File size: 53,451 Bytes
93bff19
53e1c4e
93bff19
d8ff977
5bb19ae
34b6005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43d868e
db79f56
a857b87
2d4f821
55d7401
b230746
199b3cc
55d7401
 
 
753f915
6afbe45
753f915
55d7401
 
4260b75
f615d30
b230746
181af13
f615d30
 
 
 
 
64ac15e
 
b230746
64ac15e
b230746
64ac15e
 
da646d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181af13
da646d0
 
 
 
 
2d4f821
24c60de
9eb74bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24c60de
2d4f821
 
 
d4e9457
 
 
 
 
 
 
 
 
 
 
 
2974a9b
d4e9457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2974a9b
d4e9457
 
 
 
 
 
 
2d4f821
c7521e9
2d4f821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67f9944
71769f7
181af13
71769f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e09f106
 
d862791
 
e09f106
 
 
 
 
 
 
 
 
 
 
 
71769f7
67f9944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f565e1
 
 
 
 
652dc4c
67f9944
 
c1675ec
67f9944
 
 
181af13
67f9944
 
 
 
 
 
 
181af13
67f9944
 
 
 
 
 
 
 
 
afc4b4f
c7521e9
afc4b4f
 
 
 
 
 
 
67f9944
c7521e9
afc4b4f
 
 
25d2245
afc4b4f
 
 
 
 
25d2245
c80c16b
a032262
 
 
25d2245
a032262
08208c3
a032262
 
 
 
 
08208c3
a032262
 
 
 
c80c16b
 
a032262
 
 
 
 
 
25d2245
 
ece76b0
8166716
 
 
ece76b0
8166716
ece76b0
8166716
ece76b0
8166716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f994e
77129c9
 
 
 
 
df426d6
0f3fdad
2974a9b
 
 
8fb3b51
2974a9b
 
 
8fb3b51
2974a9b
 
05f994e
2974a9b
 
05f994e
2974a9b
701f012
2974a9b
 
8fb3b51
0f3fdad
 
77129c9
693209f
 
 
 
 
 
 
 
 
 
8be87a8
df6e848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2955dfa
 
2a43c3b
fd80250
fd62e11
5b3dda4
9b796f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c10ecc1
1483bb1
c10ecc1
13af9c2
f6e4799
c7521e9
cf17c6e
 
 
 
 
f6e4799
 
 
 
 
 
 
 
 
f4d39b3
 
f6e4799
f4d39b3
 
f6e4799
 
 
8c940ba
c7521e9
9b796f0
 
 
 
 
8c940ba
 
 
54376c6
628d717
8c940ba
 
 
 
 
628d717
 
 
 
 
8c940ba
9b796f0
 
 
 
 
 
bd031a7
9b796f0
 
c7521e9
9b796f0
 
 
 
 
 
 
 
 
 
 
 
 
 
f504bcb
9b796f0
263e41a
 
 
76a257f
263e41a
76a257f
263e41a
 
 
 
 
 
 
 
 
ce872b6
263e41a
 
 
 
 
 
 
 
 
 
7606437
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7521e9
263e41a
 
 
 
c7521e9
 
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7521e9
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264f77f
 
263e41a
 
 
 
 
 
 
 
 
 
264f77f
 
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264f77f
 
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e07e606
 
 
 
 
 
 
3c2f20e
ce872b6
717f278
 
 
b1ea756
717f278
 
 
 
e07e606
717f278
 
 
e07e606
b1ea756
 
e07e606
b1ea756
717f278
 
 
263e41a
 
53e1c4e
263e41a
ce872b6
 
263e41a
 
 
 
ce872b6
263e41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a37a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d0e33
4d6ccda
8b1291e
 
7cf7472
8b1291e
 
3be9ecb
8b1291e
83d0e33
66154c1
83d0e33
4d6ccda
 
 
 
 
83d0e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263e41a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
import streamlit as st
import streamlit.components.v1 as components
import os
import json
import random
import base64
import glob
import math
import openai
import pytz
import re
import requests
import textract
import time
import zipfile
import huggingface_hub
import dotenv
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from io import BytesIO
from openai import ChatCompletion
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from xml.etree import ElementTree as ET
from PIL import Image
from urllib.parse import quote  # Ensure this import is included

# Set initial page and app customization and configuration -------------------------
st.set_page_config(
    page_title="๐Ÿ“–๐Ÿ”GraphicNovelAI",
    page_icon="๐Ÿ”๐Ÿ“–",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': "https://huggingface.co/spaces/awacke1/GraphicAINovel",
        'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558"
    }
)

