_path}">Download {file_path}</a>'

def save_tree_to_file(tree_text, parent_node, new_node):
    """Save tree to a markdown file with name based on nodes."""
    root_node = tree_text.strip().split('\n')[0].split('.')[1].strip() if tree_text.strip() else "Knowledge_Tree"
    filename = f"{sanitize_filename(root_node)}_{sanitize_filename(parent_node)}_{sanitize_filename(new_node)}_{int(time.time())}.md"
    
    mermaid_code = parse_outline_to_mermaid(tree_text, "๐Ÿ”ฎGoogle")  # Default search engine for saved trees
    export_md = f"# Knowledge Tree: {root_node}\n\n## Outline\n{tree_text}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```"
    
    with open(filename, "w") as f:
        f.write(export_md)
    return filename

def load_trees_from_files():
    """Load all saved tree markdown files."""
    tree_files = glob.glob("*.md")
    trees_dict = {}
    
    for file in tree_files:
        if file != "README.md" and file != "knowledge_tree.md":  # Skip project README and temp export
            try:
                with open(file, 'r') as f:
                    content = f.read()
                    # Extract the tree name from the first line
                    match = re.search(r'# Knowledge Tree: (.*)', content)
                    if match:
                        tree_name = match.group(1)
                    else:
                        tree_name = os.path.splitext(file)[0]
                    
                    # Extract the outline section
                    outline_match = re.search(r'## Outline\n(.*?)(?=\n## |$)', content, re.DOTALL)
                    if outline_match:
                        tree_outline = outline_match.group(1).strip()
                        trees_dict[f"{tree_name} ({file})"] = tree_outline
            except Exception as e:
                print(f"Error loading {file}: {e}")
    
    return trees_dict

# Search Agents (Highest resolution social network default: X)
search_urls = {
    "๐Ÿ“š๐Ÿ“–ArXiv": lambda k: f"/?q={quote(k)}",
    "๐Ÿ”ฎGoogle": lambda k: f"https://www.google.com/search?q={quote(k)}",
    "๐Ÿ“บYoutube": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
    "๐Ÿ”ญBing": lambda k: f"https://www.bing.com/search?q={quote(k)}",
    "๐Ÿ’กTruth": lambda k: f"https://truthsocial.com/search?q={quote(k)}",
    "๐Ÿ“ฑX": lambda k: f"https://twitter.com/search?q={quote(k)}",
}

# Main App
st.title("๐ŸŒณ AI Knowledge Tree Builder ๐ŸŒฑ")

# Sidebar with saved trees
st.sidebar.title("Saved Trees")
saved_trees = load_trees_from_files()
selected_saved_tree = st.sidebar.selectbox("Select a saved tree", ["None"] + list(saved_trees.keys()))

# Select Project Type
project_type = st.selectbox("Select Project Type", ["Code Project", "Papers Project", "AI Project"])

# Initialize or load tree
if 'current_tree' not in st.session_state:
    if selected_saved_tree != "None" and selected_saved_tree in saved_trees:
        st.session_state['current_tree'] = saved_trees[selected_saved_tree]
    else:
        st.session_state['current_tree'] = trees.get("ML Engineering", project_seeds[project_type])
elif selected_saved_tree != "None" and selected_saved_tree in saved_trees:
    st.session_state['current_tree'] = saved_trees[selected_saved_tree]

# Select Search Agent for Node Links
search_agent = st.selectbox("Select Search Agent for Node Links", list(search_urls.keys()), index=5)  # Default to X

# Tree Growth
new_node = st.text_input("Add New Node")
parent_node = st.text_input("Parent Node")
if st.button("Grow Tree ๐ŸŒฑ") and new_node and parent_node:
    st.session_state['current_tree'] = grow_tree(st.session_state['current_tree'], new_node, parent_node)
    
    # Save to a new file with the node names
    saved_file = save_tree_to_file(st.session_state['current_tree'], parent_node, new_node)
    st.success(f"Added '{new_node}' under '{parent_node}' and saved to {saved_file}!")
    
    # Also update the temporary current_tree.md for compatibility
    with open("current_tree.md", "w") as f:
        f.write(st.session_state['current_tree'])

# Display Mermaid Diagram
st.markdown("### Knowledge Tree Visualization")
mermaid_code = parse_outline_to_mermaid(st.session_state['current_tree'], search_agent)
components.html(generate_mermaid_html(mermaid_code), height=600)

# Export Tree
if st.button("Export Tree as Markdown"):
    export_md = f"# Knowledge Tree\n\n## Outline\n{st.session_state['current_tree']}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```"
    with open("knowledge_tree.md", "w") as f:
        f.write(export_md)
    st.markdown(get_download_link("knowledge_tree.md", "text/markdown"), unsafe_allow_html=True)

# AI Project: Minimal ML Model Building
if project_type == "AI Project":
    st.subheader("Build Minimal ML Model from CSV")
    uploaded_file = st.file_uploader("Upload CSV", type="csv")
    if uploaded_file:
        df = pd.read_csv(uploaded_file)
        st.write("Columns:", df.columns.tolist())
        feature_cols = st.multiselect("Select feature columns", df.columns)
        target_col = st.selectbox("Select target column", df.columns)
        if st.button("Train Model"):
            X = df[feature_cols].values
            y = df[target_col].values
            X_tensor = torch.tensor(X, dtype=torch.float32)
            y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)
            dataset = TensorDataset(X_tensor, y_tensor)
            loader = DataLoader(dataset, batch_size=32, shuffle=True)
            model = nn.Linear(X.shape[1], 1)
            criterion = nn.MSELoss()
            optimizer = optim.Adam(model.parameters(), lr=0.01)
            for epoch in range(10):
                for batch_X, batch_y in loader:
                    optimizer.zero_grad()
                    outputs = model(batch_X)
                    loss = criterion(outputs, batch_y)
                    loss.backward()
                    optimizer.step()
            torch.save(model.state_dict(), "model.pth")
            app_code = f"""
import streamlit as st
import torch
import torch.nn as nn

model = nn.Linear({len(feature_cols)}, 1)
model.load_state_dict(torch.load("model.pth"))
model.eval()

st.title("ML Model Demo")
inputs = []
for col in {feature_cols}:
    inputs.append(st.number_input(col))
if st.button("Predict"):
    input_tensor = torch.tensor([inputs], dtype=torch.float32)
    prediction = model(input_tensor).item()
    st.write(f"Predicted {target_col}: {{prediction}}")
"""
            with open("app.py", "w") as f:
                f.write(app_code)
            reqs = "streamlit\ntorch\npandas\n"
            with open("requirements.txt", "w") as f:
                f.write(reqs)
            readme = """
# ML Model Demo

## How to run
1. Install requirements: `pip install -r requirements.txt`
2. Run the app: `streamlit run app.py`
3. Input feature values and click "Predict".
"""
            with open("README.md", "w") as f:
                f.write(readme)
            st.markdown(get_download_link("model.pth", "application/octet-stream"), unsafe_allow_html=True)
            st.markdown(get_download_link("app.py", "text/plain"), unsafe_allow_html=True)
            st.markdown(get_download_link("requirements.txt", "text/plain"), unsafe_allow_html=True)
            st.markdown(get_download_link("README.md", "text/markdown"), unsafe_allow_html=True)