File size: 13,032 Bytes
a7d1366
0cf2493
26ff603
 
69777eb
859bb96
2d570c8
4d8b8e1
a20d979
4d8b8e1
a20d979
4d8b8e1
a20d979
6ececcd
2d570c8
 
 
2869414
8059699
8ee5e9c
2d570c8
0311840
 
 
8c61e72
 
 
 
 
f21b583
e7d4b75
8c61e72
f09f258
8c61e72
f09f258
4d8b8e1
cdc8845
 
 
 
 
0d0fbe9
f4742fd
0311840
cdc8845
0d0fbe9
 
9272318
0d0fbe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b447f49
 
978439f
 
0eb3f60
b447f49
cdc8845
d58378b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6f4f6
 
 
0d0fbe9
f21b583
 
0d0fbe9
d58378b
 
 
 
adb153d
 
 
 
 
 
 
d58378b
26e5ae2
d58378b
adb153d
 
d58378b
 
 
 
 
 
 
 
 
 
 
 
0bf0ad9
 
d58378b
 
 
 
 
 
 
26ff603
 
d58378b
690fda4
d58378b
 
27260eb
adb153d
27260eb
 
 
d58378b
27260eb
d58378b
27260eb
d58378b
27260eb
 
 
d58378b
 
 
 
 
 
 
 
 
ac68ff1
 
 
 
 
 
 
d58378b
 
4f5f929
044421b
 
8ee5e9c
 
 
3f477c5
6ececcd
 
 
3f477c5
e150a70
 
3f477c5
6d04bf9
2d570c8
 
 
6d04bf9
 
 
 
 
2d570c8
 
 
6ececcd
2d570c8
6d04bf9
044421b
cdc8845
7c0a79a
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc8845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
098b519
3fd0948
574a226
cdc8845
 
 
 
 
 
 
 
7c0a79a
cdc8845
 
 
b447f49
 
23e2aba
 
 
f4742fd
 
 
23e2aba
 
 
 
cdc8845
23e2aba
 
 
cdc8845
f4742fd
cdc8845
 
 
 
23e2aba
 
 
 
cdc8845
 
 
f15cc8e
cdc8845
 
 
 
 
 
 
044421b
 
23e2aba
 
 
9ce2e26
f4742fd
 
23e2aba
cdc8845
23e2aba
 
 
 
 
 
cdc8845
 
 
 
 
 
 
d68c359
cdc8845
64ba046
 
bdd2412
cdc8845
 
 
425fc2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import pandas_profiling as pp
import pandas as pd
import tensorflow as tf

from datasets import load_dataset
from tensorflow.python.framework import tensor_shape

#LOINC
datasetLOINC = load_dataset("awacke1/LOINC-CodeSet-Value-Description.csv", split="train")
#SNOMED:
datasetSNOMED = load_dataset("awacke1/SNOMED-CT-Code-Value-Semantic-Set.csv", split="train")
#eCQM:
dataseteCQM = load_dataset("awacke1/eCQM-Code-Value-Semantic-Set.csv", split="train")

# map using autotokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
dataset = datasetLOINC.map(lambda examples: tokenizer(examples["Description"]), batched=True)
JSONOBJ2=dataset[0]
print(JSONOBJ2)

sw = datasetLOINC.filter(lambda example: example["Description"].startswith("Allergy"))
len(sw)
print(sw)
print(datasetLOINC)
print(datasetSNOMED)
print(dataseteCQM)

# play with some dataset tools before the show:

#print(start_with_ar["Description"])