# Title, Base Content and Help/About
st.markdown('''### ๐Ÿ“–โœจ๐Ÿ” GraphicNovelAI ''')

# Base Content Prompts for App, for App Product, and App Product Code
PromptPrefix = 'Create a graphic novel story with streamlit markdown outlines and tables with appropriate emojis for graphic novel rules defining the method steps of play.  Use story structure architect rules using plan, structure and top three dramatic situations matching the theme for topic of '
PromptPrefix2 = 'Create a streamlit python user app with full code listing to create a UI implementing the plans, structure, situations and tables as python functions creating a game which operates like choose your own adventure graphic novel rules and creates a compelling fun story using streamlit to create user interface elements like emoji buttons, sliders, drop downs, and data interfaces like dataframes to show tables, session_state to track inventory, character advancement and experience, locations, file_uploader to allow the user to add images which are saved and referenced shown in gallery, camera_input to take character picture, on_change = function callbacks with continual running plots that change when you change data or click a button, randomness and dice rolls using emojis and st.markdown, st.expander for groupings and clusters of things, st.columns and other UI controls in streamlit as a game. Create inline data tables and list dictionaries for entities implemented as variables for the game rule entities and stats.  Design it as a fun data driven game app and show full python code listing for this ruleset and thematic story plot line: '
PromptPrefix3 = 'Create a HTML5 aframe and javascript app using appropriate libraries to create a simulation and use more advanced libraries like aframe to render 3d scenes creating moving entities that stay within a bounding box but show text and animation in 3d for inventory, components and story entities.  Show full code listing.  Add a list of new random entities say 3 of a few different types to any list appropriately and use emojis to make things easier and fun to read.  Use appropriate emojis in labels.  Create the UI to implement storytelling in the style of a dungeon master, with features using three emoji appropriate text plot twists and recurring interesting funny fascinating and complex almost poetic named characters with genius traits and file IO, randomness, ten point choice lists, math distribution tradeoffs, witty humorous dilemnas with emoji , rewards, variables, reusable functions with parameters, and data driven app with python libraries and streamlit components for Javascript and HTML5. Use appropriate emojis for labels to summarize and list parts, function, conditions for topic:'

with st.expander("Help / About ๐Ÿ“š", expanded=False):
    st.markdown('''
    - ๐Ÿš€ **Unlock Plots:** Elevate your vocabulary with AI. Turns plots into thrilling experiences.
    - ๐Ÿ“š **Features:** Creates extensive glossaries & exciting challenges.
    - ๐Ÿง™โ€โ™‚๏ธ **Experience:** Become a graphic novel plot wizard, boost your language skills.
    - ๐Ÿ”Ž **Query Use:** Input `?q=Palindrome` or `?query=Anagram` in URL for new challenges.
    ''')
    # Aaron's Intelligent Style Guide for AI Graphic Novel Writers    
    parts_of_speech = [
        {"type": "Noun", "description": "Person, place, thing, or idea", "example": "Hero, city, spaceship, justice"},
        {"type": "Verb", "description": "Action or state of being", "example": "Fight, transform, is, become"},
        {"type": "Adjective", "description": "Describes a noun", "example": "Mysterious, ancient, powerful, dark"},
        {"type": "Adverb", "description": "Modifies verbs, adjectives, or other adverbs", "example": "Mysteriously, very, suddenly, heroically"},
        {"type": "Conjunction", "description": "Connects clauses, sentences, or words", "example": "And, but, or, yet"},
        {"type": "Interjection", "description": "Expresses emotion", "example": "Wow!, Ouch!, Haha!, Shhh!"},
        {"type": "Idiom", "description": "Phrase with a figurative meaning", "example": "Break a leg, Spill the beans, Hit the road"},
        {"type": "Symbolism", "description": "Objects, figures, or colors used to represent ideas or concepts", "example": "A rose for love, a storm for chaos"},
        {"type": "Theme", "description": "Underlying message or main idea", "example": "The quest for identity, the battle between good and evil"},
        {"type": "Motif", "description": "Recurring element that has symbolic significance", "example": "Repeated imagery of masks to signify identity"}
    ]
    language_structures = [
        {"type": "Glossary", "description": "Vocabulary Reference: List of terms and their definitions", "example": "Villain: The antagonist of the story"},
        {"type": "Dialogue", "description": "Conversational Text: Characters' spoken words", "example": "We must act now! exclaimed the hero"},
        {"type": "Narration", "description": "Storytelling Text: Text that tells the story", "example": "The city had never seen such despair"},
        {"type": "Captions", "description": "Descriptive Text: Describes scene, setting, or action", "example": "New York, 2050. A city in turmoil"},
        {"type": "Sound Effects", "description": "Auditory Text: Words that mimic sounds", "example": "BOOM! The spaceship landed"},
        {"type": "Thought Bubbles", "description": "Internal Monologue Text: Characters' thoughts", "example": "I wonder if they know my secret"},
        {"type": "Panel Transitions", "description": "Visual Storytelling Technique: Movement between scenes or ideas", "example": "Meanwhile, across the galaxy..."},
        {"type": "Character Development", "description": "Evolution of characters throughout the story", "example": "From a timid schoolgirl to a fearless warrior"},
        {"type": "Plot Twists", "description": "Unexpected changes in the story direction", "example": "The hero discovers their enemy is their sibling"},
        {"type": "Backstory", "description": "Historical or background context of characters or setting", "example": "Once a celebrated hero, now a forgotten legend"}
    ]
    # Assuming 'parts_of_speech' and 'language_structures' are defined as above
    def display_elements(elements, title):
        st.markdown(f"## {title}")
        for element in elements:
            st.markdown(f"""
    - **Type**: {element['type']}
    - **Description**: {element['description']}
    - **Example**: {element['example']}
    """)
    
    # process sets:
    st.title("Graphic Novel Creation Toolkit")
    display_elements(parts_of_speech, "Parts of Speech for Dramatic Situations")
    display_elements(language_structures, "Language Structures for Dramatic Situations")
    
