File size: 1,417 Bytes
1b7f935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b757a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import base64
import pandas as pd

# Example DataFrame
data = {'Column1': [1, 2], 'Column2': [3, 4]}
df = pd.DataFrame(data)

# Function to convert DataFrame to CSV and then encode to base64
def to_base64_csv(df):
    csv = df.to_csv(index=False)
    b64 = base64.b64encode(csv.encode()).decode()
    return f"data:text/csv;base64,{b64}"

# Function to convert DataFrame to TXT and then encode to base64
def to_base64_txt(df):
    txt = df.to_csv(index=False, sep='\t')
    b64 = base64.b64encode(txt.encode()).decode()
    return f"data:text/plain;base64,{b64}"

# Generate base64 encoded links
csv_link = to_base64_csv(df)
txt_link = to_base64_txt(df)

# Markdown format for hyperlinks in bold font with emojis
markdown_csv_link = f"**[📥 Download Dataset as CSV]({csv_link})**"
markdown_txt_link = f"**[📥 Download Dataset as TXT]({txt_link})**"

# Display as markdown (hypothetical, depends on how you render markdown in your application)
print(markdown_csv_link)
print(markdown_txt_link)




import gradio as gr

def process_live_input(input_stream):
    # Process the input stream here
    # Return the processed output for live update
    processed_output = some_processing_function(input_stream)
    return processed_output

iface = gr.Interface(fn=process_live_input, 
                     inputs=gr.inputs.Video(source="webcam", streaming=True), 
                     outputs="video")

iface.launch()