#---
#Main Stage - Begin!
#---

import os
import json
import numpy as np
import gradio as gr

HF_TOKEN = os.environ.get("HF_TOKEN")
CHOICES = ["SNOMED", "LOINC", "CQM"]
JSONOBJ = """{"items":{"item":[{"id": "0001","type": null,"is_good": false,"ppu": 0.55,"batters":{"batter":[{ "id": "1001", "type": "Regular" },{ "id": "1002", "type": "Chocolate" },{ "id": "1003", "type": "Blueberry" },{ "id": "1004", "type": "Devil's Food" }]},"topping":[{ "id": "5001", "type": "None" },{ "id": "5002", "type": "Glazed" },{ "id": "5005", "type": "Sugar" },{ "id": "5007", "type": "Powdered Sugar" },{ "id": "5006", "type": "Chocolate with Sprinkles" },{ "id": "5003", "type": "Chocolate" },{ "id": "5004", "type": "Maple" }]}]}}"""


def profile_dataset(dataset=datasetSNOMED, username="awacke1", token=HF_TOKEN, dataset_name="awacke1/SNOMED-CT-Code-Value-Semantic-Set.csv"):
    df = pd.read_csv(dataset.Description)
    if len(df.columns) <= 15:
        profile = pp.ProfileReport(df, title=f"{dataset_name} Report")
    else:
        profile = pp.ProfileReport(df, title=f"{dataset_name} Report", minimal = True)
    
    repo_url = create_repo(f"{username}/{dataset_name}", repo_type = "space", token = token, space_sdk = "static", private=False)
    
    profile.to_file("./index.html")

    upload_file(path_or_fileobj ="./index.html", path_in_repo = "index.html", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
    readme = f"---\ntitle: {dataset_name}\nemoji: ✨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---"    
    with open("README.md", "w+") as f:
        f.write(readme)
    upload_file(path_or_fileobj ="./README.md", path_in_repo = "README.md", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
    return f"Your dataset report will be ready at {repo_url}"

#def lowercase_title(example):
#    return {"Description": example[title].lower()}

# demonstrate map function of dataset
#JSONOBJ_MAP=datasetLOINC.map(lowercase_title)
#JSONOBJ_MAP=datasetLOINC.filter(lambda example: example["Description"].startswith("Mental health")) 




def concatenate_text(examples):
    return {
        "text": examples["Code"]
        + " \n "
        + examples["Description"]
        + " \n "
        + examples["Purpose: Clinical Focus"]
    }

def cls_pooling(model_output):
    return model_output.last_hidden_state[:, 0]
    
def get_embeddings(text_list):
    encoded_input = tokenizer(
        text_list, padding=True, truncation=True, return_tensors="tf"
    )
    encoded_input = {k: v for k, v in encoded_input.items()}
    model_output = model(**encoded_input)
    return cls_pooling(model_output)


def fn(    text1,    text2,    num,    slider1,    slider2,    single_checkbox,    checkboxes,    radio,    dropdown,    im1,    im2,    im3,    im4,
    video,    audio1,    audio2,    file,    df1,    df2,):
#def fn(    text1,    text2,    single_checkbox,    checkboxes,    radio,    im4,  file,    df1,    df2,):

    searchTerm = text1
    searchTermSentence = text2
    
    start_with_searchTermLOINC = datasetLOINC.filter(lambda example:example["Description"].startswith('Allergy'))    #Allergy
    
    
    # FAISS
    columns = start_with_searchTermLOINC.column_names
    columns_to_keep = ["Value Set Name", "Code", "Description", "Purpose: Clinical Focus", "Code System OID"]
    columns_to_remove = set(columns_to_keep).symmetric_difference(columns)
    start_with_searchTermLOINC = start_with_searchTermLOINC.remove_columns(columns_to_remove)
    start_with_searchTermLOINC 
    start_with_searchTermLOINC.set_format("pandas")
    df = start_with_searchTermLOINC[:]

    df["Purpose: Clinical Focus"][0]
    
    df4 = df.explode("Purpose: Clinical Focus", ignore_index=True)
    df4.head(4)
    
    from datasets import Dataset
    clinical_dataset = Dataset.from_pandas(df4)
    clinical_dataset
    
    clinical_dataset = clinical_dataset.map(lambda x: {"c_length": len(x["Description"].split())})
    
    clinical_dataset = clinical_dataset.filter(lambda x: x["c_length"] > 15)
    clinical_dataset
    
    
    clinical_dataset = clinical_dataset.map(concatenate_text)
    #embedding = get_embeddings(clinical_dataset["text"][0])
    #embedding.shape
    
    from transformers import AutoTokenizer, TFAutoModel

    model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
    tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
    model = TFAutoModel.from_pretrained(model_ckpt, from_pt=True)
    