    
# MoE Context Glossary
roleplaying_glossary = {
  "๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ Top Graphic Novel Plot Themes": {
    "Epic Fantasy": [
      "Ancient prophecies and mystical artifacts",
      "Epic battles between good and evil",
      "Complex world-building with diverse cultures",
      "Journey of a reluctant hero",
      "Alliance of unlikely companions",
      "Betrayal and redemption arcs",
      "Magic systems and mythical creatures",
      "Climactic confrontation with a dark lord"
    ],
    "Superhero Sagas": [
      "Origin stories of heroes and villains",
      "Struggle with personal identity and responsibility",
      "Formation of superhero teams",
      "Epic battles to save the city/world",
      "Moral dilemmas and ethical questions",
      "Interdimensional threats and cosmic wars",
      "Evolution of powers and discovery of new abilities",
      "Legacy heroes and passing of the mantle"
    ],
    "Post-Apocalyptic Survival": [
      "Survival in a world after a global catastrophe",
      "Rebuilding society from the ashes",
      "Conflict between surviving factions",
      "Quests for scarce resources",
      "Encounters with mutated creatures",
      "Moral ambiguity and survival ethics",
      "Exploration of human resilience",
      "Discovery of a safe haven or cure"
    ],
    "Science Fiction and Space Opera": [
      "Exploration of distant galaxies",
      "Conflict between alien species",
      "Advanced technology and space travel",
      "Utopian and dystopian societies",
      "Time travel and alternate realities",
      "Artificial intelligence and robotics",
      "Quests for knowledge and discovery",
      "Rebellion against oppressive regimes"
    ],
    "Horror and Supernatural": [
      "Haunted locations and ghost stories",
      "Battles against demonic forces",
      "Survival horror and psychological terror",
      "Folklore and urban legends",
      "Vampires, werewolves, and other monsters",
      "Occult practices and dark magic",
      "Apocalyptic and Lovecraftian themes",
      "Investigations into the unknown"
    ],
    "Romance and Relationship Dramas": [
      "Complex romantic entanglements",
      "Struggles with identity and societal expectations",
      "Heartbreak, healing, and growth",
      "Forbidden love and star-crossed lovers",
      "Contemporary relationship dynamics",
      "Cultural and social differences",
      "Self-discovery and personal fulfillment",
      "Romantic comedies and tragedies"
    ]
  }
}
# Set initial page and app configs ------------------------------------------



# Function to display the entire glossary in a grid format with links
def display_glossary_grid(roleplaying_glossary):
    search_urls = {
        "๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
        "๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}",
        "โ–ถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}",
        "๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
        "๐ŸŽฒ": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(k)}",  # this url plus query!
        "๐Ÿƒ": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix)}{quote(k)}",  # this url plus query!
        "๐Ÿ“š": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix2)}{quote(k)}",  # this url plus query!
        "๐Ÿ”ฌ": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix3)}{quote(k)}",  # this url plus query!
    }

    for category, details in roleplaying_glossary.items():
        st.write(f"### {category}")
        cols = st.columns(len(details))  # Create dynamic columns based on the number of games
        for idx, (game, terms) in enumerate(details.items()):
            with cols[idx]:
                st.markdown(f"#### {game}")
                for term in terms:
                    links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
                    st.markdown(f"{term} {links_md}", unsafe_allow_html=True)

def display_glossary_entity(k):
    search_urls = {
        "๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
        "๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}",
        "โ–ถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}",
        "๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
        "๐ŸŽฒ": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(k)}",  # this url plus query!
        "๐Ÿƒ": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix)}{quote(k)}",  # this url plus query!
        "๐Ÿ“š": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix2)}{quote(k)}",  # this url plus query!
        "๐Ÿ”ฌ": lambda k: f"https://huggingface.co/spaces/awacke1/GraphicAINovel?q={quote(PromptPrefix3)}{quote(k)}",  # this url plus query!
    }
    links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
    st.markdown(f"{k} {links_md}", unsafe_allow_html=True)




# HTML5 based Speech Synthesis (Text to Speech in Browser)
@st.cache_resource
def SpeechSynthesis(result):
    documentHTML5='''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }
        </script>
    </head>
    <body>
        <h1>๐Ÿ”Š Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">
    '''
    documentHTML5 = documentHTML5 + result
    documentHTML5 = documentHTML5 + '''
        </textarea>
        <br>
        <button onclick="readAloud()">๐Ÿ”Š Read Aloud</button>
    </body>
    </html>
    '''
    components.html(documentHTML5, width=1280, height=300)



# 9. Chat History File Sidebar
@st.cache_resource
def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        data = file.read()
   
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.py':
        mime_type = 'text/plain'
    elif ext == '.xlsx':
        mime_type = 'text/plain'
    elif ext == '.csv':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    elif ext == '.wav':
        mime_type = 'audio/wav'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href


@st.cache_resource
def create_zip_of_files(files):
    #zip_name = "all_files.zip"
    zip_name = "GraphicAINovels.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name
    
