Spaces:
Build error
Build error
File size: 8,181 Bytes
fbe0fa0 1873d2c 38694b6 1873d2c 5308a05 1873d2c 5308a05 1873d2c c50215b 095df8d 6d26b10 4a53575 6d26b10 768ef20 b2461d5 c50215b 095df8d c50215b b2461d5 c50215b 768ef20 367ef64 768ef20 367ef64 f8a0238 6a593c5 91c3654 24978d4 6a593c5 f8a0238 4a53575 f8a0238 6a593c5 768ef20 6a593c5 8c6f36e 905458c f28647e 905458c 367ef64 905458c fbe0fa0 bbfd9f4 4c2ebf4 fbe0fa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import time
import re
import pandas as pd
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from tokenizers import Tokenizer, AddedToken
import streamlit as st
from st_click_detector import click_detector
# This lil dealio is my test of the new experiemntal primitives which promise to put cach in streamlit within striking distance of simulating cognitive episodic memory (personalized feelings about a moment through space time), and semantic memory (factual memories we are ready to share and communicate like your email address or physical address yo
# What impresses me about these two beautiful new prims is that one called the singleton can share memory across sessions (think all users yo)
@st.experimental_singleton
def get_sessionmaker(search_param):
# This is for illustration purposes only
url = "https://en.wikipedia.org/wiki/"
#engine = create_engine(DB_URL)
#return sessionmaker(engine)
return url
search_param = "Star_Trek:_Discovery"
sm= get_sessionmaker(search_param)
#print(sm)
# What is supercool about the second prim the memo is it makes unwieldy data very wieldy. Like the Lord of Rings in reverse re "you cannot wield it! none of us can." -> "You can wield it, now everyone can."
@st.experimental_memo
def factorial(n):
if n < 1:
return 1
return n * factorial(n - 1)
#em10 = factorial(10)
#print("em10:",em10)
#em09 = factorial(9) # Returns instantly!
#print("em09:",em09)
# callback to update query param on selectbox change
def update_params():
print("update1")
#try:
#st.experimental_set_query_params(option=st.session_state.query)
#except ValueError:
# pass
# radio button options - plan is to hydrate when selected and change url along with textbox and search
options = ["ai", "nlp", "iot", "vr", "genomics", "graph", "cognitive"]
query_params = st.experimental_get_query_params()
# set selectbox value based on query param, or provide a default
ix = 0
if query_params:
try:
q0 = query_params['query'][0]
ix = options.index(q0)
except ValueError:
pass
selected_option = st.radio(
"Param", options, index=ix, key="query", on_change=update_params
)
# set query param based on selection
st.experimental_set_query_params(option=selected_option)
# second set of controls, check the query params
try:
query_params = st.experimental_get_query_params()
query_option = query_params['query'][0] #throws an exception when visiting http://host:port
option_selected = st.sidebar.selectbox('Pick option', options, index=options.index(query_option))
except: # catch exception and set query param to predefined value
st.experimental_set_query_params(query="Genomics") # set default
query_params = st.experimental_get_query_params()
query_option = query_params['query'][0]
# set the text input to query value if in session
if 'query' not in st.session_state:
#st.session_state['query'] = 'value'
query = st.text_input("", value="artificial intelligence", key="query")
else:
query = st.text_input("", value=st.session_state["query"], key="query")
try:
st.session_state.query = query # if set already above. this prevents two interface elements setting it first time once
except: # catch exception and set query param to predefined value
print("Error cant set after init")
if 'query' not in st.session_state:
st.session_state.query = 'Genomics'
st.write(st.session_state.query)
DEVICE = "cpu"
