Spaces:
Sleeping
Sleeping
File size: 2,520 Bytes
64e5ecd 2f2356b 64e5ecd 2f2356b 64e5ecd 2f2356b 64e5ecd 2f2356b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import streamlit as st
from surprise import Dataset, Reader, SVD
from surprise.model_selection import train_test_split
import pandas as pd
import numpy as np
# Initialize sample user-item rating data
data = {
'user_id': [1, 1, 1, 2, 2, 3, 3, 4, 4],
'item_id': [1, 2, 3, 1, 4, 2, 3, 1, 4],
'rating': [5, 3, 4, 4, 5, 5, 2, 4, 4]
}
df = pd.DataFrame(data)
reader = Reader(rating_scale=(1, 5))
dataset = Dataset.load_from_df(df[['user_id', 'item_id', 'rating']], reader)
trainset, testset = train_test_split(dataset, test_size=0.25)
algo = SVD()
algo.fit(trainset)
# Initialize session state for storing user ratings
if 'user_ratings' not in st.session_state:
st.session_state.user_ratings = {1: [], 2: [], 3: [], 4: []}
def update_ratings(item_id, rating):
st.session_state.user_ratings[item_id].append(rating)
# UI Elements
st.title("π Personalized Entertainment Recommendations")
# Input for user genre preference
user_genre = st.selectbox(
"Choose your favorite genre",
["Action π¬", "Drama π", "Comedy π", "Sci-Fi π"]
)
# Define genre mapping
genre_mapping = {
"Action π¬": 1,
"Drama π": 2,
"Comedy π": 3,
"Sci-Fi π": 4
}
# Example mapping of genre to item_id
recommendations = {
1: ["Die Hard", "Mad Max"],
2: ["The Shawshank Redemption", "Forrest Gump"],
3: ["Superbad", "Step Brothers"],
4: ["Inception", "Interstellar"]
}
# Provide recommendation based on collaborative filtering
selected_genre_id = genre_mapping[user_genre]
# Predict ratings for the selected genre items
predicted_ratings = [(id, algo.predict(5, id).est) for id in [1, 2, 3, 4] if id == selected_genre_id]
# Sort recommendations by predicted ratings
predicted_ratings.sort(key=lambda x: x[1], reverse=True)
st.subheader("π― Recommendations for you:")
for item_id, rating in predicted_ratings:
for rec in recommendations[item_id]:
avg_score = np.mean(st.session_state.user_ratings[item_id]) if st.session_state.user_ratings[item_id] else rating
st.write(f"{rec} - Average Score: {avg_score:.2f} β")
# Rating buttons from 1 to 10
user_rating = st.slider(f"Rate {rec}", 1, 10, 5, key=f"slider_{rec}")
if st.button(f"Submit Rating for {rec}", key=f"button_{rec}"):
update_ratings(item_id, user_rating)
st.write(f"Submitted Rating: {user_rating}")
# Display current session state (for debugging purposes)
st.write("Session State (User Ratings):", st.session_state.user_ratings) |