File size: 13,525 Bytes
420b18d
 
 
 
 
 
 
 
688cdbe
420b18d
 
 
 
 
 
688cdbe
 
420b18d
 
 
688cdbe
420b18d
 
 
 
 
 
 
 
688cdbe
 
 
420b18d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688cdbe
 
420b18d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688cdbe
420b18d
 
 
688cdbe
 
420b18d
 
 
 
688cdbe
420b18d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688cdbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420b18d
 
 
 
 
 
688cdbe
420b18d
 
 
 
 
 
 
 
 
 
 
 
 
 
688cdbe
420b18d
 
 
 
 
 
688cdbe
 
420b18d
688cdbe
 
 
 
420b18d
 
688cdbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420b18d
 
 
 
 
 
688cdbe
420b18d
 
688cdbe
420b18d
688cdbe
420b18d
688cdbe
 
 
 
 
420b18d
 
 
 
 
 
 
688cdbe
 
 
 
 
420b18d
 
 
 
 
 
688cdbe
420b18d
688cdbe
 
420b18d
 
 
688cdbe
 
 
420b18d
 
688cdbe
420b18d
 
 
688cdbe
 
420b18d
 
 
 
 
 
 
688cdbe
 
 
 
420b18d
688cdbe
 
420b18d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import streamlit as st
import pandas as pd
import numpy as np
import json
import os
import glob
import random
from pathlib import Path
from datetime import datetime
import edge_tts
import asyncio
import requests
import streamlit.components.v1 as components
import base64
import re
from xml.etree import ElementTree as ET
from datasets import load_dataset

# -------------------- Configuration & Constants --------------------
USER_NAMES = [
    "Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William"
]

ENGLISH_VOICES = [
    "en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural",
    "en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural",
    "en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural"
]

# Map each user to a corresponding voice
USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES))

ROWS_PER_PAGE = 100
SAVED_INPUTS_DIR = "saved_inputs"
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)

SESSION_VARS = {
    'search_history': [],
    'last_voice_input': "",
    'transcript_history': [],
    'should_rerun': False,
    'search_columns': [],
    'initial_search_done': False,
    'arxiv_last_query': "",
    'dataset_loaded': False,
    'current_page': 0,
    'data_cache': None,
    'dataset_info': None,
    'nps_submitted': False,
    'nps_last_shown': None,
    'old_val': None,
    'voice_text': None,
    'user_name': random.choice(USER_NAMES),
    'max_items': 100,
    'global_voice': "en-US-AriaNeural",
    'last_arxiv_input': None
}

for var, default in SESSION_VARS.items():
    if var not in st.session_state:
        st.session_state[var] = default

def create_voice_component():
    mycomponent = components.declare_component(
        "mycomponent",
        path="mycomponent"
    )
    return mycomponent

def clean_for_speech(text: str) -> str:
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

async def edge_tts_generate_audio(text, voice="en-US-AriaNeural"):
    text = clean_for_speech(text)
    if not text.strip():
        return None
    communicate = edge_tts.Communicate(text, voice)
    out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}.mp3"
    await communicate.save(out_fn)
    return out_fn

def speak_with_edge_tts(text, voice="en-US-AriaNeural"):
    return asyncio.run(edge_tts_generate_audio(text, voice))

def play_and_download_audio(file_path):
    if file_path and os.path.exists(file_path):
        st.audio(file_path)
        dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
        st.markdown(dl_link, unsafe_allow_html=True)

def generate_filename(prefix, text):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower()
    safe_text = re.sub(r'[-\s]+', '-', safe_text)
    return f"{prefix}_{timestamp}_{safe_text}.md"

def save_input_as_md(user_name, text, prefix="input"):
    if not text.strip():
        return
    fn = generate_filename(prefix, text)
    full_path = os.path.join(SAVED_INPUTS_DIR, fn)
    with open(full_path, 'w', encoding='utf-8') as f:
        f.write(f"# User: {user_name}\n")
        f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
        f.write(text)
    return full_path

def save_response_as_md(user_name, text, prefix="response"):
    if not text.strip():
        return
    fn = generate_filename(prefix, text)
    full_path = os.path.join(SAVED_INPUTS_DIR, fn)
    with open(full_path, 'w', encoding='utf-8') as f:
        f.write(f"# User: {user_name}\n")
        f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
        f.write(text)
    return full_path