MODEL_OPTIONS = ["msmarco-distilbert-base-tas-b", "all-mpnet-base-v2"]
DESCRIPTION = """
# Semantic search
**Enter your query and hit enter**
Built with π€ Hugging Face's [transformers](https://huggingface.co/transformers/) library, [SentenceBert](https://www.sbert.net/) models, [Streamlit](https://streamlit.io/) and 44k movie descriptions from the Kaggle [Movies Dataset](https://www.kaggle.com/rounakbanik/the-movies-dataset)
"""
# Session state
if 'key' not in st.session_state:
st.session_state['key'] = 'value'
if 'key' not in st.session_state:
st.session_state.key = 'value'
st.write(st.session_state.key)
st.write(st.session_state)
#st.session_state
for key in st.session_state.keys():
del st.session_state[key]
#st.text_input("Your name", key="name")
#st.session_state.name
@st.cache(
show_spinner=False,
hash_funcs={
AutoModel: lambda _: None,
AutoTokenizer: lambda _: None,
dict: lambda _: None,
},
)
def load():
models, tokenizers, embeddings = [], [], []
for model_option in MODEL_OPTIONS:
tokenizers.append(
AutoTokenizer.from_pretrained(f"sentence-transformers/{model_option}")
)
models.append(
AutoModel.from_pretrained(f"sentence-transformers/{model_option}").to(
DEVICE
)
)
embeddings.append(np.load("embeddings.npy"))
embeddings.append(np.load("embeddings2.npy"))
df = pd.read_csv("movies.csv")
return tokenizers, models, embeddings, df
tokenizers, models, embeddings, df = load()
def pooling(model_output):
return model_output.last_hidden_state[:, 0]
def compute_embeddings(texts):
encoded_input = tokenizers[0](
texts, padding=True, truncation=True, return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
model_output = models[0](**encoded_input, return_dict=True)
embeddings = pooling(model_output)
return embeddings.cpu().numpy()
def pooling2(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
def compute_embeddings2(list_of_strings):
encoded_input = tokenizers[1](
list_of_strings, padding=True, truncation=True, return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
model_output = models[1](**encoded_input)
sentence_embeddings = pooling2(model_output, encoded_input["attention_mask"])
return F.normalize(sentence_embeddings, p=2, dim=1).cpu().numpy()
@st.cache(
show_spinner=False,
hash_funcs={Tokenizer: lambda _: None, AddedToken: lambda _: None},
)
def semantic_search(query, model_id):
start = time.time()
if len(query.strip()) == 0:
return ""
if "[Similar:" not in query:
if model_id == 0:
query_embedding = compute_embeddings([query])
else:
query_embedding = compute_embeddings2([query])
else:
match = re.match(r"\[Similar:(\d{1,5}).*", query)
if match:
idx = int(match.groups()[0])
query_embedding = embeddings[model_id][idx : idx + 1, :]
if query_embedding.shape[0] == 0:
return ""
else:
return ""
indices = np.argsort(embeddings[model_id] @ np.transpose(query_embedding)[:, 0])[
-1:-11:-1
]
if len(indices) == 0:
return ""
result = "<ol>"
for i in indices:
result += f"<li style='padding-top: 10px'><b>{df.iloc[i].title}</b> ({df.iloc[i].release_date}). {df.iloc[i].overview} "
result += f"<a id='{i}' href='#'>Similar movies</a></li>"
delay = "%.3f" % (time.time() - start)
return f"<p><i>Computation time: {delay} seconds</i></p>{result}</ol>"
st.sidebar.markdown(DESCRIPTION)
model_choice = st.sidebar.selectbox("Similarity model", options=MODEL_OPTIONS)
model_id = 0 if model_choice == MODEL_OPTIONS[0] else 1
clicked = click_detector(semantic_search(query, model_id))
if clicked != "":
st.markdown(clicked)
change_query = False
if "last_clicked" not in st.session_state:
st.session_state["last_clicked"] = clicked
change_query = True
else:
if clicked != st.session_state["last_clicked"]:
st.session_state["last_clicked"] = clicked
change_query = True
if change_query:
st.session_state["query"] = f"[Similar:{clicked}] {df.iloc[int(clicked)].title}"
st.experimental_rerun()
|