Spaces:
Runtime error
Runtime error
File size: 12,695 Bytes
6fdd8a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import os
import streamlit as st
import openai
import pandas as pd
import time
from typing import List, Tuple
from uuid import uuid4
# Set the OpenAI API key from an environment variable
openai.api_key = os.getenv("OPENAI_API_KEY")
# Function to generate a unique session ID for caching
def get_session_id():
if 'session_id' not in st.session_state:
st.session_state.session_id = str(uuid4())
return st.session_state.session_id
# STaR Algorithm Implementation
class SelfTaughtReasoner:
def __init__(self, model_engine="text-davinci-003"):
self.model_engine = model_engine
self.prompt_examples = []
self.iterations = 0
self.generated_data = pd.DataFrame(columns=['Problem', 'Rationale', 'Answer', 'Is_Correct'])
self.rationalized_data = pd.DataFrame(columns=['Problem', 'Rationale', 'Answer', 'Is_Correct'])
self.fine_tuned_model = None # Placeholder for fine-tuned model
def add_prompt_example(self, problem: str, rationale: str, answer: str):
"""
Adds a prompt example to the few-shot examples.
"""
self.prompt_examples.append({
'Problem': problem,
'Rationale': rationale,
'Answer': answer
})
def construct_prompt(self, problem: str, include_answer: bool = False, answer: str = "") -> str:
"""
Constructs the prompt for the OpenAI API call.
"""
prompt = ""
for example in self.prompt_examples:
prompt += f"Problem: {example['Problem']}\n"
prompt += f"Rationale: {example['Rationale']}\n"
prompt += f"Answer: {example['Answer']}\n\n"
prompt += f"Problem: {problem}\n"
if include_answer:
prompt += f"Answer (as hint): {answer}\n"
prompt += "Rationale:"
return prompt
def generate_rationale_and_answer(self, problem: str) -> Tuple[str, str]:
"""
Generates a rationale and answer for a given problem.
"""
prompt = self.construct_prompt(problem)
try:
response = openai.Completion.create(
engine=self.model_engine,
prompt=prompt,
max_tokens=150,
temperature=0.7,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=["\n\n", "Problem:", "Answer:"]
)
rationale = response.choices[0].text.strip()
# Now generate the answer using the rationale
prompt += f" {rationale}\nAnswer:"
answer_response = openai.Completion.create(
engine=self.model_engine,
prompt=prompt,
max_tokens=10,
temperature=0,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=["\n", "\n\n", "Problem:"]
)
answer = answer_response.choices[0].text.strip()
return rationale, answer
except Exception as e:
st.error(f"Error generating rationale and answer: {e}")
return "", ""
def rationalize(self, problem: str, correct_answer: str) -> Tuple[str, str]:
"""
Generates a rationale for a given problem using the correct answer as a hint.
"""
prompt = self.construct_prompt(problem, include_answer=True, answer=correct_answer)
try:
response = openai.Completion.create(
engine=self.model_engine,
prompt=prompt,
max_tokens=150,
temperature=0.7,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=["\n\n", "Problem:", "Answer:"]
)
rationale = response.choices[0].text.strip()
# Now generate the answer using the rationale
prompt += f" {rationale}\nAnswer:"
answer_response = openai.Completion.create(
engine=self.model_engine,
prompt=prompt,
max_tokens=10,
temperature=0,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=["\n", "\n\n", "Problem:"]
)
answer = answer_response.choices[0].text.strip()
return rationale, answer
except Exception as e:
st.error(f"Error during rationalization: {e}")
return "", ""
def fine_tune_model(self):
"""
Fine-tunes the model on the generated rationales.
This is a placeholder function as fine-tuning would require
training a new model which is beyond the scope of this app.
"""
# In actual implementation, you would prepare the training data
# and use OpenAI's fine-tuning API or other methods to fine-tune
# the model. For demonstration, we'll just simulate the process.
time.sleep(1) # Simulate time taken for fine-tuning
self.fine_tuned_model = f"{self.model_engine}-fine-tuned-{get_session_id()}"
st.success(f"Model fine-tuned: {self.fine_tuned_model}")
def run_iteration(self, dataset: pd.DataFrame):
"""
Runs one iteration of the STaR process.
"""
st.write(f"### Iteration {self.iterations + 1}")
progress_bar = st.progress(0)
total = len(dataset)
for idx, row in dataset.iterrows():
problem = row['Problem']
correct_answer = row['Answer']
# Generate rationale and answer
rationale, answer = self.generate_rationale_and_answer(problem)
is_correct = (answer.lower() == correct_answer.lower())
# Record the generated data
self.generated_data = self.generated_data.append({
'Problem': problem,
'Rationale': rationale,
'Answer': answer,
'Is_Correct': is_correct
}, ignore_index=True)
# If incorrect, perform rationalization
if not is_correct:
rationale, answer = self.rationalize(problem, correct_answer)
is_correct = (answer.lower() == correct_answer.lower())
if is_correct:
self.rationalized_data = self.rationalized_data.append({
'Problem': problem,
'Rationale': rationale,
'Answer': answer,
'Is_Correct': is_correct
}, ignore_index=True)
progress_bar.progress((idx + 1) / total)
# Fine-tune the model on correct rationales
st.write("Fine-tuning the model on correct rationales...")
self.fine_tune_model()
self.iterations += 1
# Streamlit App
def main():
st.title("Self-Taught Reasoner (STaR) Demonstration")
st.write("""
This app demonstrates the Self-Taught Reasoner (STaR) workflow. Enter problems to solve, and see how the model generates rationales, filters correct answers, and fine-tunes itself iteratively.
