Spaces:
Running
Running
File size: 22,938 Bytes
e05ce15 d1c1759 e05ce15 ad2029b d1c1759 e05ce15 5a4281c e05ce15 4be1d74 5a4281c e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 58c05f2 e05ce15 d1c1759 7639607 d1c1759 e05ce15 5a4281c 58c05f2 5a4281c e05ce15 d1c1759 e05ce15 d1c1759 5a4281c e05ce15 5a4281c 58c05f2 d1c1759 58c05f2 7639607 d1c1759 5a4281c e05ce15 d1c1759 4be1d74 58c05f2 4be1d74 5a4281c 4be1d74 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 d1c1759 e05ce15 18489bd d1c1759 e05ce15 d1c1759 4be1d74 8e4132b 58c05f2 18489bd 58c05f2 18489bd 58c05f2 18489bd 58c05f2 18489bd 8e4132b d1c1759 18489bd 58c05f2 d1c1759 e05ce15 d1c1759 58c05f2 d1c1759 5a4281c d1c1759 58c05f2 d1c1759 5a4281c 58c05f2 5a4281c f02b408 5a4281c 58c05f2 5a4281c d1c1759 f02b408 e05ce15 5a4281c 58c05f2 5a4281c 6cf3eb8 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 f02b408 e05ce15 d1c1759 5a4281c 8e4132b d1c1759 ee456d4 18489bd ee456d4 58c05f2 ee456d4 58c05f2 ee456d4 18489bd ee456d4 a4ace8b 18489bd 58c05f2 18489bd d1c1759 ee456d4 ad2029b d1c1759 ad2029b d1c1759 ad2029b d1c1759 8e4132b 18489bd d1c1759 ad2029b d1c1759 ad2029b d1c1759 18489bd d1c1759 ad2029b f02b408 5a4281c f02b408 5a4281c f02b408 d1c1759 ad2029b d1c1759 ad2029b d1c1759 5a4281c f02b408 e05ce15 58c05f2 5a4281c 58c05f2 5a4281c 58c05f2 5a4281c e05ce15 d1c1759 f02b408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
# π§ Config & Setup
st.set_page_config(
page_title="π²BikeAIπ Claude/GPT Research",
page_icon="π²π",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "π²BikeAIπ Claude/GPT Research AI"
}
)
load_dotenv()
openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
if 'OPENAI_API_KEY' in st.secrets:
openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
openai.api_key = openai_api_key
claude_client = anthropic.Anthropic(api_key=anthropic_key)
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
st.session_state['openai_model'] = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
st.session_state['editing_file'] = None
if 'edit_new_name' not in st.session_state:
st.session_state['edit_new_name'] = ""
if 'edit_new_content' not in st.session_state:
st.session_state['edit_new_content'] = ""
if 'viewing_prefix' not in st.session_state:
st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
# π¨ Minimal Custom CSS
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
.stButton>button {
margin-right: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
FILE_EMOJIS = {
"md": "π",
"mp3": "π΅",
}
def clean_for_speech(text: str) -> str:
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
# Remove links like (https://...)
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
def generate_filename(content, file_type="md"):
