Spaces:
Runtime error
Runtime error
File size: 9,995 Bytes
3ec9224 5be8df6 3ec9224 5be8df6 3ec9224 5be8df6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
import os
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub
from transformers import AutoTokenizer
import transformers
import torch
import tqdm
import accelerate
default_persist_directory = './chroma_HF/'
default_llm_name1 = "tiiuae/falcon-7b-instruct"
default_llm_name2 = "google/flan-t5-xxl"
default_llm_name3 = "mosaicml/mpt-7b-instruct"
default_llm_name4 = "meta-llama/Llama-2-7b-chat-hf"
default_llm_name5 = "mistralai/Mistral-7B-Instruct-v0.1"
list_llm = [default_llm_name1, default_llm_name2, default_llm_name3, default_llm_name4, default_llm_name5]
# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
# Processing for one document only
# loader = PyPDFLoader(file_path)
# pages = loader.load()
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = chunk_size,
chunk_overlap = chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits):
embedding = HuggingFaceEmbeddings()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
persist_directory=default_persist_directory
)
return vectordb
# Load vector database
def load_db():
embedding = HuggingFaceEmbeddings()
vectordb = Chroma(
persist_directory=default_persist_directory,
embedding_function=embedding)
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0.1, desc="Initializing HF tokenizer...")
# HuggingFacePipeline uses local model
# Warning: it will download model locally...
# tokenizer=AutoTokenizer.from_pretrained(llm_model)
# progress(0.5, desc="Initializing HF pipeline...")
# pipeline=transformers.pipeline(
# "text-generation",
# model=llm_model,
# tokenizer=tokenizer,
# torch_dtype=torch.bfloat16,
# trust_remote_code=True,
# device_map="auto",
# # max_length=1024,
# max_new_tokens=max_tokens,
# do_sample=True,
# top_k=top_k,
# num_return_sequences=1,
# eos_token_id=tokenizer.eos_token_id
# )
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
# HuggingFaceHub uses HF inference endpoints
progress(0.5, desc="Initializing HF Hub...")
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
)
progress(0.5, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
retriever=vector_db.as_retriever()
progress(0.8, desc="Defining retrieval chain...")
global qa_chain
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
# combine_docs_chain_kwargs={"prompt": your_prompt})
# return_source_documents=True,
# return_generated_question=True,
# verbose=True,
)
progress(0.9, desc="Done!")
# return qa_chain
# Initialize all elements
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
# Create list of documents (when valid)
#file_path = file_obj.name
list_file_path = [x.name for x in list_file_obj if x is not None]
print('list_file_path', list_file_path)
progress(0.25, desc="Loading document...")
# Load document and create splits
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
# Create or load Vector database
progress(0.5, desc="Generating vector database...")
# global vector_db
vector_db = create_db(doc_splits)
progress(0.9, desc="Done!")
return vector_db, "Complete!"
#return qa_chain
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
print("llm_option",llm_option)
llm_name = list_llm[llm_option]
print("llm_name",llm_name)
initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return "Complete!"
#return qa_chain
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(message, history):
formatted_chat_history = format_chat_history(message, history)
#print("formatted_chat_history",formatted_chat_history)
# Generate response using QA chain
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
# return response['answer']
# Append user message and response to chat history
new_history = history + [(message, response["answer"])]
return gr.update(value=""), new_history
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file_obj.name
list_file_path.append(file_path)
# print(file_path)
# initialize_database(file_path, progress)
return list_file_path
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.Variable()
# qa_chain = gr.Variable()
gr.Markdown(
"""<center><h2> Document-based chatbot</center></h2>
<h3>Ask any questions about your PDF documents (single or multiple)</h3>
<i>Note: chatbot performs question-answering using Langchain and LLMs</i>
""")
with gr.Tab("Step 1 - Document pre-processing"):
with gr.Row():
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF Documents")
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
with gr.Row():
db_btn = gr.Radio(["ChromaDB"], label="Vector database", value = "ChromaDB", type="index", info="Choose your vector database")
with gr.Accordion("Advanced options - Text splitter", open=False):
with gr.Row():
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
with gr.Row():
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=50, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
with gr.Row():
db_progress = gr.Textbox(label="Database Initialization", value="None")
with gr.Row():
db_btn = gr.Button("Generating vector database...")
with gr.Tab("Step 2 - Initializing QA chain"):
with gr.Row():
llm_btn = gr.Radio(["falcon-7b-instruct", "flan-t5-xxl", "mpt-7b-instruct", "Llama-2-7b-chat-hf", "Mistral-7B-Instruct-v0.1"], \
label="LLM", value = "falcon-7b-instruct", type="index", info="Choose your LLM model")
with gr.Accordion("Advanced options - LLM", open=False):
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
slider_maxtokens = gr.Slider(minimum = 256, maximum = 4096, value=1024, step=24, label="Max Tokens", info="Model max tokens", interactive=True)
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
with gr.Row():
llm_progress = gr.Textbox(value="None",label="QA chain Initialization")
with gr.Row():
qachain_btn = gr.Button("QA chain Initialization...")
with gr.Tab("Step 3 - Conversation"):
chatbot = gr.Chatbot(height=600)
with gr.Row():
msg = gr.Textbox(placeholder="Type message", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot])
# Preprocessing events
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, db_progress])
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[llm_progress]).then(lambda: None, None, chatbot, queue=False)
# Chatbot events
msg.submit(conversation, [msg, chatbot], [msg, chatbot], queue=False)
submit_btn.click(conversation, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False)
clear_btn.click(lambda: None, None, chatbot, queue=False)
demo.queue(concurrency_count=20).launch(debug=True)
if __name__ == "__main__":
demo()
|