def list_saved_inputs():
    files = sorted(glob.glob(os.path.join(SAVED_INPUTS_DIR, "*.md")))
    return files

def parse_md_file(fpath):
    user_line = ""
    ts_line = ""
    content_lines = []
    with open(fpath, 'r', encoding='utf-8') as f:
        lines = f.readlines()
    for line in lines:
        if line.startswith("# User:"):
            user_line = line.replace("# User:", "").strip()
        elif line.startswith("**Timestamp:**"):
            ts_line = line.replace("**Timestamp:**", "").strip()
        else:
            content_lines.append(line.strip())
    content = "\n".join(content_lines).strip()
    return user_line, ts_line, content

def arxiv_search(query, max_results=3):
    base_url = "http://export.arxiv.org/api/query"
    params = {
        'search_query': query.replace(' ', '+'),
        'start': 0,
        'max_results': max_results
    }
    response = requests.get(base_url, params=params, timeout=30)
    if response.status_code == 200:
        root = ET.fromstring(response.text)
        ns = {"a": "http://www.w3.org/2005/Atom"}
        entries = root.findall('a:entry', ns)
        results = []
        for entry in entries:
            title = entry.find('a:title', ns).text.strip()
            summary = entry.find('a:summary', ns).text.strip()
            summary_short = summary[:300] + "..."
            results.append((title, summary_short))
        return results
    return []

def summarize_arxiv_results(results):
    lines = []
    for i, (title, summary) in enumerate(results, 1):
        lines.append(f"Result {i}: {title}\n{summary}\n")
    return "\n\n".join(lines)

def simple_dataset_search(query, df):
    if df.empty or not query.strip():
        return pd.DataFrame()
    query_terms = query.lower().split()
    matches = []
    for idx, row in df.iterrows():
        text_parts = []
        for col in df.columns:
            val = row[col]
            if isinstance(val, str):
                text_parts.append(val.lower())
            elif isinstance(val, (int, float)):
                text_parts.append(str(val))
        full_text = " ".join(text_parts)
        if any(qt in full_text for qt in query_terms):
            matches.append(row)
    if matches:
        return pd.DataFrame(matches)
    return pd.DataFrame()

from datasets import load_dataset

@st.cache_data
def load_dataset_page(dataset_id, token, page, rows_per_page):
    try:
        start_idx = page * rows_per_page
        end_idx = start_idx + rows_per_page
        dataset = load_dataset(
            dataset_id,
            token=token,
            streaming=False,
            split=f'train[{start_idx}:{end_idx}]'
        )
        return pd.DataFrame(dataset)
    except:
        return pd.DataFrame()

class SimpleDatasetSearcher:
    def __init__(self, dataset_id="tomg-group-umd/cinepile"):
        self.dataset_id = dataset_id
        self.token = os.environ.get('DATASET_KEY')
    def load_page(self, page=0):
        return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)

def concatenate_mp3(files, output_file):
    # Naive binary concatenation of MP3 files
    with open(output_file, 'wb') as outfile:
        for f in files:
            with open(f, 'rb') as infile:
                outfile.write(infile.read())

def main():
    st.title("πŸŽ™οΈ Voice Chat & Search")

    # Sidebar
    with st.sidebar:
        # Editable user name
        st.session_state['user_name'] = st.selectbox("Current User:", USER_NAMES, index=0)
        
        st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items'])
        
        st.subheader("πŸ“ Saved Inputs & Responses")
        saved_files = list_saved_inputs()
        for fpath in saved_files:
            user, ts, content = parse_md_file(fpath)
            fname = os.path.basename(fpath)
            st.write(f"- {fname} (User: {user})")

    # Create voice component for input
    voice_component = create_voice_component()
    voice_val = voice_component(my_input_value="Start speaking...")