@st.cache_resource
def get_zip_download_link(zip_file):
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
    return href

def FileSidebar():
    # ----------------------------------------------------- File Sidebar for Jump Gates ------------------------------------------
    # Compose a file sidebar of markdown md files:
    all_files = glob.glob("*.md")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order
    if st.sidebar.button("๐Ÿ—‘ Delete All Text"):
        for file in all_files:
            os.remove(file)
        st.experimental_rerun()
    if st.sidebar.button("โฌ‡๏ธ Download All"):
        zip_file = create_zip_of_files(all_files)
        st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
    file_contents=''
    next_action=''
    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])  # adjust the ratio as needed
        with col1:
            if st.button("๐ŸŒ", key="md_"+file):  # md emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='md'
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("๐Ÿ“‚", key="open_"+file):  # open emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='open'
        with col4:
            if st.button("๐Ÿ”", key="read_"+file):  # search emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='search'
        with col5:
            if st.button("๐Ÿ—‘", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()

                
    if len(file_contents) > 0:
        if next_action=='open':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            try:
                if st.button("๐Ÿ”", key="filecontentssearch"):
                    search_glossary(file_content_area)
            except:
                st.markdown('GPT is sleeping.  Restart ETA 30 seconds.')

        if next_action=='md':
            st.markdown(file_contents)
            buttonlabel = '๐Ÿ”Run'
            if st.button(key='RunWithLlamaandGPT', label = buttonlabel):
                user_prompt = file_contents
                try:
                    search_glossary(file_contents)
                except:
                    st.markdown('GPT is sleeping.  Restart ETA 30 seconds.')

        if next_action=='search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            user_prompt = file_contents
            try:
                search_glossary(file_contents)
            except:
                st.markdown('GPT is sleeping.  Restart ETA 30 seconds.')
    # ----------------------------------------------------- File Sidebar for Jump Gates ------------------------------------------


FileSidebar()



# ---- Art Card Sidebar with Random Selection of image:
@st.cache_resource
def get_image_as_base64(url):
    response = requests.get(url)
    if response.status_code == 200:
        # Convert the image to base64
        return base64.b64encode(response.content).decode("utf-8")
    else:
        return None

@st.cache_resource
def create_download_link(filename, base64_str):
    href = f'<a href="data:file/png;base64,{base64_str}" download="{filename}">Download Image</a>'
    return href

# List of image URLs
image_urls = [
    "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/W1omJItftG3OkW9sj-Ckb.png",
    "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/Djx-k4WOxzlXEQPzllP3r.png"
]

UseSidebarArtCard=True
if UseSidebarArtCard:
    # Select a random URL from the list
    selected_image_url = random.choice(image_urls)
    
    # Get the base64 encoded string of the selected image
    # st.write(selected_image_url)
    try:
        selected_image_base64 = get_image_as_base64(selected_image_url)
        
        if selected_image_base64 is not None:
            with st.sidebar:
                #st.markdown("""### Graphic Novel AI""")
                # Display the image
                st.markdown(f"![image](data:image/png;base64,{selected_image_base64})")
                
                # Create and display the download link
                #download_link = create_download_link("downloaded_image.png", selected_image_base64)
                #st.markdown(download_link, unsafe_allow_html=True)
        else:
            st.sidebar.write("Failed to load the image.")
    except:
        st.write('Sidebar Fail - Check your Images')
    # ---- Art Card Sidebar with random selection of image.
        
    

# Ensure the directory for storing scores exists
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)

# Function to generate a unique key for each button, including an emoji
def generate_key(label, header, idx):
    return f"{header}_{label}_{idx}_key"

# Function to increment and save score
def update_score(key, increment=1):
    score_file = os.path.join(score_dir, f"{key}.json")
    if os.path.exists(score_file):
        with open(score_file, "r") as file:
            score_data = json.load(file)
    else:
        score_data = {"clicks": 0, "score": 0}
    
    score_data["clicks"] += 1
    score_data["score"] += increment
    
    with open(score_file, "w") as file:
        json.dump(score_data, file)
    
    return score_data["score"]

# Function to load score
def load_score(key):
    score_file = os.path.join(score_dir, f"{key}.json")
    if os.path.exists(score_file):
        with open(score_file, "r") as file:
            score_data = json.load(file)
        return score_data["score"]
    return 0

@st.cache_resource
def search_glossary(query):
    for category, terms in roleplaying_glossary.items():
        if query.lower() in (term.lower() for term in terms):
            st.markdown(f"#### {category}")
            st.write(f"- {query}")

    all=""
    
    #query2 = PromptPrefix + query
    query2 = query
    response = chat_with_model(query2)        
    all = query + '   ' + response
    filename = generate_filename(response, "md")
    create_file(filename, query, response, should_save)     

    #query3 = PromptPrefix2 + query + ' for story outline of method steps: ' + response # Add prompt preface for coding task behavior
    #response2 = chat_with_model(query3)
        
    #query4 = PromptPrefix3 + query + ' using this streamlit python programspecification to define features.  Create entities for each variable and generate UI with HTML5 and JS that matches the streamlit program: ' + response2 # Add prompt preface for coding task behavior
    #response3 = chat_with_model(query4)
    
    #all = query + '   ' + response + '   ' + response2 + '   ' + response3
    
    #filename = generate_filename(all, "md")
    #create_file(filename, query, all, should_save)
    
