File size: 33,795 Bytes
1b24bfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
# Imports
import base64
import glob
import json
import math
import openai
import os
import pytz
import re
import requests
import streamlit as st
import textract
import time
import zipfile
import huggingface_hub
import dotenv
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from io import BytesIO
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from openai import ChatCompletion
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from xml.etree import ElementTree as ET
import streamlit.components.v1 as components  # Import Streamlit Components for HTML5


st.set_page_config(page_title="๐ŸชLlama๐Ÿฆ™Whisperer", layout="wide")
st.markdown('(Inference Endpoints)[https://ui.endpoints.huggingface.co/awacke1/endpoints]')

def add_Med_Licensing_Exam_Dataset():
    import streamlit as st
    from datasets import load_dataset
    dataset = load_dataset("augtoma/usmle_step_1")['test']  # Using 'test' split
    st.title("USMLE Step 1 Dataset Viewer")
    if len(dataset) == 0:
        st.write("๐Ÿ˜ข The dataset is empty.")
    else:
        st.write("""
        ๐Ÿ” Use the search box to filter questions or use the grid to scroll through the dataset.
        """)
    
        # ๐Ÿ‘ฉโ€๐Ÿ”ฌ Search Box
        search_term = st.text_input("Search for a specific question:", "")
        
        # ๐ŸŽ› Pagination
        records_per_page = 100
        num_records = len(dataset)
        num_pages = max(int(num_records / records_per_page), 1)
        
        # Skip generating the slider if num_pages is 1 (i.e., all records fit in one page)
        if num_pages > 1:
            page_number = st.select_slider("Select page:", options=list(range(1, num_pages + 1)))
        else:
            page_number = 1  # Only one page
        
        # ๐Ÿ“Š Display Data
        start_idx = (page_number - 1) * records_per_page
        end_idx = start_idx + records_per_page
    
        # ๐Ÿงช Apply the Search Filter
        filtered_data = []
        for record in dataset[start_idx:end_idx]:
            if isinstance(record, dict) and 'text' in record and 'id' in record:
                if search_term:
                    if search_term.lower() in record['text'].lower():
                        st.markdown(record)
                        filtered_data.append(record)
                else:
                    filtered_data.append(record)
    
        # ๐ŸŒ Render the Grid
        for record in filtered_data:
            st.write(f"## Question ID: {record['id']}")
            st.write(f"### Question:")
            st.write(f"{record['text']}")
            st.write(f"### Answer:")
            st.write(f"{record['answer']}")
            st.write("---")
    
        st.write(f"๐Ÿ˜Š Total Records: {num_records} | ๐Ÿ“„ Displaying {start_idx+1} to {min(end_idx, num_records)}")

# 1. Constants and Top Level UI Variables

# My Inference API Copy
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud'  # Dr Llama
# Original:
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
API_KEY = os.getenv('API_KEY')
MODEL1="meta-llama/Llama-2-7b-chat-hf"
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
HF_KEY = os.getenv('HF_KEY')
headers = {
    "Authorization": f"Bearer {HF_KEY}",
    "Content-Type": "application/json"
}
key = os.getenv('OPENAI_API_KEY')
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
should_save = st.sidebar.checkbox("๐Ÿ’พ Save", value=True, help="Save your session data.")

# 2. Prompt label button demo for LLM
def add_witty_humor_buttons():
    with st.expander("Wit and Humor ๐Ÿคฃ", expanded=True):
        # Tip about the Dromedary family
        st.markdown("๐Ÿ”ฌ **Fun Fact**: Dromedaries, part of the camel family, have a single hump and are adapted to arid environments. Their 'superpowers' include the ability to survive without water for up to 7 days, thanks to their specialized blood cells and water storage in their hump.")
        