# Prefix: YYMM_HHmm_ -> total 10 chars including underscore
# Actually: %y%m_%H%M gives 9 chars, add trailing underscore for total 10 chars.
# Example: 23 09 _12 45 _ => '2309_1245_'
prefix = datetime.now().strftime("%y%m_%H%M") + "_"
# Extract some words from content
words = re.findall(r"\w+", content)
# Take first 3 words for filename segment
name_text = '_'.join(words[:3]) if words else 'file'
filename = f"{prefix}{name_text}.{file_type}"
return filename
def create_file(prompt, response, file_type="md"):
# Decide which content to base the filename on (prefer response)
base_content = response.strip() if response.strip() else prompt.strip()
filename = generate_filename(base_content, file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
return filename
def get_download_link(file):
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>'
@st.cache_resource
def speech_synthesis_html(result):
html_code = f"""
<html><body>
<script>
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
window.speechSynthesis.speak(msg);
</script>
</body></html>
"""
components.html(html_code, height=0)
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = generate_filename(text,"mp3")
await communicate.save(out_fn)
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
def play_and_download_audio(file_path):
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
def process_image(image_path, user_prompt):
with open(image_path, "rb") as imgf:
image_data = imgf.read()
b64img = base64.b64encode(image_data).decode("utf-8")
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
]}
],
temperature=0.0,
)
return resp.choices[0].message.content
def process_audio(audio_path):
with open(audio_path, "rb") as f:
transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
st.session_state.messages.append({"role": "user", "content": transcription.text})
return transcription.text
def process_video(video_path, seconds_per_frame=1):
vid = cv2.VideoCapture(video_path)
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vid.get(cv2.CAP_PROP_FPS)
skip = int(fps*seconds_per_frame)
frames_b64 = []
for i in range(0, total, skip):
vid.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = vid.read()
if not ret: break
_, buf = cv2.imencode(".jpg", frame)
frames_b64.append(base64.b64encode(buf).decode("utf-8"))
vid.release()
return frames_b64
def process_video_with_gpt(video_path, prompt):
frames = process_video(video_path)
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role":"system","content":"Analyze video frames."},
{"role":"user","content":[
{"type":"text","text":prompt},
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
]}
]
)
return resp.choices[0].message.content
def search_arxiv(query):
st.write("π Searching ArXiv...")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
r1 = client.predict(prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm")
st.markdown("### Mistral-8x7B-Instruct-v0.1 Result")
st.markdown(r1)
r2 = client.predict(prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm")
st.markdown("### Mistral-7B-Instruct-v0.2 Result")
st.markdown(r2)
return f"{r1}\n\n{r2}"
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True):
start = time.time()
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")
refs = r[0]
r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
result = f"### π {q}\n\n{r2}\n\n{refs}"
st.markdown(result)
# Clean for speech before TTS
if vocal_summary:
main_text = clean_for_speech(r2)
audio_file_main = speak_with_edge_tts(main_text)
st.write("### ποΈ Vocal Summary (Short Answer)")
play_and_download_audio(audio_file_main)
if extended_refs:
summaries_text = "Here are the summaries from the references: " + refs.replace('"','')
summaries_text = clean_for_speech(summaries_text)
audio_file_refs = speak_with_edge_tts(summaries_text)
st.write("### π Extended References & Summaries")
play_and_download_audio(audio_file_refs)
if titles_summary:
titles = []
for line in refs.split('\n'):
m = re.search(r"\[([^\]]+)\]", line)
if m:
titles.append(m.group(1))
if titles:
titles_text = "Here are the titles of the papers: " + ", ".join(titles)
titles_text = clean_for_speech(titles_text)
audio_file_titles = speak_with_edge_tts(titles_text)
st.write("### π Paper Titles")
play_and_download_audio(audio_file_titles)
elapsed = time.time()-start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
# Create MD file from q and result
create_file(q, result, "md")
return result
def process_with_gpt(text):
if not text: return
