File size: 8,181 Bytes
fbe0fa0
 
 
 
 
 
 
 
 
 
 
1873d2c
 
 
 
38694b6
1873d2c
 
 
 
 
 
 
 
5308a05
 
1873d2c
 
 
 
 
 
 
 
 
5308a05
 
 
 
1873d2c
c50215b
 
 
095df8d
6d26b10
4a53575
6d26b10
 
768ef20
 
b2461d5
c50215b
 
 
 
 
095df8d
 
c50215b
 
 
b2461d5
c50215b
 
 
 
768ef20
367ef64
 
 
 
 
768ef20
367ef64
 
 
f8a0238
6a593c5
91c3654
24978d4
6a593c5
 
f8a0238
4a53575
f8a0238
 
 
6a593c5
768ef20
 
6a593c5
8c6f36e
905458c
f28647e
 
 
 
 
 
 
 
 
 
 
 
 
905458c
 
 
 
 
 
 
 
 
 
 
 
 
 
367ef64
905458c
fbe0fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbfd9f4
4c2ebf4
fbe0fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import time
import re
import pandas as pd
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from tokenizers import Tokenizer, AddedToken
import streamlit as st
from st_click_detector import click_detector

# This lil dealio is my test of the new experiemntal primitives which promise to put cach in streamlit within striking distance of simulating cognitive episodic memory (personalized feelings about a moment through space time), and semantic memory (factual memories we are ready to share and communicate like your email address or physical address yo

# What impresses me about these two beautiful new prims is that one called the singleton can share memory across sessions (think all users yo)

@st.experimental_singleton
def get_sessionmaker(search_param):
	# This is for illustration purposes only
	url = "https://en.wikipedia.org/wiki/"
	#engine = create_engine(DB_URL)
	#return sessionmaker(engine)
	return url

search_param = "Star_Trek:_Discovery"
sm=  get_sessionmaker(search_param)
#print(sm)

# What is supercool about the second prim the memo is it makes unwieldy data very wieldy.  Like the Lord of Rings in reverse re "you cannot wield it!  none of us can." ->  "You can wield it, now everyone can."

@st.experimental_memo
def factorial(n):
	if n < 1:
		return 1
	return n * factorial(n - 1)

#em10 = factorial(10)
#print("em10:",em10)
#em09 = factorial(9)  # Returns instantly!
#print("em09:",em09)


# callback to update query param on selectbox change
def update_params():
    print("update1")
    #try:
        #st.experimental_set_query_params(option=st.session_state.query)
    #except ValueError:
    #    pass
    
# radio button options - plan is to hydrate when selected and change url along with textbox and search
options = ["ai", "nlp", "iot", "vr", "genomics", "graph", "cognitive"]
query_params = st.experimental_get_query_params()
# set selectbox value based on query param, or provide a default
ix = 0
if query_params:
    try:
        q0 = query_params['query'][0]
        ix = options.index(q0)
    except ValueError:
        pass
selected_option = st.radio(
    "Param", options, index=ix, key="query", on_change=update_params
)
# set query param based on selection
st.experimental_set_query_params(option=selected_option)

# second set of controls, check the query params
try:
    query_params = st.experimental_get_query_params()
    query_option = query_params['query'][0] #throws an exception when visiting http://host:port
    option_selected = st.sidebar.selectbox('Pick option', options, index=options.index(query_option))
except: # catch exception and set query param to predefined value
    st.experimental_set_query_params(query="Genomics") # set default
    query_params = st.experimental_get_query_params()
    query_option = query_params['query'][0]
    
# set the text input to query value if in session
if 'query' not in st.session_state:
    #st.session_state['query'] = 'value'
    query = st.text_input("", value="artificial intelligence", key="query")
else:
    query = st.text_input("", value=st.session_state["query"], key="query")
try:
    st.session_state.query = query  # if set already above.  this prevents two interface elements setting it first time once
except: # catch exception and set query param to predefined value
    print("Error cant set after init")
        
if 'query' not in st.session_state:
    st.session_state.query = 'Genomics' 
       
st.write(st.session_state.query)





DEVICE = "cpu"
MODEL_OPTIONS = ["msmarco-distilbert-base-tas-b", "all-mpnet-base-v2"]
DESCRIPTION = """
# Semantic search
**Enter your query and hit enter**
Built with πŸ€— Hugging Face's [transformers](https://huggingface.co/transformers/) library, [SentenceBert](https://www.sbert.net/) models, [Streamlit](https://streamlit.io/) and 44k movie descriptions from the Kaggle [Movies Dataset](https://www.kaggle.com/rounakbanik/the-movies-dataset)
"""