    SpeechSynthesis(all)
    return all
    
# Function to display the glossary in a structured format
def display_glossary(glossary, area):
    if area in glossary:
        st.subheader(f"๐Ÿ“˜ Glossary for {area}")
        for game, terms in glossary[area].items():
            st.markdown(f"### {game}")
            for idx, term in enumerate(terms, start=1):
                st.write(f"{idx}. {term}")





game_emojis = {
    "Dungeons and Dragons": "๐Ÿ‰",
    "Call of Cthulhu": "๐Ÿ™",
    "GURPS": "๐ŸŽฒ",
    "Pathfinder": "๐Ÿ—บ๏ธ",
    "Kindred of the East": "๐ŸŒ…",
    "Changeling": "๐Ÿƒ",
}

topic_emojis = {
    "Core Rulebooks": "๐Ÿ“š",
    "Maps & Settings": "๐Ÿ—บ๏ธ",
    "Game Mechanics & Tools": "โš™๏ธ",
    "Monsters & Adversaries": "๐Ÿ‘น",
    "Campaigns & Adventures": "๐Ÿ“œ",
    "Creatives & Assets": "๐ŸŽจ",
    "Game Master Resources": "๐Ÿ› ๏ธ",
    "Lore & Background": "๐Ÿ“–",
    "Character Development": "๐Ÿง",
    "Homebrew Content": "๐Ÿ”ง",
    "General Topics": "๐ŸŒ",
}

# Adjusted display_buttons_with_scores function
def display_buttons_with_scores():
    for category, games in roleplaying_glossary.items():
        category_emoji = topic_emojis.get(category, "๐Ÿ”")  # Default to search icon if no match
        st.markdown(f"## {category_emoji} {category}")
        for game, terms in games.items():
            game_emoji = game_emojis.get(game, "๐ŸŽฎ")  # Default to generic game controller if no match
            for term in terms:
                key = f"{category}_{game}_{term}".replace(' ', '_').lower()
                score = load_score(key)
                if st.button(f"{game_emoji} {term} {score}", key=key):
                    update_score(key)
                    # Create a dynamic query incorporating emojis and formatting for clarity
                    query_prefix = f"{category_emoji} {game_emoji} **{game} - {category}:**"
                    # ----------------------------------------------------------------------------------------------
                    #query_body = f"Create a detailed outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
                    query_body = f"Create a streamlit python app.py that produces a detailed markdown outline and emoji laden user interface with labels with the entity name and emojis in all labels with a set of streamlit UI components with drop down lists and dataframes and buttons with expander and sidebar for the app to run the data as default values mostly in text boxes. Feature a 3 point outline sith 3 subpoints each where each line has about six words describing this and also contain appropriate emoji for creating sumamry of all aspeccts of this topic. an outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
                    response = search_glossary(query_prefix + query_body)


def fetch_wikipedia_summary(keyword):
    # Placeholder function for fetching Wikipedia summaries
    # In a real app, you might use requests to fetch from the Wikipedia API
    return f"Summary for {keyword}. For more information, visit Wikipedia."

def create_search_url_youtube(keyword):
    base_url = "https://www.youtube.com/results?search_query="
    return base_url + keyword.replace(' ', '+')

def create_search_url_bing(keyword):
    base_url = "https://www.bing.com/search?q="
    return base_url + keyword.replace(' ', '+')

def create_search_url_wikipedia(keyword):
    base_url = "https://www.wikipedia.org/search-redirect.php?family=wikipedia&language=en&search="
    return base_url + keyword.replace(' ', '+')

def create_search_url_google(keyword):
    base_url = "https://www.google.com/search?q="
    return base_url + keyword.replace(' ', '+')

def create_search_url_ai(keyword):
    base_url = "https://huggingface.co/spaces/awacke1/GraphicAINovel?q="
    return base_url + keyword.replace(' ', '+')


@st.cache_resource
def display_videos_and_links():
    video_files = [f for f in os.listdir('.') if f.endswith('.mp4')]
    if not video_files:
        st.write("No MP4 videos found in the current directory.")
        return
    
    video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))

    cols = st.columns(2)  # Define 2 columns outside the loop
    col_index = 0  # Initialize column index

    for video_file in video_files_sorted:
        with cols[col_index % 2]:  # Use modulo 2 to alternate between the first and second column
            # Embedding video with autoplay and loop using HTML
            #video_html = ("""<video width="100%" loop autoplay>   <source src="{video_file}" type="video/mp4">Your browser does not support the video tag.</video>""")
            #st.markdown(video_html, unsafe_allow_html=True)
            k = video_file.split('.')[0]  # Assumes keyword is the file name without extension
            st.video(video_file, format='video/mp4', start_time=0)
            display_glossary_entity(k)  
        col_index += 1  # Increment column index to place the next video in the next column


 
@st.cache_resource
def display_images_and_wikipedia_summaries():
    image_files = [f for f in os.listdir('.') if f.endswith('.png')]
    if not image_files:
        st.write("No PNG images found in the current directory.")
        return
    image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
    grid_sizes = [len(f.split('.')[0]) for f in image_files_sorted]
    col_sizes = ['small' if size <= 4 else 'medium' if size <= 8 else 'large' for size in grid_sizes]
    num_columns_map = {"small": 4, "medium": 3, "large": 2}
    current_grid_size = 0
    for image_file, col_size in zip(image_files_sorted, col_sizes):
        if current_grid_size != num_columns_map[col_size]:
            cols = st.columns(num_columns_map[col_size])
            current_grid_size = num_columns_map[col_size]
            col_index = 0
            with cols[col_index % current_grid_size]:
                image = Image.open(image_file)
                st.image(image, caption=image_file, use_column_width=True)
                k = image_file.split('.')[0]  # Assumes keyword is the file name without extension
                display_glossary_entity(k)


def get_all_query_params(key):
    return st.query_params().get(key, [])

def clear_query_params():
    st.query_params()  
                