        # Define button descriptions
        descriptions = {
            "Generate Limericks ๐Ÿ˜‚": "Write ten random adult limericks based on quotes that are tweet length and make you laugh ๐ŸŽญ",
            "Wise Quotes ๐Ÿง™": "Generate ten wise quotes that are tweet length ๐Ÿฆ‰",
            "Funny Rhymes ๐ŸŽค": "Create ten funny rhymes that are tweet length ๐ŸŽถ",
            "Medical Jokes ๐Ÿ’‰": "Create ten medical jokes that are tweet length ๐Ÿฅ",
            "Minnesota Humor โ„๏ธ": "Create ten jokes about Minnesota that are tweet length ๐ŸŒจ๏ธ",
            "Top Funny Stories ๐Ÿ“–": "Create ten funny stories that are tweet length ๐Ÿ“š",
            "More Funny Rhymes ๐ŸŽ™๏ธ": "Create ten more funny rhymes that are tweet length ๐ŸŽต"
        }
        
        # Create columns
        col1, col2, col3 = st.columns([1, 1, 1], gap="small")
        
        # Add buttons to columns
        if col1.button("Generate Limericks ๐Ÿ˜‚"):
            StreamLLMChatResponse(descriptions["Generate Limericks ๐Ÿ˜‚"])
        
        if col2.button("Wise Quotes ๐Ÿง™"):
            StreamLLMChatResponse(descriptions["Wise Quotes ๐Ÿง™"])
        
        if col3.button("Funny Rhymes ๐ŸŽค"):
            StreamLLMChatResponse(descriptions["Funny Rhymes ๐ŸŽค"])
        
        col4, col5, col6 = st.columns([1, 1, 1], gap="small")
        
        if col4.button("Medical Jokes ๐Ÿ’‰"):
            StreamLLMChatResponse(descriptions["Medical Jokes ๐Ÿ’‰"])
        
        if col5.button("Minnesota Humor โ„๏ธ"):
            StreamLLMChatResponse(descriptions["Minnesota Humor โ„๏ธ"])
        
        if col6.button("Top Funny Stories ๐Ÿ“–"):
            StreamLLMChatResponse(descriptions["Top Funny Stories ๐Ÿ“–"])
        
        col7 = st.columns(1, gap="small")
        
        if col7[0].button("More Funny Rhymes ๐ŸŽ™๏ธ"):
            StreamLLMChatResponse(descriptions["More Funny Rhymes ๐ŸŽ™๏ธ"])

def SpeechSynthesis(result):
    documentHTML5='''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }
        </script>
    </head>
    <body>
        <h1>๐Ÿ”Š Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">
    '''
    documentHTML5 = documentHTML5 + result
    documentHTML5 = documentHTML5 + '''
        </textarea>
        <br>
        <button onclick="readAloud()">๐Ÿ”Š Read Aloud</button>
    </body>
    </html>
    '''

    components.html(documentHTML5, width=1280, height=1024)
    #return result


# 3. Stream Llama Response
# @st.cache_resource
def StreamLLMChatResponse(prompt):
    try:
        endpoint_url = API_URL
        hf_token = API_KEY
        client = InferenceClient(endpoint_url, token=hf_token)
        gen_kwargs = dict(
            max_new_tokens=512,
            top_k=30,
            top_p=0.9,
            temperature=0.2,
            repetition_penalty=1.02,
            stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
        )
        stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
        report=[]
        res_box = st.empty()
        collected_chunks=[]
        collected_messages=[]
        allresults=''
        for r in stream:
            if r.token.special:
                continue
            if r.token.text in gen_kwargs["stop_sequences"]:
                break
            collected_chunks.append(r.token.text)
            chunk_message = r.token.text
            collected_messages.append(chunk_message)
            try:
                report.append(r.token.text)
                if len(r.token.text) > 0:
                    result="".join(report).strip()
                    res_box.markdown(f'*{result}*')
                    
            except:
                st.write('Stream llm issue')
        SpeechSynthesis(result)
        return result
    except:
        st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')

# 4. Run query with payload
def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    st.markdown(response.json())
    return response.json()
def get_output(prompt):
    return query({"inputs": prompt})