st.session_state.messages.append({"role":"user","content":text})
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
c = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=st.session_state.messages,
stream=False
)
ans = c.choices[0].message.content
st.write("GPT-4o: " + ans)
create_file(text, ans, "md")
st.session_state.messages.append({"role":"assistant","content":ans})
return ans
def process_with_claude(text):
if not text: return
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
r = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role":"user","content":text}]
)
ans = r.content[0].text
st.write("Claude: " + ans)
create_file(text, ans, "md")
st.session_state.chat_history.append({"user":text,"claude":ans})
return ans
def create_zip_of_files(md_files, mp3_files):
# Exclude README.md
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
if not all_files:
return None
# Build a descriptive name
stems = [os.path.splitext(os.path.basename(f))[0] for f in all_files]
joined = "_".join(stems)
if len(joined) > 50:
joined = joined[:50] + "_etc"
zip_name = f"{joined}.zip"
with zipfile.ZipFile(zip_name,'w') as z:
for f in all_files:
z.write(f)
return zip_name
def load_files_for_sidebar():
# Gather files
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
# Exclude README.md
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
# Group by first 10 chars of filename
groups = defaultdict(list)
for f in all_files:
fname = os.path.basename(f)
prefix = fname[:10] # first 10 chars as group prefix
groups[prefix].append(f)
# Sort files in each group by mod time descending
for prefix in groups:
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)
# Sort prefixes by newest file time
sorted_prefixes = sorted(groups.keys(), key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), reverse=True)
return groups, sorted_prefixes
def extract_keywords_from_md(files):
# Combine all MD content
text = ""
for f in files:
if f.endswith(".md"):
c = open(f,'r',encoding='utf-8').read()
text += " " + c
# Extract first 5 unique words
words = re.findall(r"\w+", text.lower())
unique_words = []
for w in words:
if w not in unique_words:
unique_words.append(w)
if len(unique_words) == 5:
break
return unique_words
def display_file_manager_sidebar(groups, sorted_prefixes):
st.sidebar.title("π΅ Audio & Document Manager")
# Collect all md and mp3 files for zip operations
all_md = []
all_mp3 = []
for prefix in groups:
for f in groups[prefix]:
if f.endswith(".md"):
all_md.append(f)
elif f.endswith(".mp3"):
all_mp3.append(f)
top_bar = st.sidebar.columns(3)
with top_bar[0]:
if st.button("π Del All MD"):
for f in all_md:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[1]:
if st.button("π Del All MP3"):
for f in all_mp3:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[2]:
if st.button("β¬οΈ Zip All"):
z = create_zip_of_files(all_md, all_mp3)
if z:
st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)
for prefix in sorted_prefixes:
files = groups[prefix]
# Extract 5-word keywords from MD in this group
kw = extract_keywords_from_md(files)
keywords_str = " ".join(kw) if kw else "No Keywords"
with st.sidebar.expander(f"{prefix} Files ({len(files)}) - Keywords: {keywords_str}", expanded=True):
# Delete group / View group
c1,c2 = st.columns(2)
with c1:
if st.button("πView Group", key="view_group_"+prefix):
st.session_state.viewing_prefix = prefix
# No rerun needed, just state update
with c2:
if st.button("πDel Group", key="del_group_"+prefix):
for f in files:
os.remove(f)
st.session_state.should_rerun = True
for f in files:
fname = os.path.basename(f)
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
ext = os.path.splitext(fname)[1].lower().strip('.')
st.write(f"**{fname}** - {ctime}")
# Individual file actions are less necessary if we have group actions
# But we can still provide them if desired.
# The user requested grouping primarily, but we can keep minimal file actions if needed.
# In instructions now, main focus is group view/delete.
# We'll omit individual file view/edit here since we have group view.
# If needed, re-add them similarly as before.
# For now, rely on "View Group" to see all files.
def main():
st.sidebar.markdown("### π²BikeAIπ Multi-Agent Research AI")
tab_main = st.radio("Action:",["π€ Voice Input","πΈ Media Gallery","π Search ArXiv","π File Editor"],horizontal=True)
model_choice = st.sidebar.radio("AI Model:", ["Arxiv","GPT-4o","Claude-3","GPT+Claude+Arxiv"], index=0)
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="Hello")
if val:
user_input = val.strip()