#    TensorShape([1, 768])
    tf.shape([1, 768])
    
    embeddings_dataset = clinical_dataset.map(
    lambda x: {"embeddings": get_embeddings(x["text"]).numpy()[0]})
    
#    embeddings_dataset.add_faiss_index(column="embeddings")

#    question = "How can I load a dataset offline?"
#    question_embedding = get_embeddings([question]).numpy()
#    question_embedding.shape
    
#    scores, samples = embeddings_dataset.get_nearest_examples("embeddings", question_embedding, k=5)
    
#    import pandas as pd

#    samples_df = pd.DataFrame.from_dict(samples)
#    samples_df["scores"] = scores
#    samples_df.sort_values("scores", ascending=False, inplace=True)
    
    
    #        "text": examples["Code"]
    #    + " \n "
    #    + examples["Description"]
    #    + " \n "
    #    + examples["Purpose: Clinical Focus"]
        
        
#    for _, row in samples_df.iterrows():
#        print(f"Code: {row.Code}")
#        print(f"Description: {row.Description}")
#        #print(f"Purpose: Clinical Focus: {row.Purpose: Clinical Focus}")
#        #print(f"URL: {row.html_url}")
#        print("=" * 50)
#        print()
    
    # SNOMED and CQM ---------------
    start_with_searchTermSNOMED = datasetSNOMED.filter(lambda example: example["Description"].startswith('Hospital'))    #Hospital
    start_with_searchTermCQM = dataseteCQM.filter(lambda example: example["Description"].startswith('Telephone'))    #Telephone
    
    print(start_with_searchTermLOINC )
    print(start_with_searchTermSNOMED )
    print(start_with_searchTermCQM)
    
    #print(start_with_searchTermLOINC["train"][0] )
    #print(start_with_searchTermSNOMED["train"][0] )
    #print(start_with_searchTermCQM["train"][0] )
        
    #returnMsg=profile_dataset()
    #print(returnMsg)
    
#    try:
        #top1matchLOINC = json.loads(start_with_searchTermLOINC['train'])
        #top1matchSNOMED = json.loads(start_with_searchTermSNOMED['train'])
        #top1matchCQM = json.loads(start_with_searchTermCQM['train'])
#        top1matchLOINC = json.loads(start_with_searchTermLOINC)
#        top1matchSNOMED = json.loads(start_with_searchTermSNOMED)
#        top1matchCQM = json.loads(start_with_searchTermCQM)
#    except:
#        print('Hello')
        #print(start_with_searchTermLOINC[0])
        #print(start_with_searchTermSNOMED[0] )
        #print(start_with_searchTermCQM[0] )
        
    #print(returnMsg)
 #   print("Datasets Processed")
    
    return (
        (text1 if single_checkbox else text2)
        + ", selected:"
        + ", ".join(checkboxes),  # Text
        {
            "positive": num / (num + slider1 + slider2),
            "negative": slider1 / (num + slider1 + slider2),
            "neutral": slider2 / (num + slider1 + slider2),
        },  # Label
        (audio1[0], np.flipud(audio1[1]))
        if audio1 is not None  else os.path.join(os.path.dirname(__file__), "files/cantina.wav"),  # Audio
        np.flipud(im1)
        if im1 is not None  else os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),  # Image
        video
        if video is not None  else os.path.join(os.path.dirname(__file__), "files/world.mp4"),  # Video
        [
            ("The", "art"),
            ("quick brown", "adj"),
            ("fox", "nn"),
            ("jumped", "vrb"),
            ("testing testing testing", None),
            ("over", "prp"),
            ("the", "art"),
            ("testing", None),
            ("lazy", "adj"),
            ("dogs", "nn"),
            (".", "punc"),
        ]   + [(f"test {x}", f"test {x}") for x in range(10)],  # HighlightedText        
        [
            ("The testing testing testing", None),
            ("over", 0.6),
            ("the", 0.2),
            ("testing", None),
            ("lazy", -0.1),
            ("dogs", 0.4),
            (".", 0),
        ]   + [(f"test", x / 10) for x in range(-10, 10)],  # HighlightedText
        #json.loads(JSONOBJ),  # JSON
        start_with_searchTermLOINC.to_json(orient="records", path_or_buf="None"),
        #json.dumps(json.loads(start_with_searchTermLOINC['train'].to_json(orient="records", path_or_buf="None"))),
        "<button style='background-color: red'>Click Me: " + radio + "</button>",  # HTML
        os.path.join(os.path.dirname(__file__), "files/titanic.csv"),
        df1,  # Dataframe
        np.random.randint(0, 10, (4, 4)),  # Dataframe
        df2,  # Timeseries
    )