# 5. Auto name generated output files from time and content
def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# 6. Speech transcription via OpenAI service
def transcribe_audio(openai_key, file_path, model):
    openai.api_key = openai_key
    OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
    headers = {
        "Authorization": f"Bearer {openai_key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
        transcript = response.json().get('text')
        filename = generate_filename(transcript, 'txt')
        response = chatResponse
        user_prompt = transcript
        create_file(filename, user_prompt, response, should_save)
        return transcript
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

# 7. Auto stop on silence audio control for recording WAV files
def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder(key='audio_recorder')
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

# 8. File creator that interprets type and creates output file for text, markdown and code
def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return
    base_filename, ext = os.path.splitext(filename)
    if ext in ['.txt', '.htm', '.md']:
        with open(f"{base_filename}.md", 'w') as file:
            try:
                content = prompt.strip() + '\r\n' + response
                file.write(content)
            except:
                st.write('.')

    #has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)
    #has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response))
        #if has_python_code:
        #    python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
        #    with open(f"{base_filename}-Code.py", 'w') as file:
        #        file.write(python_code)
        #    with open(f"{base_filename}.md", 'w') as file:
        #        content = prompt.strip() + '\r\n' + response
        #        file.write(content)
            
def truncate_document(document, length):
    return document[:length]
def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

# 9. Sidebar with UI controls to review and re-run prompts and continue responses
@st.cache_resource
def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        data = file.read()
   
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.py':
        mime_type = 'text/plain'
    elif ext == '.xlsx':
        mime_type = 'text/plain'
    elif ext == '.csv':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href


def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")

# 10. Read in and provide UI for past files
@st.cache_resource
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

# 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS
@st.cache_resource
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
    start_time = time.time()
    report = []
    res_box = st.empty()
    collected_chunks = []
    collected_messages = []
    for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
        collected_chunks.append(chunk)  
        chunk_message = chunk['choices'][0]['delta']  
        collected_messages.append(chunk_message) 
        content=chunk["choices"][0].get("delta",{}).get("content")
        try:
            report.append(content)
            if len(content) > 0:
                result = "".join(report).strip()
                res_box.markdown(f'*{result}*') 
        except:
            st.write(' ')
    full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
    st.write("Elapsed time:")
    st.write(time.time() - start_time)
    return full_reply_content

# 12. Embedding VectorDB for LLM query of documents to text to compress inputs and prompt together as Chat memory using Langchain
@st.cache_resource
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(file_content)>0:
        conversation.append({'role': 'assistant', 'content': file_content})
    response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
    return response['choices'][0]['message']['content']

def extract_mime_type(file):
    if isinstance(file, str):
        pattern = r"type='(.*?)'"
        match = re.search(pattern, file)
        if match:
            return match.group(1)
        else:
            raise ValueError(f"Unable to extract MIME type from {file}")
    elif isinstance(file, streamlit.UploadedFile):
        return file.type
    else:
        raise TypeError("Input should be a string or a streamlit.UploadedFile object")

def extract_file_extension(file):
    # get the file name directly from the UploadedFile object
    file_name = file.name
    pattern = r".*?\.(.*?)$"
    match = re.search(pattern, file_name)
    if match:
        return match.group(1)
    else:
        raise ValueError(f"Unable to extract file extension from {file_name}")

# Normalize input as text from PDF and other formats
@st.cache_resource
def pdf2txt(docs):
    text = ""
    for file in docs:
        file_extension = extract_file_extension(file)
        st.write(f"File type extension: {file_extension}")
        if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
            text += file.getvalue().decode('utf-8')
        elif file_extension.lower() == 'pdf':
            from PyPDF2 import PdfReader
            pdf = PdfReader(BytesIO(file.getvalue()))
            for page in range(len(pdf.pages)):
                text += pdf.pages[page].extract_text() # new PyPDF2 syntax
    return text

def txt2chunks(text):
    text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
    return text_splitter.split_text(text)