# Function to display content or image based on a query
@st.cache_resource
def display_content_or_image(query):
    for category, terms in transhuman_glossary.items():
        for term in terms:
            if query.lower() in term.lower():
                st.subheader(f"Found in {category}:")
                st.write(term)
                return True  # Return after finding and displaying the first match
    image_dir = "images"  # Example directory where images are stored
    image_path = f"{image_dir}/{query}.png"  # Construct image path with query
    if os.path.exists(image_path):
        st.image(image_path, caption=f"Image for {query}")
        return True
    st.warning("No matching content or image found.")
    return False


# 1. Constants and Top Level UI Variables

# My Inference API Copy
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud'  # Dr Llama
# Meta's Original - Chat HF Free Version:
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
API_KEY = os.getenv('API_KEY')
MODEL1="meta-llama/Llama-2-7b-chat-hf"
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
HF_KEY = os.getenv('HF_KEY')
headers = {
    "Authorization": f"Bearer {HF_KEY}",
    "Content-Type": "application/json"
}
key = os.getenv('OPENAI_API_KEY')
prompt = f"..."
should_save = st.sidebar.checkbox("๐Ÿ’พ Save", value=True, help="Save your session data.")



# 3. Stream Llama Response
# @st.cache_resource
def StreamLLMChatResponse(prompt):
    try:
        endpoint_url = API_URL
        hf_token = API_KEY
        #st.write('Running client ' + endpoint_url)
        client = InferenceClient(endpoint_url, token=hf_token)
        gen_kwargs = dict(
            max_new_tokens=512,
            top_k=30,
            top_p=0.9,
            temperature=0.2,
            repetition_penalty=1.02,
            stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
        )
        stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
        report=[]
        res_box = st.empty()
        collected_chunks=[]
        collected_messages=[]
        allresults=''
        for r in stream:
            if r.token.special:
                continue
            if r.token.text in gen_kwargs["stop_sequences"]:
                break
            collected_chunks.append(r.token.text)
            chunk_message = r.token.text
            collected_messages.append(chunk_message)
            try:
                report.append(r.token.text)
                if len(r.token.text) > 0:
                    result="".join(report).strip()
                    res_box.markdown(f'*{result}*')
                    
            except:
                st.write('Stream llm issue')
        SpeechSynthesis(result)
        return result
    except:
        st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')

# 4. Run query with payload
@st.cache_resource
def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    st.markdown(response.json())
    return response.json()

    
def get_output(prompt):
    return query({"inputs": prompt})

# 5. Auto name generated output files from time and content
def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255]  # 255 is linux max, 260 is windows max
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# 6. Speech transcription via OpenAI service
def transcribe_audio(openai_key, file_path, model):
    openai.api_key = openai_key
    OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
    headers = {
        "Authorization": f"Bearer {openai_key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        st.write('STT transcript ' + OPENAI_API_URL)
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
        transcript = response.json().get('text')
        filename = generate_filename(transcript, 'txt')
        response = chatResponse
        user_prompt = transcript
        create_file(filename, user_prompt, response, should_save)
        return transcript
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

# 7. Auto stop on silence audio control for recording WAV files
def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder(key='audio_recorder')
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

# 8. File creator that interprets type and creates output file for text, markdown and code
@st.cache_resource
def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return
    base_filename, ext = os.path.splitext(filename)
    if ext in ['.txt', '.htm', '.md']:
        with open(f"{base_filename}.md", 'w') as file:
            try:
                content = prompt.strip() + '\r\n' + response
                file.write(content)
            except:
                st.write('.')

    #has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)
    #has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response))
        #if has_python_code:
        #    python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
        #    with open(f"{base_filename}-Code.py", 'w') as file:
        #        file.write(python_code)
        #    with open(f"{base_filename}.md", 'w') as file:
        #        content = prompt.strip() + '\r\n' + response
        #        file.write(content)
            
def truncate_document(document, length):
    return document[:length]
def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")

# 10. Read in and provide UI for past files
@st.cache_resource
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

# 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS
@st.cache_resource
def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'):    # gpt-4-0125-preview	gpt-3.5-turbo
#def chat_with_model(prompt, document_section='', model_choice='gpt-4-0125-preview'):    # gpt-4-0125-preview	gpt-3.5-turbo
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
    start_time = time.time()
    report = []
    res_box = st.empty()
    collected_chunks = []
    collected_messages = []
    
    for chunk in openai.ChatCompletion.create(model=model_choice, messages=conversation, temperature=0.5, stream=True): 
        collected_chunks.append(chunk)  
        chunk_message = chunk['choices'][0]['delta']  
        collected_messages.append(chunk_message) 
        content=chunk["choices"][0].get("delta",{}).get("content")
        try:
            report.append(content)
            if len(content) > 0:
                result = "".join(report).strip()
                res_box.markdown(f'*{result}*') 
        except:
            st.write(' ')
    full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
    st.write("Elapsed time:")
    st.write(time.time() - start_time)
    return full_reply_content

