File size: 8,366 Bytes
82aec87
 
 
 
 
 
 
 
51bd956
35484c2
 
82aec87
 
 
 
51bd956
35484c2
82aec87
 
35484c2
82aec87
5a9adc7
35484c2
 
5a9adc7
1134dfa
 
 
35484c2
1134dfa
 
35484c2
 
 
 
e4971d1
 
35484c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1d1dda
 
 
 
 
 
 
 
 
 
5a9adc7
 
51bd956
 
5cd6791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcc27e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd6791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a9adc7
82aec87
35484c2
 
 
 
 
 
 
 
 
51bd956
 
82aec87
 
 
51bd956
 
 
35484c2
 
 
 
 
 
51bd956
 
 
 
 
 
35484c2
51bd956
 
 
 
6fc0717
 
 
 
82aec87
35484c2
51bd956
82aec87
 
 
 
 
 
51bd956
35484c2
 
 
 
82aec87
35484c2
82aec87
 
35484c2
 
82aec87
 
35484c2
82aec87
35484c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
import requests

from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder

openai.api_key = os.getenv('OPENAI_KEY')
st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide")

menu = ["txt", "htm", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%I%M")  
    safe_prompt = "".join(x for x in prompt if x.isalnum())[:45]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def chat_with_model(prompt, document_section):
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
    response = openai.ChatCompletion.create(model=model, messages=conversation)
    return response['choices'][0]['message']['content']

def transcribe_audio(openai_key, file_path, model):
    OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
    headers = {
        "Authorization": f"Bearer {openai_key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        response2 = chat_with_model(response.json().get('text'), '')
        st.write('Responses:')
        #st.write(response)
        st.write(response2)
        return response.json().get('text')
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

def create_file(filename, prompt, response):
    if filename.endswith(".txt"):
        with open(filename, 'w') as file:
            file.write(f"Prompt:\n{prompt}\nResponse:\n{response}")
    elif filename.endswith(".htm"):
        with open(filename, 'w') as file:
            file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
    elif filename.endswith(".md"):
        with open(filename, 'w') as file:
            file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}")
def truncate_document(document, length):
    return document[:length]
def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        data = file.read()
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href

    

# Audio, transcribe, GPT:
filename = save_and_play_audio(audio_recorder)
if filename is not None:
    transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
    st.write(transcription)
    gptOutput = chat_with_model(transcription, '') # push transcript through as prompt
    filename = generate_filename(transcription, choice)
    create_file(filename, transcription, gptOutput)
    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)





def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")
    
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

def main():
    user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)

    collength, colupload = st.columns([2,3])  # adjust the ratio as needed
    with collength:
        #max_length = 12000 - optimal for gpt35 turbo. 2x=24000 for gpt4.  8x=96000 for gpt4-32k.
        max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
    with colupload:
        uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "md", "txt"])
    
    document_sections = deque()
    document_responses = {}

    if uploaded_file is not None:
        file_content = read_file_content(uploaded_file, max_length)
        document_sections.extend(divide_document(file_content, max_length))

    if len(document_sections) > 0:
        
        if st.button("πŸ‘οΈ View Upload"):
            st.markdown("**Sections of the uploaded file:**")
            for i, section in enumerate(list(document_sections)):
                st.markdown(f"**Section {i+1}**\n{section}")
        
        st.markdown("**Chat with the model:**")
        for i, section in enumerate(list(document_sections)):
            if i in document_responses:
                st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
            else:
                if st.button(f"Chat about Section {i+1}"):
                    st.write('Reasoning with your inputs...')
                    response = chat_with_model(user_prompt, section)
                    st.write('Response:')
                    st.write(response)
                    document_responses[i] = response
                    filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                    create_file(filename, user_prompt, response)
                    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    if st.button('πŸ’¬ Chat'):
        st.write('Reasoning with your inputs...')
        response = chat_with_model(user_prompt, ''.join(list(document_sections)))
        st.write('Response:')
        st.write(response)
        
        filename = generate_filename(user_prompt, choice)
        create_file(filename, user_prompt, response)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    all_files = glob.glob("*.*")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order
    
    for file in all_files:
        col1, col3 = st.sidebar.columns([5,1])  # adjust the ratio as needed
        with col1:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("πŸ—‘", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()
            
if __name__ == "__main__":
    main()