File size: 22,838 Bytes
c659a35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
import streamlit as st
import anthropic
import openai
import base64
from datetime import datetime
import plotly.graph_objects as go
import cv2
import glob
import json
import math
import os
import pytz
import random
import re
import requests
import streamlit.components.v1 as components
import textract
import time
import zipfile
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from dotenv import load_dotenv
from gradio_client import Client, handle_file
from huggingface_hub import InferenceClient
from io import BytesIO
from moviepy.editor import VideoFileClip
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI

# 1. Configuration and Setup
Site_Name = '🚲BikeAIπŸ† Claude and GPT Multi-Agent Research AI'
title = "🚲BikeAIπŸ† Claude and GPT Multi-Agent Research AI"
helpURL = 'https://huggingface.co/awacke1'
bugURL = 'https://huggingface.co/spaces/awacke1'
icons = 'πŸš²πŸ†'

st.set_page_config(
    page_title=title,
    page_icon=icons,
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': helpURL,
        'Report a bug': bugURL,
        'About': title
    }
)

# 2. Load environment variables and initialize clients
load_dotenv()

# OpenAI setup
openai.api_key = os.getenv('OPENAI_API_KEY')
if openai.api_key == None:
    openai.api_key = st.secrets['OPENAI_API_KEY']

openai_client = OpenAI(
    api_key=os.getenv('OPENAI_API_KEY'),
    organization=os.getenv('OPENAI_ORG_ID')
)

# Claude setup
anthropic_key = os.getenv("ANTHROPIC_API_KEY_3")
if anthropic_key == None:
    anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
claude_client = anthropic.Anthropic(api_key=anthropic_key)

# HuggingFace setup
API_URL = os.getenv('API_URL')
HF_KEY = os.getenv('HF_KEY')
MODEL1 = "meta-llama/Llama-2-7b-chat-hf"
MODEL2 = "openai/whisper-small.en"

headers = {
    "Authorization": f"Bearer {HF_KEY}",
    "Content-Type": "application/json"
}

# Initialize session states
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []
if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-4o-2024-05-13"
if "messages" not in st.session_state:
    st.session_state.messages = []

# Custom CSS
st.markdown("""
<style>
    .main {
        background: linear-gradient(to right, #1a1a1a, #2d2d2d);
        color: #ffffff;
    }
    .stMarkdown {
        font-family: 'Helvetica Neue', sans-serif;
    }
    .category-header {
        background: linear-gradient(45deg, #2b5876, #4e4376);
        padding: 20px;
        border-radius: 10px;
        margin: 10px 0;
    }
    .scene-card {
        background: rgba(0,0,0,0.3);
        padding: 15px;
        border-radius: 8px;
        margin: 10px 0;
        border: 1px solid rgba(255,255,255,0.1);
    }
    .media-gallery {
        display: grid;
        gap: 1rem;
        padding: 1rem;
    }
    .bike-card {
        background: rgba(255,255,255,0.05);
        border-radius: 10px;
        padding: 15px;
        transition: transform 0.3s;
    }
    .bike-card:hover {
        transform: scale(1.02);
    }
</style>
""", unsafe_allow_html=True)

# Bike Collections
bike_collections = {
    "Celestial Collection 🌌": {
        "Eclipse Vaulter": {
            "prompt": """Cinematic shot of a sleek black mountain bike silhouetted against a total solar eclipse. 
                     The corona creates an ethereal halo effect, with lens flares accentuating key points of the frame.
                     Dynamic composition shows the bike mid-leap, with stardust particles trailing behind.
                     Camera angle: Low angle, wide shot
                     Lighting: Dramatic rim lighting from eclipse
                     Color palette: Deep purples, cosmic blues, corona gold""",
            "emoji": "πŸŒ‘"
        },
        "Starlight Leaper": {
            "prompt": """A black bike performing an epic leap under a vast Milky Way galaxy.
                     Shimmering stars blanket the sky while the bike's wheels leave a trail of stardust.
                     Camera angle: Wide-angle upward shot
                     Lighting: Natural starlight with subtle rim lighting
                     Color palette: Deep blues, silver highlights, cosmic purples""",
            "emoji": "✨"
        },
        "Moonlit Hopper": {
            "prompt": """A sleek black bike mid-hop over a moonlit meadow,
                     the full moon illuminating the misty surroundings. Fireflies dance around the bike,
                     and soft shadows create a serene yet dynamic atmosphere.
                     Camera angle: Side profile with slight low angle
                     Lighting: Soft moonlight with atmospheric fog
                     Color palette: Silver blues, soft whites, deep shadows""",
            "emoji": "πŸŒ™"
        }
    },
    "Nature-Inspired Collection 🌲": {
        "Shadow Grasshopper": {
            "prompt": """A black bike jumping between forest paths,
                     with dappled sunlight streaming through the canopy. Shadows dance on the bike's frame
                     as it soars above mossy logs.
                     Camera angle: Through-the-trees tracking shot
                     Lighting: Natural forest lighting with sun rays
                     Color palette: Forest greens, golden sunlight, deep shadows""",
            "emoji": "πŸ¦—"
        },
        "Onyx Leapfrog": {
            "prompt": """A bike with obsidian-black finish jumping over a sparkling creek,
                     the reflection on the water broken into ripples by the leap. The surrounding forest
                     is vibrant with greens and browns.
                     Camera angle: Low angle from water level
                     Lighting: Golden hour side lighting
                     Color palette: Deep blacks, water blues, forest greens""",
            "emoji": "🐸"
        }
    }
}