@st.cache_resource
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):  # gpt-4-0125-preview	gpt-3.5-turbo
#def chat_with_file_contents(prompt, file_content, model_choice='gpt-4-0125-preview'):  # gpt-4-0125-preview	gpt-3.5-turbo
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(file_content)>0:
        conversation.append({'role': 'assistant', 'content': file_content})
    response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
    return response['choices'][0]['message']['content']

def extract_mime_type(file):
    if isinstance(file, str):
        pattern = r"type='(.*?)'"
        match = re.search(pattern, file)
        if match:
            return match.group(1)
        else:
            raise ValueError(f"Unable to extract MIME type from {file}")
    elif isinstance(file, streamlit.UploadedFile):
        return file.type
    else:
        raise TypeError("Input should be a string or a streamlit.UploadedFile object")

def extract_file_extension(file):
    # get the file name directly from the UploadedFile object
    file_name = file.name
    pattern = r".*?\.(.*?)$"
    match = re.search(pattern, file_name)
    if match:
        return match.group(1)
    else:
        raise ValueError(f"Unable to extract file extension from {file_name}")

# Normalize input as text from PDF and other formats
@st.cache_resource
def pdf2txt(docs):
    text = ""
    for file in docs:
        file_extension = extract_file_extension(file)
        st.write(f"File type extension: {file_extension}")
        if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
            text += file.getvalue().decode('utf-8')
        elif file_extension.lower() == 'pdf':
            from PyPDF2 import PdfReader
            pdf = PdfReader(BytesIO(file.getvalue()))
            for page in range(len(pdf.pages)):
                text += pdf.pages[page].extract_text() # new PyPDF2 syntax
    return text

def txt2chunks(text):
    text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
    return text_splitter.split_text(text)

# Vector Store using FAISS
@st.cache_resource
def vector_store(text_chunks):
    embeddings = OpenAIEmbeddings(openai_api_key=key)
    return FAISS.from_texts(texts=text_chunks, embedding=embeddings)

# Memory and Retrieval chains
@st.cache_resource
def get_chain(vectorstore):
    llm = ChatOpenAI()
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)

def process_user_input(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']
    for i, message in enumerate(st.session_state.chat_history):
        template = user_template if i % 2 == 0 else bot_template
        st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
        filename = generate_filename(user_question, 'txt')
        response = message.content
        user_prompt = user_question
        create_file(filename, user_prompt, response, should_save)       

def divide_prompt(prompt, max_length):
    words = prompt.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        if len(word) + current_length <= max_length:
            current_length += len(word) + 1 
            current_chunk.append(word)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
    chunks.append(' '.join(current_chunk))
    return chunks

    

# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
MODEL2 = "openai/whisper-small.en"
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
HF_KEY = st.secrets['HF_KEY']
headers = {
    "Authorization": f"Bearer {HF_KEY}",
    "Content-Type": "audio/wav"
}
def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL_IE, headers=headers, data=data)
    return response.json()

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# 15. Audio recorder to Wav file 
def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename

# 16. Speech transcription to file output
def transcribe_audio(filename):
    output = query(filename)
    return output

def whisper_main():
    filename = save_and_play_audio(audio_recorder)
    if filename is not None:
        transcription = transcribe_audio(filename)
        try:
            transcript = transcription['text']
            st.write(transcript)

        except:
            transcript=''
            st.write(transcript)

        st.write('Reasoning with your inputs..')
        response = chat_with_model(transcript)
        st.write('Response:')
        st.write(response)
        filename = generate_filename(response, "txt")
        create_file(filename, transcript, response, should_save)
        
        # Whisper to Llama:
        response = StreamLLMChatResponse(transcript)
        filename_txt = generate_filename(transcript, "md")
        create_file(filename_txt, transcript, response, should_save)
        filename_wav = filename_txt.replace('.txt', '.wav')
        import shutil
        try: 
            if os.path.exists(filename):
                shutil.copyfile(filename, filename_wav)
        except:
            st.write('.')
        if os.path.exists(filename):
            os.remove(filename)

# 17. Main
def main():
    prompt = PromptPrefix2
    with st.expander("Prompts ๐Ÿ“š", expanded=False):
        example_input = st.text_input("Enter your prompt text:", value=prompt, help="Enter text to get a response.")
        if st.button("Run Prompt", help="Click to run."):
            try:
                response=StreamLLMChatResponse(example_input)
                create_file(filename, example_input, response, should_save)
            except:
                st.write('model is asleep. Starting now on A10 GPU.  Please wait one minute then retry.  KEDA triggered.')
        openai.api_key = os.getenv('OPENAI_API_KEY')
        if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY']
        menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
        choice = st.sidebar.selectbox("Output File Type:", menu)
        model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))        
        user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
        collength, colupload = st.columns([2,3])  # adjust the ratio as needed
        with collength:
            max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
        with colupload:
            uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
        document_sections = deque()
        document_responses = {}
        if uploaded_file is not None:
            file_content = read_file_content(uploaded_file, max_length)
            document_sections.extend(divide_document(file_content, max_length))
        if len(document_sections) > 0:
            if st.button("๐Ÿ‘๏ธ View Upload"):
                st.markdown("**Sections of the uploaded file:**")
                for i, section in enumerate(list(document_sections)):
                    st.markdown(f"**Section {i+1}**\n{section}")
            st.markdown("**Chat with the model:**")
            for i, section in enumerate(list(document_sections)):
                if i in document_responses:
                    st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
                else:
                    if st.button(f"Chat about Section {i+1}"):
                        st.write('Reasoning with your inputs...')
                        #response = chat_with_model(user_prompt, section, model_choice)
                        st.write('Response:')
                        st.write(response)
                        document_responses[i] = response
                        filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                        create_file(filename, user_prompt, response, should_save)
                        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
        if st.button('๐Ÿ’ฌ Chat'):
            st.write('Reasoning with your inputs...')
            user_prompt_sections = divide_prompt(user_prompt, max_length)
            full_response = ''
            for prompt_section in user_prompt_sections:
                response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
                full_response += response + '\n'  # Combine the responses
            response = full_response
            st.write('Response:')
            st.write(response)
            filename = generate_filename(user_prompt, choice)
            create_file(filename, user_prompt, response, should_save)
            

