Spaces:
Runtime error
Runtime error
File size: 29,975 Bytes
dfddde1 b331812 6ccc896 b331812 b5a7538 b331812 bacb405 6ccc896 bacb405 6ccc896 bacb405 6ccc896 bacb405 6ccc896 b331812 dfddde1 b331812 bacb405 dfddde1 bacb405 b331812 dfddde1 f4d8e7d dfddde1 f4d8e7d dfddde1 b5a7538 bacb405 f4d8e7d dfddde1 bacb405 6ccc896 bacb405 6ccc896 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 790dc0c b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b5a7538 bacb405 790dc0c bacb405 790dc0c bacb405 790dc0c b5a7538 790dc0c bacb405 790dc0c bacb405 790dc0c bacb405 790dc0c f4d8e7d b5a7538 790dc0c bacb405 6ccc896 dfddde1 790dc0c b331812 dfddde1 b331812 dfddde1 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 bacb405 b331812 790dc0c 6ccc896 bacb405 6ccc896 790dc0c bacb405 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
# Imports
import base64
import glob
import json
import math
import openai
import os
import pytz
import re
import requests
import streamlit as st
import textract
import time
import zipfile
import huggingface_hub
import dotenv
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from io import BytesIO
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from openai import ChatCompletion
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from xml.etree import ElementTree as ET
import streamlit.components.v1 as components # Import Streamlit Components for HTML5
st.set_page_config(page_title="πͺLlama Whispererπ¦ Voice Chatπ", layout="wide")
def add_Med_Licensing_Exam_Dataset():
import streamlit as st
from datasets import load_dataset
dataset = load_dataset("augtoma/usmle_step_1")['test'] # Using 'test' split
st.title("USMLE Step 1 Dataset Viewer")
if len(dataset) == 0:
st.write("π’ The dataset is empty.")
else:
st.write("""
π Use the search box to filter questions or use the grid to scroll through the dataset.
""")
# π©βπ¬ Search Box
search_term = st.text_input("Search for a specific question:", "")
# π Pagination
records_per_page = 100
num_records = len(dataset)
num_pages = max(int(num_records / records_per_page), 1)
# Skip generating the slider if num_pages is 1 (i.e., all records fit in one page)
if num_pages > 1:
page_number = st.select_slider("Select page:", options=list(range(1, num_pages + 1)))
else:
page_number = 1 # Only one page
# π Display Data
start_idx = (page_number - 1) * records_per_page
end_idx = start_idx + records_per_page
# π§ͺ Apply the Search Filter
filtered_data = []
for record in dataset[start_idx:end_idx]:
if isinstance(record, dict) and 'text' in record and 'id' in record:
if search_term:
if search_term.lower() in record['text'].lower():
filtered_data.append(record)
else:
filtered_data.append(record)
# π Render the Grid
for record in filtered_data:
st.write(f"## Question ID: {record['id']}")
st.write(f"### Question:")
st.write(f"{record['text']}")
st.write(f"### Answer:")
st.write(f"{record['answer']}")
st.write("---")
st.write(f"π Total Records: {num_records} | π Displaying {start_idx+1} to {min(end_idx, num_records)}")
# 1. Constants and Top Level UI Variables
# My Inference API Copy
# API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
# Original:
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
API_KEY = os.getenv('API_KEY')
MODEL1="meta-llama/Llama-2-7b-chat-hf"
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
HF_KEY = os.getenv('HF_KEY')
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "application/json"
}
key = os.getenv('OPENAI_API_KEY')
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
should_save = st.sidebar.checkbox("πΎ Save", value=True, help="Save your session data.")
# 2. Prompt label button demo for LLM
def add_witty_humor_buttons():
with st.expander("Wit and Humor π€£", expanded=True):
# Tip about the Dromedary family
st.markdown("π¬ **Fun Fact**: Dromedaries, part of the camel family, have a single hump and are adapted to arid environments. Their 'superpowers' include the ability to survive without water for up to 7 days, thanks to their specialized blood cells and water storage in their hump.")