""")
# Initialize the Self-Taught Reasoner
if 'star' not in st.session_state:
st.session_state.star = SelfTaughtReasoner()
star = st.session_state.star
# Section to add few-shot prompt examples
st.header("Step 1: Add Few-Shot Prompt Examples")
st.write("Provide a few examples with problems, rationales, and answers to bootstrap the reasoning process.")
with st.form(key='prompt_form'):
example_problem = st.text_area("Example Problem", height=50)
example_rationale = st.text_area("Example Rationale", height=100)
example_answer = st.text_input("Example Answer")
submit_example = st.form_submit_button("Add Example")
if submit_example:
if not example_problem or not example_rationale or not example_answer:
st.warning("Please fill in all fields to add an example.")
else:
star.add_prompt_example(example_problem, example_rationale, example_answer)
st.success("Example added.")
if star.prompt_examples:
st.subheader("Current Prompt Examples:")
for idx, example in enumerate(star.prompt_examples):
st.write(f"**Example {idx + 1}:**")
st.write(f"Problem: {example['Problem']}")
st.write(f"Rationale: {example['Rationale']}")
st.write(f"Answer: {example['Answer']}")
# Section to input dataset
st.header("Step 2: Input Dataset")
st.write("Provide a dataset of problems and correct answers for the STaR process.")
dataset_input_method = st.radio("How would you like to input the dataset?", ("Manual Entry", "Upload CSV"))
if dataset_input_method == "Manual Entry":
with st.form(key='dataset_form'):
dataset_problems = st.text_area("Enter problems and answers in the format 'Problem | Answer', one per line.", height=200)
submit_dataset = st.form_submit_button("Submit Dataset")
if submit_dataset:
if not dataset_problems:
st.warning("Please enter at least one problem and answer.")
else:
dataset = []
lines = dataset_problems.strip().split('\n')
for line in lines:
if '|' in line:
problem, answer = line.split('|', 1)
dataset.append({'Problem': problem.strip(), 'Answer': answer.strip()})
else:
st.error(f"Invalid format in line: {line}")
if dataset:
st.session_state.dataset = pd.DataFrame(dataset)
st.success("Dataset loaded.")
else:
uploaded_file = st.file_uploader("Upload a CSV file with 'Problem' and 'Answer' columns.", type=['csv'])
if uploaded_file:
try:
st.session_state.dataset = pd.read_csv(uploaded_file)
if 'Problem' not in st.session_state.dataset.columns or 'Answer' not in st.session_state.dataset.columns:
st.error("CSV must contain 'Problem' and 'Answer' columns.")
del st.session_state.dataset
else:
st.success("Dataset loaded.")
except Exception as e:
st.error(f"Error loading CSV: {e}")
if 'dataset' in st.session_state:
st.subheader("Current Dataset:")
st.dataframe(st.session_state.dataset.head())
# Section to run the STaR process
st.header("Step 3: Run STaR Process")
num_iterations = st.number_input("Number of Iterations to Run:", min_value=1, max_value=10, value=1)
run_star = st.button("Run STaR")
if run_star:
if not star.prompt_examples:
st.warning("Please add at least one prompt example before running STaR.")
elif not openai.api_key:
st.warning("OpenAI API key not found. Please set the OPENAI_API_KEY environment variable.")
else:
for _ in range(num_iterations):
star.run_iteration(st.session_state.dataset)
st.header("Results")
st.subheader("Generated Data")
st.dataframe(star.generated_data)
st.subheader("Rationalized Data")
st.dataframe(star.rationalized_data)
st.write("The model has been fine-tuned iteratively. You can now test it with new problems.")
# Section to test the fine-tuned model
st.header("Step 4: Test the Fine-Tuned Model")
test_problem = st.text_area("Enter a new problem to solve:", height=100)
test_button = st.button("Solve Problem")
if test_button:
if not test_problem:
st.warning("Please enter a problem to solve.")
elif not star.fine_tuned_model:
st.warning("The model has not been fine-tuned yet. Please run the STaR process first.")
else:
# For demonstration, we'll use the same generate_rationale_and_answer function
# In actual implementation, you would use the fine-tuned model
st.write("Generating rationale and answer using the fine-tuned model...")
rationale, answer = star.generate_rationale_and_answer(test_problem)
st.subheader("Rationale:")
st.write(rationale)
st.subheader("Answer:")
st.write(answer)
# Footer
st.write("---")
st.write("Developed as a demonstration of the STaR method.")
if __name__ == "__main__":
main()
|