# Helper Functions
def generate_filename(prompt, file_type):
    """Generate a safe filename using the prompt and file type."""
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
    safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:230]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"




# Function to create and save a file (and avoid the black hole of lost data πŸ•³)
def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return
    with open(filename, 'w', encoding='utf-8') as file:
        file.write(prompt + "\n\n" + response)



def create_and_save_file(content, file_type="md", prompt=None, is_image=False, should_save=True):
    """Create and save file with proper handling of different types."""
    if not should_save:
        return None
    filename = generate_filename(prompt if prompt else content, file_type)
    with open(filename, "w", encoding="utf-8") as f:
        if is_image:
            f.write(content)
        else:
            f.write(prompt + "\n\n" + content if prompt else content)
    return filename

def get_download_link(file_path):
    """Create download link for file."""
    with open(file_path, "rb") as file:
        contents = file.read()
    b64 = base64.b64encode(contents).decode()
    return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}πŸ“‚</a>'

@st.cache_resource
def SpeechSynthesis(result):
    """HTML5 Speech Synthesis."""
    documentHTML5 = f'''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {{
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }}
        </script>
    </head>
    <body>
        <h1>πŸ”Š Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">{result}</textarea>
        <br>
        <button onclick="readAloud()">πŸ”Š Read Aloud</button>
    </body>
    </html>
    '''
    components.html(documentHTML5, width=1280, height=300)

# Media Processing Functions
def process_image(image_input, user_prompt):
    """Process image with GPT-4o vision."""
    if isinstance(image_input, str):
        with open(image_input, "rb") as image_file:
            image_input = image_file.read()
            
    base64_image = base64.b64encode(image_input).decode("utf-8")
    
    response = openai_client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt},
                {"type": "image_url", "image_url": {
                    "url": f"data:image/png;base64,{base64_image}"
                }}
            ]}
        ],
        temperature=0.0,
    )
    
    return response.choices[0].message.content

def process_audio(audio_input, text_input=''):
    """Process audio with Whisper and GPT."""
    if isinstance(audio_input, str):
        with open(audio_input, "rb") as file:
            audio_input = file.read()

    transcription = openai_client.audio.transcriptions.create(
        model="whisper-1",
        file=audio_input,
    )
    
    st.session_state.messages.append({"role": "user", "content": transcription.text})
    
    with st.chat_message("assistant"):
        st.markdown(transcription.text)
        SpeechSynthesis(transcription.text)
        
        filename = generate_filename(transcription.text, "wav")
        create_and_save_file(audio_input, "wav", transcription.text, True)

def process_video(video_path, seconds_per_frame=1):
    """Process video files for frame extraction and audio."""
    base64Frames = []
    video = cv2.VideoCapture(video_path)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = video.get(cv2.CAP_PROP_FPS)
    frames_to_skip = int(fps * seconds_per_frame)
    
    for frame_idx in range(0, total_frames, frames_to_skip):
        video.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
        success, frame = video.read()
        if not success:
            break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
    
    video.release()
    
    # Extract audio
    base_video_path = os.path.splitext(video_path)[0]
    audio_path = f"{base_video_path}.mp3"
    try:
        video_clip = VideoFileClip(video_path)
        video_clip.audio.write_audiofile(audio_path)
        video_clip.close()
    except:
        st.warning("No audio track found in video")
        audio_path = None
    
    return base64Frames, audio_path

def process_video_with_gpt(video_input, user_prompt):
    """Process video with GPT-4o vision."""
    base64Frames, audio_path = process_video(video_input)
    
    response = openai_client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": "system", "content": "Analyze the video frames and provide a detailed description."},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt},
                *[{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{frame}"}}
                  for frame in base64Frames]
            ]}
        ]
    )
    
    return response.choices[0].message.content

# ArXiv Search Functions
def search_arxiv(query):
    """Search ArXiv papers using Hugging Face client."""
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    response = client.predict(
        query,
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        True,
        api_name="/ask_llm"
    )
    return response