# Define button descriptions
descriptions = {
"Generate Limericks π": "Write ten random adult limericks based on quotes that are tweet length and make you laugh π",
"Wise Quotes π§": "Generate ten wise quotes that are tweet length π¦",
"Funny Rhymes π€": "Create ten funny rhymes that are tweet length πΆ",
"Medical Jokes π": "Create ten medical jokes that are tweet length π₯",
"Minnesota Humor βοΈ": "Create ten jokes about Minnesota that are tweet length π¨οΈ",
"Top Funny Stories π": "Create ten funny stories that are tweet length π",
"More Funny Rhymes ποΈ": "Create ten more funny rhymes that are tweet length π΅"
}
# Create columns
col1, col2, col3 = st.columns([1, 1, 1], gap="small")
# Add buttons to columns
if col1.button("Generate Limericks π"):
StreamLLMChatResponse(descriptions["Generate Limericks π"])
if col2.button("Wise Quotes π§"):
StreamLLMChatResponse(descriptions["Wise Quotes π§"])
if col3.button("Funny Rhymes π€"):
StreamLLMChatResponse(descriptions["Funny Rhymes π€"])
col4, col5, col6 = st.columns([1, 1, 1], gap="small")
if col4.button("Medical Jokes π"):
StreamLLMChatResponse(descriptions["Medical Jokes π"])
if col5.button("Minnesota Humor βοΈ"):
StreamLLMChatResponse(descriptions["Minnesota Humor βοΈ"])
if col6.button("Top Funny Stories π"):
StreamLLMChatResponse(descriptions["Top Funny Stories π"])
col7 = st.columns(1, gap="small")
if col7[0].button("More Funny Rhymes ποΈ"):
StreamLLMChatResponse(descriptions["More Funny Rhymes ποΈ"])
def SpeechSynthesis(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>π Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">π Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=1024)
#return result
# 3. Stream Llama Response
# @st.cache_resource
def StreamLLMChatResponse(prompt):
try:
endpoint_url = API_URL
hf_token = API_KEY
client = InferenceClient(endpoint_url, token=hf_token)
gen_kwargs = dict(
max_new_tokens=512,
top_k=30,
top_p=0.9,
temperature=0.2,
repetition_penalty=1.02,
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
)
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
report=[]
res_box = st.empty()
collected_chunks=[]
collected_messages=[]
allresults=''
for r in stream:
if r.token.special:
continue
if r.token.text in gen_kwargs["stop_sequences"]:
break
collected_chunks.append(r.token.text)
chunk_message = r.token.text
collected_messages.append(chunk_message)
try:
report.append(r.token.text)
if len(r.token.text) > 0:
result="".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write('Stream llm issue')
SpeechSynthesis(result)
return result
except:
st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
# 4. Run query with payload
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
st.markdown(response.json())
return response.json()
def get_output(prompt):
return query({"inputs": prompt})
# 5. Auto name generated output files from time and content
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 6. Speech transcription via OpenAI service
def transcribe_audio(openai_key, file_path, model):
openai.api_key = openai_key
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
headers = {
"Authorization": f"Bearer {openai_key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
transcript = response.json().get('text')
filename = generate_filename(transcript, 'txt')
response = chatResponse
user_prompt = transcript
create_file(filename, user_prompt, response, should_save)
return transcript
else:
st.write(response.json())
st.error("Error in API call.")
return None
# 7. Auto stop on silence audio control for recording WAV files
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder(key='audio_recorder')
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
# 8. File creator that interprets type and creates output file for text, markdown and code
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
base_filename, ext = os.path.splitext(filename)
if ext in ['.txt', '.htm', '.md']:
with open(f"{base_filename}.md", 'w') as file:
try:
content = prompt.strip() + '\r\n' + response
file.write(content)
except:
st.write('.')
#has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)
#has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response))
#if has_python_code:
# python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
# with open(f"{base_filename}-Code.py", 'w') as file:
# file.write(python_code)
# with open(f"{base_filename}.md", 'w') as file:
# content = prompt.strip() + '\r\n' + response
# file.write(content)
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
# 9. Sidebar with UI controls to review and re-run prompts and continue responses
@st.cache_resource
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.py':
mime_type = 'text/plain'
elif ext == '.xlsx':
mime_type = 'text/plain'
elif ext == '.csv':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
# 10. Read in and provide UI for past files
@st.cache_resource
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
# 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS
@st.cache_resource
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
start_time = time.time()
report = []
res_box = st.empty()
collected_chunks = []
collected_messages = []
for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
collected_chunks.append(chunk)
chunk_message = chunk['choices'][0]['delta']
collected_messages.append(chunk_message)
content=chunk["choices"][0].get("delta",{}).get("content")
try:
report.append(content)
if len(content) > 0:
result = "".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write(' ')
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
st.write("Elapsed time:")
st.write(time.time() - start_time)
return full_reply_content
# 12. Embedding VectorDB for LLM query of documents to text to compress inputs and prompt together as Chat memory using Langchain
@st.cache_resource
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(file_content)>0:
conversation.append({'role': 'assistant', 'content': file_content})
response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
return response['choices'][0]['message']['content']
def extract_mime_type(file):
if isinstance(file, str):
pattern = r"type='(.*?)'"