# Vector Store using FAISS
@st.cache_resource
def vector_store(text_chunks):
    embeddings = OpenAIEmbeddings(openai_api_key=key)
    return FAISS.from_texts(texts=text_chunks, embedding=embeddings)

# Memory and Retrieval chains
@st.cache_resource
def get_chain(vectorstore):
    llm = ChatOpenAI()
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)

def process_user_input(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']
    for i, message in enumerate(st.session_state.chat_history):
        template = user_template if i % 2 == 0 else bot_template
        st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
        filename = generate_filename(user_question, 'txt')
        response = message.content
        user_prompt = user_question
        create_file(filename, user_prompt, response, should_save)       

def divide_prompt(prompt, max_length):
    words = prompt.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        if len(word) + current_length <= max_length:
            current_length += len(word) + 1 
            current_chunk.append(word)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
    chunks.append(' '.join(current_chunk))
    return chunks

    
# 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it
    
@st.cache_resource
def create_zip_of_files(files):
    zip_name = "all_files.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name
    
@st.cache_resource
def get_zip_download_link(zip_file):
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
    return href

# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
# My Inference Endpoint
#API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
# Original
#API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
# A10 Inference Endpoint for whisper large tests
API_URL_IE = "https://hifdvffh2em0wn50.us-east-1.aws.endpoints.huggingface.cloud"

MODEL2 = "openai/whisper-small.en"
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
#headers = {
#	"Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
#	"Content-Type": "audio/wav"
#}
HF_KEY = os.getenv('HF_KEY')
headers = {
    "Authorization": f"Bearer {HF_KEY}",
    "Content-Type": "audio/wav"
}

#@st.cache_resource
def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL_IE, headers=headers, data=data)
    return response.json()

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# 15. Audio recorder to Wav file 
def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename

# 16. Speech transcription to file output
def transcribe_audio(filename):
    output = query(filename)
    return output


def whisper_main():
    st.title("1๐ŸชLlama๐Ÿฆ™Whisperer")
    st.write("Record your speech and get the text.")

    # Audio, transcribe, GPT:
    filename = save_and_play_audio(audio_recorder)
    if filename is not None:
        transcription = transcribe_audio(filename)
        #try:
        
        transcript = transcription['text']
        #except:
        #st.write('Whisper model is asleep. Starting up now on T4 GPU - please give 5 minutes then retry as it scales up from zero to activate running container(s).')

        st.write(transcript)
        response = StreamLLMChatResponse(transcript)
        # st.write(response) - redundant with streaming result?
        filename = generate_filename(transcript, ".txt")
        create_file(filename, transcript, response, should_save)
        #st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

import streamlit as st

# Sample function to demonstrate a response, replace with your own logic
def StreamMedChatResponse(topic):
    st.write(f"Showing resources or questions related to: {topic}")

def add_multi_system_agent_topics():
    with st.expander("Multi-System Agent AI Topics ๐Ÿค–", expanded=True):
        st.markdown("๐Ÿค– **Explore Multi-System Agent AI Topics**: This section provides a variety of topics related to multi-system agent AI systems.")

        # Define multi-system agent AI topics and descriptions
        descriptions = {
            "Reinforcement Learning ๐ŸŽฎ": "Questions related to reinforcement learning algorithms and applications ๐Ÿ•น๏ธ",
            "Natural Language Processing ๐Ÿ—ฃ๏ธ": "Questions about natural language processing techniques and chatbot development ๐Ÿ—จ๏ธ",
            "Multi-Agent Systems ๐Ÿค": "Questions pertaining to multi-agent systems and cooperative AI interactions ๐Ÿค–",
            "Conversational AI ๐Ÿ—จ๏ธ": "Questions on building conversational AI agents and chatbots for various platforms ๐Ÿ’ฌ",
            "Distributed AI Systems ๐ŸŒ": "Questions about distributed AI systems and their implementation in networked environments ๐ŸŒ",
            "AI Ethics and Bias ๐Ÿค”": "Questions related to ethics and bias considerations in AI systems and decision-making ๐Ÿง ",
            "AI in Healthcare ๐Ÿฅ": "Questions about the application of AI in healthcare and medical diagnosis ๐Ÿฉบ",
            "AI in Autonomous Vehicles ๐Ÿš—": "Questions on the use of AI in autonomous vehicles and self-driving technology ๐Ÿš—"
        }