# Chat Processing Functions
def process_with_gpt(text_input):
    """Process text with GPT-4o."""
    if text_input:
        st.session_state.messages.append({"role": "user", "content": text_input})
        
        with st.chat_message("user"):
            st.markdown(text_input)
        
        with st.chat_message("assistant"):
            completion = openai_client.chat.completions.create(
                model=st.session_state["openai_model"],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                stream=False
            )
            return_text = completion.choices[0].message.content
            st.write("GPT-4o: " + return_text)
            
            #filename = generate_filename(text_input, "md")
            filename = generate_filename("GPT-4o: " + return_text, "md")
            create_file(filename, text_input, return_text)
            st.session_state.messages.append({"role": "assistant", "content": return_text})
            return return_text

def process_with_claude(text_input):
    """Process text with Claude."""
    if text_input:

        with st.chat_message("user"):
            st.markdown(text_input)

        with st.chat_message("assistant"):
            response = claude_client.messages.create(
                model="claude-3-sonnet-20240229",
                max_tokens=1000,
                messages=[
                    {"role": "user", "content": text_input}
                ]
            )
            response_text = response.content[0].text
            st.write("Claude: " + response_text)
            
            #filename = generate_filename(text_input, "md")
            filename = generate_filename("Claude: " + response_text, "md")
            create_file(filename, text_input, response_text)
            
            st.session_state.chat_history.append({
                "user": text_input,
                "claude": response_text
            })
            return response_text

# File Management Functions
def load_file(file_name):
    """Load file content."""
    with open(file_name, "r", encoding='utf-8') as file:
        content = file.read()
    return content

def create_zip_of_files(files):
    """Create zip archive of files."""
    zip_name = "all_files.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name



def get_media_html(media_path, media_type="video", width="100%"):
    """Generate HTML for media player."""
    media_data = base64.b64encode(open(media_path, 'rb').read()).decode()
    if media_type == "video":
        return f'''
        <video width="{width}" controls autoplay muted loop>
            <source src="data:video/mp4;base64,{media_data}" type="video/mp4">
            Your browser does not support the video tag.
        </video>
        '''
    else:  # audio
        return f'''
        <audio controls style="width: {width};">
            <source src="data:audio/mpeg;base64,{media_data}" type="audio/mpeg">
            Your browser does not support the audio element.
        </audio>
        '''

def create_media_gallery():
    """Create the media gallery interface."""
    st.header("🎬 Media Gallery")
    
    tabs = st.tabs(["πŸ–ΌοΈ Images", "🎡 Audio", "πŸŽ₯ Video", "🎨 Scene Generator"])
    
    with tabs[0]:
        image_files = glob.glob("*.png") + glob.glob("*.jpg")
        if image_files:
            num_cols = st.slider("Number of columns", 1, 5, 3)
            cols = st.columns(num_cols)
            for idx, image_file in enumerate(image_files):
                with cols[idx % num_cols]:
                    img = Image.open(image_file)
                    st.image(img, use_container_width=True)
                    
                    # Add GPT vision analysis option
                    if st.button(f"Analyze {os.path.basename(image_file)}"):
                        analysis = process_image(image_file, 
                                              "Describe this image in detail and identify key elements.")
                        st.markdown(analysis)
    
    with tabs[1]:
        audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
        for audio_file in audio_files:
            with st.expander(f"🎡 {os.path.basename(audio_file)}"):
                st.markdown(get_media_html(audio_file, "audio"), unsafe_allow_html=True)
                if st.button(f"Transcribe {os.path.basename(audio_file)}"):
                    with open(audio_file, "rb") as f:
                        transcription = process_audio(f)
                        st.write(transcription)
    
    with tabs[2]:
        video_files = glob.glob("*.mp4")
        for video_file in video_files:
            with st.expander(f"πŸŽ₯ {os.path.basename(video_file)}"):
                st.markdown(get_media_html(video_file, "video"), unsafe_allow_html=True)
                if st.button(f"Analyze {os.path.basename(video_file)}"):
                    analysis = process_video_with_gpt(video_file, 
                                                    "Describe what's happening in this video.")
                    st.markdown(analysis)
    
    with tabs[3]:
        for collection_name, bikes in bike_collections.items():
            st.subheader(collection_name)
            cols = st.columns(len(bikes))
            