match = re.search(pattern, file)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract MIME type from {file}")
elif isinstance(file, streamlit.UploadedFile):
return file.type
else:
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
def extract_file_extension(file):
# get the file name directly from the UploadedFile object
file_name = file.name
pattern = r".*?\.(.*?)$"
match = re.search(pattern, file_name)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract file extension from {file_name}")
# Normalize input as text from PDF and other formats
@st.cache_resource
def pdf2txt(docs):
text = ""
for file in docs:
file_extension = extract_file_extension(file)
st.write(f"File type extension: {file_extension}")
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
text += file.getvalue().decode('utf-8')
elif file_extension.lower() == 'pdf':
from PyPDF2 import PdfReader
pdf = PdfReader(BytesIO(file.getvalue()))
for page in range(len(pdf.pages)):
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
return text
def txt2chunks(text):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
return text_splitter.split_text(text)
# Vector Store using FAISS
@st.cache_resource
def vector_store(text_chunks):
embeddings = OpenAIEmbeddings(openai_api_key=key)
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# Memory and Retrieval chains
@st.cache_resource
def get_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
def process_user_input(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
template = user_template if i % 2 == 0 else bot_template
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
filename = generate_filename(user_question, 'txt')
response = message.content
user_prompt = user_question
create_file(filename, user_prompt, response, should_save)
def divide_prompt(prompt, max_length):
words = prompt.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if len(word) + current_length <= max_length:
current_length += len(word) + 1
current_chunk.append(word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
chunks.append(' '.join(current_chunk))
return chunks
# 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it
@st.cache_resource
def create_zip_of_files(files):
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
return href
# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
# My Inference Endpoint
API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
# Original
API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
MODEL2 = "openai/whisper-small.en"
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
#headers = {
# "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
# "Content-Type": "audio/wav"
#}
HF_KEY = os.getenv('HF_KEY')
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "audio/wav"
}
#@st.cache_resource
def query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL_IE, headers=headers, data=data)
return response.json()
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 15. Audio recorder to Wav file
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
# 16. Speech transcription to file output
def transcribe_audio(filename):
output = query(filename)
return output
def whisper_main():
st.title("Speech to Text")
st.write("Record your speech and get the text.")
# Audio, transcribe, GPT:
filename = save_and_play_audio(audio_recorder)
if filename is not None:
transcription = transcribe_audio(filename)
try:
transcription = transcription['text']
except:
st.write('Whisper model is asleep. Starting up now on T4 GPU - please give 5 minutes then retry as it scales up from zero to activate running container(s).')
st.write(transcription)
response = StreamLLMChatResponse(transcription)
# st.write(response) - redundant with streaming result?
filename = generate_filename(transcription, ".txt")
create_file(filename, transcription, response, should_save)
#st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
# 17. Main
def main():
st.title("AI Drome Llama")
prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each."
# Add Wit and Humor buttons
add_witty_humor_buttons()
example_input = st.text_input("Enter your example text:", value=prompt, help="Enter text to get a response from DromeLlama.")
if st.button("Run Prompt With DromeLlama", help="Click to run the prompt."):
try:
StreamLLMChatResponse(example_input)
except:
st.write('DromeLlama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
openai.api_key = os.getenv('OPENAI_KEY')
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("ποΈ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
response = chat_with_model(user_prompt, section, model_choice)
st.write('Response:')
st.write(response)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if st.button('π¬ Chat'):
st.write('Reasoning with your inputs...')
user_prompt_sections = divide_prompt(user_prompt, max_length)
full_response = ''
for prompt_section in user_prompt_sections:
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
full_response += response + '\n' # Combine the responses
response = full_response
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
# Compose a file sidebar of past encounters
all_files = glob.glob("*.*")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
if st.sidebar.button("π Delete All"):
for file in all_files:
os.remove(file)
st.experimental_rerun()
if st.sidebar.button("β¬οΈ Download All"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents=''
next_action=''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
with col1:
if st.button("π", key="md_"+file): # md emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='md'
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("π", key="open_"+file): # open emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='open'
with col4:
if st.button("π", key="read_"+file): # search emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='search'
with col5:
if st.button("π", key="delete_"+file):
os.remove(file)
st.experimental_rerun()
if len(file_contents) > 0:
if next_action=='open':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
if next_action=='md':
st.markdown(file_contents)
if next_action=='search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
st.write('Reasoning with your inputs...')
# new - llama
response = StreamLLMChatResponse(file_contents)
filename = generate_filename(user_prompt, ".md")
create_file(filename, file_contents, response, should_save)
SpeechSynthesis(response)
# old - gpt
#response = chat_with_model(user_prompt, file_contents, model_choice)
#filename = generate_filename(file_contents, choice)
#create_file(filename, user_prompt, response, should_save)
st.experimental_rerun()
# Feedback
# Step: Give User a Way to Upvote or Downvote
feedback = st.radio("Step 8: Give your feedback", ("π Upvote", "π Downvote"))
if feedback == "π Upvote":
st.write("You upvoted π. Thank you for your feedback!")
else:
st.write("You downvoted π. Thank you for your feedback!")
load_dotenv()
st.write(css, unsafe_allow_html=True)
st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
process_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader("import documents", accept_multiple_files=True)
with st.spinner("Processing"):
raw = pdf2txt(docs)
if len(raw) > 0:
length = str(len(raw))
text_chunks = txt2chunks(raw)
vectorstore = vector_store(text_chunks)
st.session_state.conversation = get_chain(vectorstore)
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
filename = generate_filename(raw, 'txt')
create_file(filename, raw, '', should_save)
# 18. Run AI Pipeline
if __name__ == "__main__":
whisper_main()
main() |