# Session state
if 'key' not in st.session_state:
    st.session_state['key'] = 'value'
if 'key' not in st.session_state:
    st.session_state.key = 'value'
st.write(st.session_state.key)
st.write(st.session_state)

#st.session_state
for key in st.session_state.keys():
    del st.session_state[key]
#st.text_input("Your name", key="name")
#st.session_state.name



@st.cache(
    show_spinner=False,
    hash_funcs={
        AutoModel: lambda _: None,
        AutoTokenizer: lambda _: None,
        dict: lambda _: None,
    },
)
def load():
    models, tokenizers, embeddings = [], [], []
    for model_option in MODEL_OPTIONS:
        tokenizers.append(
            AutoTokenizer.from_pretrained(f"sentence-transformers/{model_option}")
        )
        models.append(
            AutoModel.from_pretrained(f"sentence-transformers/{model_option}").to(
                DEVICE
            )
        )
    embeddings.append(np.load("embeddings.npy"))
    embeddings.append(np.load("embeddings2.npy"))
    df = pd.read_csv("movies.csv")
    return tokenizers, models, embeddings, df


tokenizers, models, embeddings, df = load()


def pooling(model_output):
    return model_output.last_hidden_state[:, 0]


def compute_embeddings(texts):
    encoded_input = tokenizers[0](
        texts, padding=True, truncation=True, return_tensors="pt"
    ).to(DEVICE)

    with torch.no_grad():
        model_output = models[0](**encoded_input, return_dict=True)

    embeddings = pooling(model_output)

    return embeddings.cpu().numpy()


def pooling2(model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = (
        attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    )
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
        input_mask_expanded.sum(1), min=1e-9
    )


def compute_embeddings2(list_of_strings):
    encoded_input = tokenizers[1](
        list_of_strings, padding=True, truncation=True, return_tensors="pt"
    ).to(DEVICE)
    with torch.no_grad():
        model_output = models[1](**encoded_input)
    sentence_embeddings = pooling2(model_output, encoded_input["attention_mask"])
    return F.normalize(sentence_embeddings, p=2, dim=1).cpu().numpy()


@st.cache(
    show_spinner=False,
    hash_funcs={Tokenizer: lambda _: None, AddedToken: lambda _: None},
)
def semantic_search(query, model_id):
    start = time.time()
    if len(query.strip()) == 0:
        return ""
    if "[Similar:" not in query:
        if model_id == 0:
            query_embedding = compute_embeddings([query])
        else:
            query_embedding = compute_embeddings2([query])
    else:
        match = re.match(r"\[Similar:(\d{1,5}).*", query)
        if match:
            idx = int(match.groups()[0])
            query_embedding = embeddings[model_id][idx : idx + 1, :]
            if query_embedding.shape[0] == 0:
                return ""
        else:
            return ""
    indices = np.argsort(embeddings[model_id] @ np.transpose(query_embedding)[:, 0])[
        -1:-11:-1
    ]
    if len(indices) == 0:
        return ""
    result = "<ol>"
    for i in indices:
        result += f"<li style='padding-top: 10px'><b>{df.iloc[i].title}</b> ({df.iloc[i].release_date}). {df.iloc[i].overview} "
        result += f"<a id='{i}' href='#'>Similar movies</a></li>"
    delay = "%.3f" % (time.time() - start)
    return f"<p><i>Computation time: {delay} seconds</i></p>{result}</ol>"


st.sidebar.markdown(DESCRIPTION)

model_choice = st.sidebar.selectbox("Similarity model", options=MODEL_OPTIONS)
model_id = 0 if model_choice == MODEL_OPTIONS[0] else 1




clicked = click_detector(semantic_search(query, model_id))

if clicked != "":
    st.markdown(clicked)
    change_query = False
    if "last_clicked" not in st.session_state:
        st.session_state["last_clicked"] = clicked
        change_query = True
    else:
        if clicked != st.session_state["last_clicked"]:
            st.session_state["last_clicked"] = clicked
            change_query = True
    if change_query:
        st.session_state["query"] = f"[Similar:{clicked}] {df.iloc[int(clicked)].title}"
        st.experimental_rerun()