File size: 5,810 Bytes
fbe0fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367ef64
 
 
 
 
 
 
 
 
6a593c5
91c3654
24978d4
6a593c5
 
91c3654
6a593c5
 
 
8c6f36e
905458c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367ef64
905458c
fbe0fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbfd9f4
4c2ebf4
fbe0fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import time
import re
import pandas as pd
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from tokenizers import Tokenizer, AddedToken
import streamlit as st
from st_click_detector import click_detector

DEVICE = "cpu"
MODEL_OPTIONS = ["msmarco-distilbert-base-tas-b", "all-mpnet-base-v2"]
DESCRIPTION = """
# Semantic search
**Enter your query and hit enter**
Built with πŸ€— Hugging Face's [transformers](https://huggingface.co/transformers/) library, [SentenceBert](https://www.sbert.net/) models, [Streamlit](https://streamlit.io/) and 44k movie descriptions from the Kaggle [Movies Dataset](https://www.kaggle.com/rounakbanik/the-movies-dataset)
"""

try:
    query_params = st.experimental_get_query_params()
    query_option = query_params['query'][0] #throws an exception when visiting http://host:port
    option_selected = st.sidebar.selectbox('Pick option', options, index=options.index(query_option))
except: # catch exception and set query param to predefined value
    st.experimental_set_query_params(query="Genomics") # defaults to dog
    query_params = st.experimental_get_query_params()
    query_option = query_params['query'][0]
    
if 'query' not in st.session_state:
    #st.session_state['query'] = 'value'
    query = st.text_input("", value="artificial intelligence", key="query")
else:
    query = st.text_input("", value=st.session_state["query"], key="query")
    #st.session_state.query = query 
if 'query' not in st.session_state:
    st.session_state.query = 'value'    
st.write(st.session_state.query)


# Session state
if 'key' not in st.session_state:
    st.session_state['key'] = 'value'
if 'key' not in st.session_state:
    st.session_state.key = 'value'
st.write(st.session_state.key)
st.write(st.session_state)

#st.session_state
for key in st.session_state.keys():
    del st.session_state[key]
#st.text_input("Your name", key="name")
#st.session_state.name



@st.cache(
    show_spinner=False,
    hash_funcs={
        AutoModel: lambda _: None,
        AutoTokenizer: lambda _: None,
        dict: lambda _: None,
    },
)
def load():
    models, tokenizers, embeddings = [], [], []
    for model_option in MODEL_OPTIONS:
        tokenizers.append(
            AutoTokenizer.from_pretrained(f"sentence-transformers/{model_option}")
        )
        models.append(
            AutoModel.from_pretrained(f"sentence-transformers/{model_option}").to(
                DEVICE
            )
        )
    embeddings.append(np.load("embeddings.npy"))
    embeddings.append(np.load("embeddings2.npy"))
    df = pd.read_csv("movies.csv")
    return tokenizers, models, embeddings, df


tokenizers, models, embeddings, df = load()


def pooling(model_output):
    return model_output.last_hidden_state[:, 0]


def compute_embeddings(texts):
    encoded_input = tokenizers[0](
        texts, padding=True, truncation=True, return_tensors="pt"
    ).to(DEVICE)

    with torch.no_grad():
        model_output = models[0](**encoded_input, return_dict=True)

    embeddings = pooling(model_output)

    return embeddings.cpu().numpy()


def pooling2(model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = (
        attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    )
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
        input_mask_expanded.sum(1), min=1e-9
    )


def compute_embeddings2(list_of_strings):
    encoded_input = tokenizers[1](
        list_of_strings, padding=True, truncation=True, return_tensors="pt"
    ).to(DEVICE)
    with torch.no_grad():
        model_output = models[1](**encoded_input)
    sentence_embeddings = pooling2(model_output, encoded_input["attention_mask"])
    return F.normalize(sentence_embeddings, p=2, dim=1).cpu().numpy()


@st.cache(
    show_spinner=False,
    hash_funcs={Tokenizer: lambda _: None, AddedToken: lambda _: None},
)
def semantic_search(query, model_id):
    start = time.time()
    if len(query.strip()) == 0:
        return ""
    if "[Similar:" not in query:
        if model_id == 0:
            query_embedding = compute_embeddings([query])
        else:
            query_embedding = compute_embeddings2([query])
    else:
        match = re.match(r"\[Similar:(\d{1,5}).*", query)
        if match:
            idx = int(match.groups()[0])
            query_embedding = embeddings[model_id][idx : idx + 1, :]
            if query_embedding.shape[0] == 0:
                return ""
        else:
            return ""
    indices = np.argsort(embeddings[model_id] @ np.transpose(query_embedding)[:, 0])[
        -1:-11:-1
    ]
    if len(indices) == 0:
        return ""
    result = "<ol>"
    for i in indices:
        result += f"<li style='padding-top: 10px'><b>{df.iloc[i].title}</b> ({df.iloc[i].release_date}). {df.iloc[i].overview} "
        result += f"<a id='{i}' href='#'>Similar movies</a></li>"
    delay = "%.3f" % (time.time() - start)
    return f"<p><i>Computation time: {delay} seconds</i></p>{result}</ol>"


st.sidebar.markdown(DESCRIPTION)

model_choice = st.sidebar.selectbox("Similarity model", options=MODEL_OPTIONS)
model_id = 0 if model_choice == MODEL_OPTIONS[0] else 1




clicked = click_detector(semantic_search(query, model_id))

if clicked != "":
    st.markdown(clicked)
    change_query = False
    if "last_clicked" not in st.session_state:
        st.session_state["last_clicked"] = clicked
        change_query = True
    else:
        if clicked != st.session_state["last_clicked"]:
            st.session_state["last_clicked"] = clicked
            change_query = True
    if change_query:
        st.session_state["query"] = f"[Similar:{clicked}] {df.iloc[int(clicked)].title}"
        st.experimental_rerun()