            for idx, (bike_name, details) in enumerate(bikes.items()):
                with cols[idx]:
                    st.markdown(f"""
                    <div class='bike-card'>
                        <h3>{details['emoji']} {bike_name}</h3>
                        <p>{details['prompt']}</p>
                    </div>
                    """, unsafe_allow_html=True)
                    
                    if st.button(f"Generate {bike_name} Scene"):
                        prompt = details['prompt']
                        # Here you could integrate with image generation API
                        st.write(f"Generated scene description for {bike_name}:")
                        st.write(prompt)

def display_file_manager():
    """Display file management sidebar."""
    st.sidebar.title("πŸ“ File Management")
    
    all_files = glob.glob("*.md")
    all_files.sort(reverse=True)

    if st.sidebar.button("πŸ—‘ Delete All"):
        for file in all_files:
            os.remove(file)
        st.rerun()

    if st.sidebar.button("⬇️ Download All"):
        zip_file = create_zip_of_files(all_files)
        st.sidebar.markdown(get_download_link(zip_file), unsafe_allow_html=True)

    for file in all_files:
        col1, col2, col3, col4 = st.sidebar.columns([1,3,1,1])
        with col1:
            if st.button("🌐", key="view_"+file):
                st.session_state.current_file = file
                st.session_state.file_content = load_file(file)
        with col2:
            st.markdown(get_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("πŸ“‚", key="edit_"+file):
                st.session_state.current_file = file
                st.session_state.file_content = load_file(file)
        with col4:
            if st.button("πŸ—‘", key="delete_"+file):
                os.remove(file)
                st.rerun()

def main():
    st.title("🚲BikeAIπŸ† Claude and GPT Multi-Agent Research AI")
    
    # Main navigation
    tab_main = st.radio("Choose Action:", 
                        ["πŸ’¬ Chat", "πŸ“Έ Media Gallery", "πŸ” Search ArXiv", "πŸ“ File Editor"],
                        horizontal=True)
    
    if tab_main == "πŸ’¬ Chat":
        # Model Selection
        model_choice = st.sidebar.radio(
            "Choose AI Model:",
            ["GPT-4o", "Claude-3", "Both"]
        )
        
        # Chat Interface
        user_input = st.text_area("Message:", height=100)
        
        if st.button("Send πŸ“¨"):
            if user_input:
                if model_choice == "GPT-4o":
                    gpt_response = process_with_gpt(user_input)
                elif model_choice == "Claude-3":
                    claude_response = process_with_claude(user_input)
                else:  # Both
                    col1, col2, col3 = st.columns(3)
                    with col2:
                        st.subheader("Claude-3.5 Sonnet:")
                        try:
                            claude_response = process_with_claude(user_input)
                        except:
                            st.write('Claude 3.5 Sonnet out of tokens.')
                    with col1:
                        st.subheader("GPT-4o Omni:")
                        try:
                            gpt_response = process_with_gpt(user_input)  
                        except:
                            st.write('GPT 4o out of tokens')
                    with col3:
                        st.subheader("Arxiv and Mistral Research:")
                        with st.spinner("Searching ArXiv..."):
                            results = search_arxiv(user_input)
                            st.markdown(results)
                            
        # Display Chat History
        st.subheader("Chat History πŸ“œ")
        tab1, tab2 = st.tabs(["Claude History", "GPT-4o History"])
        
        with tab1:
            for chat in st.session_state.chat_history:
                st.text_area("You:", chat["user"], height=100, disabled=True)
                st.text_area("Claude:", chat["claude"], height=200, disabled=True)
                st.markdown("---")
        
        with tab2:
            for message in st.session_state.messages:
                with st.chat_message(message["role"]):
                    st.markdown(message["content"])
    
    elif tab_main == "πŸ“Έ Media Gallery":
        create_media_gallery()
    
    elif tab_main == "πŸ” Search ArXiv":
        query = st.text_input("Enter your research query:")
        if query:
            with st.spinner("Searching ArXiv..."):
                results = search_arxiv(query)
                st.markdown(results)
    
    elif tab_main == "πŸ“ File Editor":
        if hasattr(st.session_state, 'current_file'):
            st.subheader(f"Editing: {st.session_state.current_file}")
            new_content = st.text_area("Content:", st.session_state.file_content, height=300)
            if st.button("Save Changes"):
                with open(st.session_state.current_file, 'w', encoding='utf-8') as file:
                    file.write(new_content)
                st.success("File updated successfully!")

    # Always show file manager in sidebar
    display_file_manager()

if __name__ == "__main__":
    main()