Spaces:
Runtime error
Runtime error
File size: 4,990 Bytes
d4b629f 0370f84 d4b629f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os # 📁 For file operations
# 🧠 Neural network layers
norm_layer = nn.InstanceNorm2d
# 🧱 Building block for the generator
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features)
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
# 🎨 Generator model for creating line drawings
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# 🏁 Initial convolution block
model0 = [ nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True) ]
self.model0 = nn.Sequential(*model0)
# 🔽 Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
# 🔁 Residual blocks
model2 = []
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# 🔼 Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# 🎭 Output layer
model4 = [ nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x, cond=None):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
# 🔧 Load the models
model1 = Generator(3, 1, 3)
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu'), weights_only=True))
model1.eval()
model2 = Generator(3, 1, 3)
model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu'), weights_only=True))
model2.eval()
# 🖼️ Function to process the image and create line drawing
def predict(input_img, ver):
# Open the image and get its original size
original_img = Image.open(input_img)
original_size = original_img.size
# Define the transformation pipeline
transform = transforms.Compose([
transforms.Resize(256, Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# Apply the transformation
input_tensor = transform(original_img)
input_tensor = input_tensor.unsqueeze(0)
# Process the image through the model
with torch.no_grad():
if ver == 'Simple Lines':
output = model2(input_tensor)
else:
output = model1(input_tensor)
# Convert the output tensor to an image
output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
# Resize the output image back to the original size
output_img = output_img.resize(original_size, Image.BICUBIC)
return output_img
# 📝 Title for the Gradio interface
title="🖌️ Image to Artistic Drawing"
# 🖼️ Dynamically generate examples from images in the directory
examples = []
image_dir = '.' # Assuming images are in the current directory
for file in os.listdir(image_dir):
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')):
examples.append([file, 'Simple Lines'])
examples.append([file, 'Complex Lines'])
# 🚀 Create and launch the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=[
gr.Image(type='filepath'),
gr.Radio(['Complex Lines', 'Simple Lines'], label='version', value='Simple Lines')
],
outputs=gr.Image(type="pil"),
title=title,
examples=examples
)
iface.launch() |