if user_input:
if model_choice == "GPT-4o":
process_with_gpt(user_input)
elif model_choice == "Claude-3":
process_with_claude(user_input)
elif model_choice == "Arxiv":
st.subheader("Arxiv Only Results:")
perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True)
else:
col1,col2,col3=st.columns(3)
with col1:
st.subheader("GPT-4o Omni:")
try:
process_with_gpt(user_input)
except:
st.write('GPT 4o error')
with col2:
st.subheader("Claude-3 Sonnet:")
try:
process_with_claude(user_input)
except:
st.write('Claude error')
with col3:
st.subheader("Arxiv + Mistral:")
try:
perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True)
except:
st.write("Arxiv error")
if tab_main == "π Search ArXiv":
st.subheader("π Search ArXiv")
q=st.text_input("Research query:")
st.markdown("### ποΈ Audio Generation Options")
vocal_summary = st.checkbox("ποΈ Vocal Summary (Short Answer)", value=True)
extended_refs = st.checkbox("π Extended References & Summaries (Long)", value=False)
titles_summary = st.checkbox("π Paper Titles Only", value=True)
if q and st.button("Run ArXiv Query"):
perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary)
elif tab_main == "π€ Voice Input":
st.subheader("π€ Voice Recognition")
user_text = st.text_area("Message:", height=100)
user_text = user_text.strip()
if st.button("Send π¨"):
if user_text:
if model_choice == "GPT-4o":
process_with_gpt(user_text)
elif model_choice == "Claude-3":
process_with_claude(user_text)
elif model_choice == "Arxiv":
st.subheader("Arxiv Only Results:")
perform_ai_lookup(user_text, vocal_summary=True, extended_refs=False, titles_summary=True)
else:
col1,col2,col3=st.columns(3)
with col1:
st.subheader("GPT-4o Omni:")
process_with_gpt(user_text)
with col2:
st.subheader("Claude-3 Sonnet:")
process_with_claude(user_text)
with col3:
st.subheader("Arxiv & Mistral:")
res = perform_ai_lookup(user_text, vocal_summary=True, extended_refs=False, titles_summary=True)
st.markdown(res)
st.subheader("π Chat History")
t1,t2=st.tabs(["Claude History","GPT-4o History"])
with t1:
for c in st.session_state.chat_history:
st.write("**You:**", c["user"])
st.write("**Claude:**", c["claude"])
with t2:
for m in st.session_state.messages:
with st.chat_message(m["role"]):
st.markdown(m["content"])
elif tab_main == "πΈ Media Gallery":
st.header("π¬ Media Gallery - Images and Videos")
tabs = st.tabs(["πΌοΈ Images", "π₯ Video"])
with tabs[0]:
imgs = glob.glob("*.png")+glob.glob("*.jpg")
if imgs:
c = st.slider("Cols",1,5,3)
cols = st.columns(c)
for i,f in enumerate(imgs):
with cols[i%c]:
st.image(Image.open(f),use_container_width=True)
if st.button(f"π Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
a = process_image(f,"Describe this image.")
st.markdown(a)
else:
st.write("No images found.")
with tabs[1]:
vids = glob.glob("*.mp4")
if vids:
for v in vids:
with st.expander(f"π₯ {os.path.basename(v)}"):
st.markdown(get_media_html(v,"video"),unsafe_allow_html=True)
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
a = process_video_with_gpt(v,"Describe video.")
st.markdown(a)
else:
st.write("No videos found.")
elif tab_main == "π File Editor":
if getattr(st.session_state,'current_file',None):
st.subheader(f"Editing: {st.session_state.current_file}")
new_text = st.text_area("Content:", st.session_state.file_content, height=300)
if st.button("Save"):
with open(st.session_state.current_file,'w',encoding='utf-8') as f:
f.write(new_text)
st.success("Updated!")
st.session_state.should_rerun = True
else:
st.write("Select a file from the sidebar to edit.")
# After main content, load and show file groups in sidebar
groups, sorted_prefixes = load_files_for_sidebar()
display_file_manager_sidebar(groups, sorted_prefixes)
# If viewing a prefix group, show all files in main area
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
st.write("---")
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
# Show all files in this prefix group in order (mp3 and md)
# Sort by mod time descending (already sorted)
for f in groups[st.session_state.viewing_prefix]:
fname = os.path.basename(f)
ext = os.path.splitext(fname)[1].lower().strip('.')
st.write(f"### {fname}")
if ext == "md":
content = open(f,'r',encoding='utf-8').read()
st.markdown(content)
elif ext == "mp3":
st.audio(f)
else:
# just show a download link
st.markdown(get_download_link(f), unsafe_allow_html=True)
if st.button("Close Group View"):
st.session_state.viewing_prefix = None
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.rerun()
if __name__=="__main__":
main()
|