Spaces:
Sleeping
Sleeping
File size: 7,312 Bytes
60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 60bf8bb 70f0c27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import base64
import datetime
import gradio as gr
import numpy as np
import os
import pytz
import psutil
import re
import random
import torch
import time
import time
from PIL import Image
from io import BytesIO
from PIL import Image
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
try:
import intel_extension_for_pytorch as ipex
except:
pass
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
torch_device = "cpu"
torch_dtype = torch.float32
if SAFETY_CHECKER == "True":
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7")
else:
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
pipe.unet.to(memory_format=torch.channels_last)
pipe.set_progress_bar_config(disable=True)
# check if computer has less than 64GB of RAM using sys or os
if psutil.virtual_memory().total < 64 * 1024**3:
pipe.enable_attention_slicing()
if TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
# Load LCM LoRA
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipe.fuse_lora()
def safe_filename(text):
"""Generate a safe filename from a string."""
safe_text = re.sub(r'\W+', '_', text)
timestamp = datetime.datetime.now().strftime("%Y%m%d")
return f"{safe_text}_{timestamp}.png"
def encode_image(image):
"""Encode image to base64."""
buffered = BytesIO()
#image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def fake_gan():
base_dir = os.getcwd() # Get the current base directory
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg"
images = [(random.choice(img_files), os.path.splitext(file)[0]) for file in img_files]
return images
def predict(prompt, guidance, steps, seed=1231231):
generator = torch.manual_seed(seed)
last_time = time.time()
results = pipe(
prompt=prompt,
generator=generator,
num_inference_steps=steps,
guidance_scale=guidance,
width=512,
height=512,
# original_inference_steps=params.lcm_steps,
output_type="pil",
)
print(f"Pipe took {time.time() - last_time} seconds")
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
nsfw=gr.Button("🕹️NSFW🎨", scale=1)
central = pytz.timezone('US/Central')
safe_date_time = datetime.datetime.now().strftime("%Y%m%d")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
filename = f"{safe_date_time}_{safe_prompt}.png"
# Save the image
if len(results.images) > 0:
image_path = os.path.join("", filename) # Specify your directory
results.images[0].save(image_path)
print(f"#Image saved as {image_path}")
encoded_image = encode_image(image)
html_link = f'<a href="data:image/png;base64,{encoded_image}" download="{filename}">Download Image</a>'
gr.Markdown(html_link)
return results.images[0] if len(results.images) > 0 else None
css = """
#container{
margin: 0 auto;
max-width: 40rem;
}
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
gr.Markdown(
"""## 🕹️ Stable Diffusion 1.5 - Real Time 🎨 Image Generation Using 🌐 Latent Consistency LoRAs""",
elem_id="intro",
)
with gr.Row():
with gr.Row():
prompt = gr.Textbox(
placeholder="Insert your prompt here:", scale=5, container=False
)
generate_bt = gr.Button("Generate", scale=1)
# Image Result from last prompt
image = gr.Image(type="filepath")
# Gallery of Generated Images with Image Names in Random Set to Download
with gr.Row(variant="compact"):
text = gr.Textbox(
label="Image Sets",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
)
btn = gr.Button("Generate Gallery of Saved Images")
gallery = gr.Gallery(
label="Generated Images", show_label=False, elem_id="gallery"
)
# Advanced Generate Options
with gr.Accordion("Advanced options", open=False):
guidance = gr.Slider(
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
)
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
seed = gr.Slider(
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
)
# Diffusers
with gr.Accordion("Run with diffusers"):
gr.Markdown(
"""## Running LCM-LoRAs it with `diffusers`
```bash
pip install diffusers==0.23.0
```
```py
from diffusers import DiffusionPipeline, LCMScheduler
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA
results = pipe(
prompt="ImageEditor",
num_inference_steps=4,
guidance_scale=0.0,
)
results.images[0]
```
"""
)
# Function IO Eventing and Controls
inputs = [prompt, guidance, steps, seed]
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
btn.click(fake_gan, None, gallery)
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
demo.queue()
demo.launch()
|