        # Create columns
        col1, col2, col3, col4 = st.columns([1, 1, 1, 1], gap="small")
        
        # Add buttons to columns
        if col1.button("Reinforcement Learning ๐ŸŽฎ"):
            st.write(descriptions["Reinforcement Learning ๐ŸŽฎ"])
            StreamLLMChatResponse(descriptions["Reinforcement Learning ๐ŸŽฎ"])

        if col2.button("Natural Language Processing ๐Ÿ—ฃ๏ธ"):
            st.write(descriptions["Natural Language Processing ๐Ÿ—ฃ๏ธ"])
            StreamLLMChatResponse(descriptions["Natural Language Processing ๐Ÿ—ฃ๏ธ"])

        if col3.button("Multi-Agent Systems ๐Ÿค"):
            st.write(descriptions["Multi-Agent Systems ๐Ÿค"])
            StreamLLMChatResponse(descriptions["Multi-Agent Systems ๐Ÿค"])

        if col4.button("Conversational AI ๐Ÿ—จ๏ธ"):
            st.write(descriptions["Conversational AI ๐Ÿ—จ๏ธ"])
            StreamLLMChatResponse(descriptions["Conversational AI ๐Ÿ—จ๏ธ"])

        col5, col6, col7, col8 = st.columns([1, 1, 1, 1], gap="small")

        if col5.button("Distributed AI Systems ๐ŸŒ"):
            st.write(descriptions["Distributed AI Systems ๐ŸŒ"])
            StreamLLMChatResponse(descriptions["Distributed AI Systems ๐ŸŒ"])

        if col6.button("AI Ethics and Bias ๐Ÿค”"):
            st.write(descriptions["AI Ethics and Bias ๐Ÿค”"])
            StreamLLMChatResponse(descriptions["AI Ethics and Bias ๐Ÿค”"])

        if col7.button("AI in Healthcare ๐Ÿฅ"):
            st.write(descriptions["AI in Healthcare ๐Ÿฅ"])
            StreamLLMChatResponse(descriptions["AI in Healthcare ๐Ÿฅ"])

        if col8.button("AI in Autonomous Vehicles ๐Ÿš—"):
            st.write(descriptions["AI in Autonomous Vehicles ๐Ÿš—"])
            StreamLLMChatResponse(descriptions["AI in Autonomous Vehicles ๐Ÿš—"])


# 17. Main
def main():

    st.title("Try Some Topics:")
    prompt = f"Write ten funny jokes that are tweet length stories that make you laugh.  Show as markdown outline with emojis for each."

    # Add Wit and Humor buttons
    # add_witty_humor_buttons()
    # Calling the function to add the multi-system agent AI topics buttons
    add_multi_system_agent_topics()

    example_input = st.text_input("Enter your example text:", value=prompt, help="Enter text to get a response from DromeLlama.")
    if st.button("Run Prompt With DromeLlama", help="Click to run the prompt."):
        try:
            StreamLLMChatResponse(example_input)
        except:
            st.write('DromeLlama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')

