File size: 1,417 Bytes
1b7f935 b757a48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import base64
import pandas as pd
# Example DataFrame
data = {'Column1': [1, 2], 'Column2': [3, 4]}
df = pd.DataFrame(data)
# Function to convert DataFrame to CSV and then encode to base64
def to_base64_csv(df):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
return f"data:text/csv;base64,{b64}"
# Function to convert DataFrame to TXT and then encode to base64
def to_base64_txt(df):
txt = df.to_csv(index=False, sep='\t')
b64 = base64.b64encode(txt.encode()).decode()
return f"data:text/plain;base64,{b64}"
# Generate base64 encoded links
csv_link = to_base64_csv(df)
txt_link = to_base64_txt(df)
# Markdown format for hyperlinks in bold font with emojis
markdown_csv_link = f"**[📥 Download Dataset as CSV]({csv_link})**"
markdown_txt_link = f"**[📥 Download Dataset as TXT]({txt_link})**"
# Display as markdown (hypothetical, depends on how you render markdown in your application)
print(markdown_csv_link)
print(markdown_txt_link)
import gradio as gr
def process_live_input(input_stream):
# Process the input stream here
# Return the processed output for live update
processed_output = some_processing_function(input_stream)
return processed_output
iface = gr.Interface(fn=process_live_input,
inputs=gr.inputs.Video(source="webcam", streaming=True),
outputs="video")
iface.launch()
|