    # Function to encode file to base64
    def get_base64_encoded_file(file_path):
        with open(file_path, "rb") as file:
            return base64.b64encode(file.read()).decode()

    # Function to create a download link
    def get_audio_download_link(file_path):
        base64_file = get_base64_encoded_file(file_path)
        return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">โฌ‡๏ธ Download Audio</a>'

    # Compose a file sidebar of past encounters
    all_files = glob.glob("*.wav")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order

    filekey = 'delall'
    if st.sidebar.button("๐Ÿ—‘ Delete All Audio", key=filekey):
        for file in all_files:
            os.remove(file)
        st.experimental_rerun()

    for file in all_files:
        col1, col2 = st.sidebar.columns([6, 1])  # adjust the ratio as needed
        with col1:
            st.markdown(file)
            if st.button("๐ŸŽต", key="play_" + file):  # play emoji button
                audio_file = open(file, 'rb')
                audio_bytes = audio_file.read()
                st.audio(audio_bytes, format='audio/wav')
                #st.markdown(get_audio_download_link(file), unsafe_allow_html=True)
                #st.text_input(label="", value=file)
        with col2:
            if st.button("๐Ÿ—‘", key="delete_" + file):
                os.remove(file)
                st.experimental_rerun()

    GiveFeedback=False
    if GiveFeedback:
        with st.expander("Give your feedback ๐Ÿ‘", expanded=False):
            feedback = st.radio("Step 8: Give your feedback", ("๐Ÿ‘ Upvote", "๐Ÿ‘Ž Downvote"))
            if feedback == "๐Ÿ‘ Upvote":
                st.write("You upvoted ๐Ÿ‘. Thank you for your feedback!")
            else:
                st.write("You downvoted ๐Ÿ‘Ž. Thank you for your feedback!")
            load_dotenv()
            st.write(css, unsafe_allow_html=True)
            st.header("Chat with documents :books:")
            user_question = st.text_input("Ask a question about your documents:")
            if user_question:
                process_user_input(user_question)
            with st.sidebar:
                st.subheader("Your documents")
                docs = st.file_uploader("import documents", accept_multiple_files=True)
                with st.spinner("Processing"):
                    raw = pdf2txt(docs)
                    if len(raw) > 0:
                        length = str(len(raw))
                        text_chunks = txt2chunks(raw)
                        vectorstore = vector_store(text_chunks)
                        st.session_state.conversation = get_chain(vectorstore)
                        st.markdown('# AI Search Index of Length:' + length + ' Created.')  # add timing
                        filename = generate_filename(raw, 'txt')
                        create_file(filename, raw, '', should_save)
    

    try:
        query_params = st.query_params
        query = (query_params.get('q') or query_params.get('query') or [''])
        if query: search_glossary(query)
    except:
        st.markdown(' ')

    # Display the glossary grid
    st.markdown("### ๐ŸŽฒ๐Ÿ—บ๏ธ Graphic Novel Gallery")
    
    display_videos_and_links()   # Video Jump Grid
    display_images_and_wikipedia_summaries()   # Image Jump Grid
    display_glossary_grid(roleplaying_glossary)  # Word Glossary Jump Grid
    display_buttons_with_scores()  # Feedback Jump Grid

    if 'action' in st.query_params:
        action = st.query_params()['action'][0]  # Get the first (or only) 'action' parameter
        if action == 'show_message':
            st.success("Showing a message because 'action=show_message' was found in the URL.")
        elif action == 'clear':
            clear_query_params()
            st.experimental_rerun()
    
    # Handling repeated keys
    if 'multi' in st.query_params:
        multi_values = get_all_query_params('multi')
        st.write("Values for 'multi':", multi_values)
    
    # Manual entry for demonstration
    st.write("Enter query parameters in the URL like this: ?action=show_message&multi=1&multi=2")
    
    if 'query' in st.query_params:
        query = st.query_params['query'][0]  # Get the query parameter
        # Display content or image based on the query
        display_content_or_image(query)
    
    # Add a clear query parameters button for convenience
    if st.button("Clear Query Parameters", key='ClearQueryParams'):
        # This will clear the browser URL's query parameters
        st.experimental_set_query_params
        st.experimental_rerun()
                    
# 18. Run AI Pipeline
if __name__ == "__main__":
    whisper_main()
    main()