    openai.api_key = os.getenv('OPENAI_KEY')
    menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
    choice = st.sidebar.selectbox("Output File Type:", menu)
    model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))        
    user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
    collength, colupload = st.columns([2,3])  # adjust the ratio as needed
    with collength:
        max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
    with colupload:
        uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
    document_sections = deque()
    document_responses = {}
    if uploaded_file is not None:
        file_content = read_file_content(uploaded_file, max_length)
        document_sections.extend(divide_document(file_content, max_length))
    if len(document_sections) > 0:
        if st.button("๐Ÿ‘๏ธ View Upload"):
            st.markdown("**Sections of the uploaded file:**")
            for i, section in enumerate(list(document_sections)):
                st.markdown(f"**Section {i+1}**\n{section}")
        st.markdown("**Chat with the model:**")
        for i, section in enumerate(list(document_sections)):
            if i in document_responses:
                st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
            else:
                if st.button(f"Chat about Section {i+1}"):
                    st.write('Reasoning with your inputs...')
                    response = chat_with_model(user_prompt, section, model_choice)
                    st.write('Response:')
                    st.write(response)
                    document_responses[i] = response
                    filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                    create_file(filename, user_prompt, response, should_save)
                    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
    if st.button('๐Ÿ’ฌ Chat'):
        st.write('Reasoning with your inputs...')
        user_prompt_sections = divide_prompt(user_prompt, max_length)
        full_response = ''
        for prompt_section in user_prompt_sections:
            response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
            full_response += response + '\n'  # Combine the responses
        response = full_response
        st.write('Response:')
        st.write(response)
        filename = generate_filename(user_prompt, choice)
        create_file(filename, user_prompt, response, should_save)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    # Compose a file sidebar of past encounters
    all_files = glob.glob("*.*")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order
    if st.sidebar.button("๐Ÿ—‘ Delete All"):
        for file in all_files:
            os.remove(file)
        st.experimental_rerun()
    if st.sidebar.button("โฌ‡๏ธ Download All"):
        zip_file = create_zip_of_files(all_files)
        st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
    file_contents=''
    next_action=''
    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])  # adjust the ratio as needed
        with col1:
            if st.button("๐ŸŒ", key="md_"+file):  # md emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='md'
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("๐Ÿ“‚", key="open_"+file):  # open emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='open'
        with col4:
            if st.button("๐Ÿ”", key="read_"+file):  # search emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='search'
        with col5:
            if st.button("๐Ÿ—‘", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()

                
    if len(file_contents) > 0:
        if next_action=='open':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
        if next_action=='md':
            st.markdown(file_contents)
        if next_action=='search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            st.write('Reasoning with your inputs...')

            # new - llama
            response = StreamLLMChatResponse(file_contents)
            filename = generate_filename(user_prompt, ".md")
            create_file(filename, file_contents, response, should_save)
            SpeechSynthesis(response)
            
            # old - gpt
            #response = chat_with_model(user_prompt, file_contents, model_choice)
            #filename = generate_filename(file_contents, choice)
            #create_file(filename, user_prompt, response, should_save)
            
            st.experimental_rerun()

    # Feedback
    # Step: Give User a Way to Upvote or Downvote
    feedback = st.radio("Step 8: Give your feedback", ("๐Ÿ‘ Upvote", "๐Ÿ‘Ž Downvote"))
    if feedback == "๐Ÿ‘ Upvote":
        st.write("You upvoted ๐Ÿ‘. Thank you for your feedback!")
    else:
        st.write("You downvoted ๐Ÿ‘Ž. Thank you for your feedback!")
        
    load_dotenv()
    st.write(css, unsafe_allow_html=True)
    st.header("Chat with documents :books:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        process_user_input(user_question)
    with st.sidebar:
        st.subheader("Your documents")
        docs = st.file_uploader("import documents", accept_multiple_files=True)
        with st.spinner("Processing"):
            raw = pdf2txt(docs)
            if len(raw) > 0:
                length = str(len(raw))
                text_chunks = txt2chunks(raw)
                vectorstore = vector_store(text_chunks)
                st.session_state.conversation = get_chain(vectorstore)
                st.markdown('# AI Search Index of Length:' + length + ' Created.')  # add timing
                filename = generate_filename(raw, 'txt')
                create_file(filename, raw, '', should_save)

# 18. Run AI Pipeline
if __name__ == "__main__":
    whisper_main()
    main()
    add_Med_Licensing_Exam_Dataset()