    # Tabs
    tab1, tab2, tab3, tab4 = st.tabs(["πŸ—£οΈ Voice Chat History", "πŸ“š ArXiv Search", "πŸ“Š Dataset Search", "βš™οΈ Settings"])

    # ------------------ Voice Chat History -------------------------
    with tab1:
        st.subheader("Voice Chat History")
        files = list_saved_inputs()
        conversation = []
        for fpath in files:
            user, ts, content = parse_md_file(fpath)
            conversation.append((user, ts, content, fpath))

        # Enumerate to ensure unique keys
        for i, (user, ts, content, fpath) in enumerate(reversed(conversation), start=1):
            with st.expander(f"{ts} - {user}", expanded=False):
                st.write(content)
                # Make button key unique by including i
                if st.button(f"πŸ”Š Read Aloud {ts}-{user}", key=f"read_{i}_{fpath}"):
                    voice = USER_VOICES.get(user, "en-US-AriaNeural")
                    audio_file = speak_with_edge_tts(content, voice=voice)
                    if audio_file:
                        play_and_download_audio(audio_file)

        # Read entire conversation
        if st.button("πŸ“œ Read Conversation", key="read_conversation_all"):
            # conversation is currently reversed, re-reverse to get chronological
            conversation_chrono = list(reversed(conversation))
            mp3_files = []
            for user, ts, content, fpath in conversation_chrono:
                voice = USER_VOICES.get(user, "en-US-AriaNeural")
                audio_file = speak_with_edge_tts(content, voice=voice)
                if audio_file:
                    mp3_files.append(audio_file)
                    st.write(f"**{user} ({ts}):**")
                    play_and_download_audio(audio_file)
            
            if mp3_files:
                combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
                concatenate_mp3(mp3_files, combined_file)
                st.write("**Full Conversation Audio:**")
                play_and_download_audio(combined_file)

    # ------------------ ArXiv Search -------------------------
    with tab2:
        st.subheader("ArXiv Search")
        edited_input = st.text_area("Enter or Edit Search Query:", value=(voice_val.strip() if voice_val else ""), height=100)
        autorun = st.checkbox("⚑ Auto-Run", value=True)
        run_arxiv = st.button("πŸ” ArXiv Search", key="run_arxiv_button")

        input_changed = (edited_input != st.session_state.get('old_val'))
        should_run_arxiv = False
        if autorun and input_changed and edited_input.strip():
            should_run_arxiv = True
        if run_arxiv and edited_input.strip():
            should_run_arxiv = True

        if should_run_arxiv and st.session_state['last_arxiv_input'] != edited_input:
            st.session_state['old_val'] = edited_input
            st.session_state['last_arxiv_input'] = edited_input
            save_input_as_md(st.session_state['user_name'], edited_input, prefix="input")
            with st.spinner("Searching ArXiv..."):
                results = arxiv_search(edited_input)
                if results:
                    summary = summarize_arxiv_results(results)
                    save_response_as_md(st.session_state['user_name'], summary, prefix="response")
                    st.write(summary)
                    # Play summary aloud
                    voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural")
                    audio_file = speak_with_edge_tts(summary, voice=voice)
                    if audio_file:
                        play_and_download_audio(audio_file)
                else:
                    st.warning("No results found on ArXiv.")

    # ------------------ Dataset Search -------------------------
    with tab3:
        st.subheader("Dataset Search")
        ds_searcher = SimpleDatasetSearcher()
        query = st.text_input("Enter dataset search query:")
        run_ds_search = st.button("Search Dataset", key="ds_search_button")
        num_results = st.slider("Max results:", 1, 100, 20, key="ds_max_results")
        
        if run_ds_search and query.strip():
            with st.spinner("Searching dataset..."):
                df = ds_searcher.load_page(0)
                results = simple_dataset_search(query, df)
                if not results.empty:
                    st.write(f"Found {len(results)} results:")
                    shown = 0
                    for i, (_, row) in enumerate(results.iterrows(), 1):
                        if shown >= num_results:
                            break
                        with st.expander(f"Result {i}", expanded=(i==1)):
                            for k, v in row.items():
                                st.write(f"**{k}:** {v}")
                        shown += 1
                else:
                    st.warning("No matching results found.")

    # ------------------ Settings Tab -------------------------
    with tab4:
        st.subheader("Settings")
        if st.button("πŸ—‘οΈ Clear Search History", key="clear_history"):
            # Delete all files
            for fpath in list_saved_inputs():
                os.remove(fpath)
            st.session_state['search_history'] = []
            st.success("Search history cleared for everyone!")
            st.rerun()

if __name__ == "__main__":
    main()