demo = gr.Interface(
    fn,
    inputs=[
        gr.Textbox(value="Allergy", label="Textbox"),
        gr.Textbox(lines=3, value="Bathing", placeholder="Type here..", label="Textbox 2"),
        gr.Number(label="Number", value=42),
        gr.Slider(10, 20, value=15, label="Slider: 10 - 20"),
        gr.Slider(maximum=20, step=0.04, label="Slider: step @ 0.04"),
        gr.Checkbox(label="Check for NER Match on Submit"),
        gr.CheckboxGroup(label="Clinical Terminology to Check", choices=CHOICES, value=CHOICES[0:2]),
        gr.Radio(label="Preferred Terminology Output", choices=CHOICES, value=CHOICES[2]),
        gr.Dropdown(label="Dropdown", choices=CHOICES),
        gr.Image(label="Image"),
        gr.Image(label="Image w/ Cropper", tool="select"),
        gr.Image(label="Sketchpad", source="canvas"),
        gr.Image(label="Webcam", source="webcam"),
        gr.Video(label="Video"),
        gr.Audio(label="Audio"),
        gr.Audio(label="Microphone", source="microphone"),
        gr.File(label="File"),
        gr.Dataframe(label="Filters", headers=["Name", "Age", "Gender"]),
        gr.Timeseries(x="time", y=["price", "value"], colors=["pink", "purple"]),
    ],
    outputs=[
        gr.Textbox(label="Textbox"),
        gr.Label(label="Label"),
        gr.Audio(label="Audio"),
        gr.Image(label="Image"),
        gr.Video(label="Video"),
        gr.HighlightedText(label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"}),
        gr.HighlightedText(label="HighlightedText", show_legend=True),
        gr.JSON(label="JSON"),
        gr.HTML(label="HTML"),
        gr.File(label="File"),
        gr.Dataframe(label="Dataframe"),
        gr.Dataframe(label="Numpy"),
        gr.Timeseries(x="time", y=["price", "value"], label="Timeseries"),
    ],
    examples=[
        [
            "Allergy",
            "Admission",
            10,
            12,
            4,
            True,
            ["SNOMED", "LOINC", "CQM"],
            "SNOMED",
            "bar",
            os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
            os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
            os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
            os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
            os.path.join(os.path.dirname(__file__), "files/world.mp4"),
            os.path.join(os.path.dirname(__file__), "files/cantina.wav"),
            os.path.join(os.path.dirname(__file__), "files/cantina.wav"),
            os.path.join(os.path.dirname(__file__), "files/titanic.csv"),
            [[1, 2, 3], [3, 4, 5]],
            os.path.join(os.path.dirname(__file__), "files/time.csv"),
        ]
    ]
    * 3,
    theme="default",
    title="⚗️🧠🔬🧬 Clinical Terminology Auto Mapper AI 👩‍⚕️🩺⚕️🙋",
    cache_examples=False,
    description="Clinical Terminology Auto Mapper AI",
    article="Learn more at [Yggdrasil](https://github.com/AaronCWacker/Yggdrasil)",
#    live=True,
)

if __name__ == "__main__":
    demo.launch(debug=True)