File size: 5,479 Bytes
c18db37 2ef4006 c18db37 08af166 6266cf4 5455896 ff0ccdb 8c67835 6266cf4 8c67835 efe1021 fc9c564 a1b669a 85064b1 fc9c564 85064b1 6bbb8ab fc9c564 6bbb8ab fc9c564 6bbb8ab c18db37 d434e57 c18db37 c60c8cf 48295f3 c60c8cf c18db37 dd5e8e8 f60697c c18db37 fc9c564 d434e57 c18db37 fc9c564 c18db37 85064b1 8c67835 20415a9 fc9c564 8c67835 fc9c564 8c67835 fc9c564 117b6a7 8c67835 fc9c564 8c67835 fc9c564 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch
import gradio as gr
from datasets import load_dataset
# PersistDataset -----
import os
import csv
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime
#fastapi is where its at: share your app, share your api
import fastapi
from typing import List, Dict
import httpx
import pandas as pd
import datasets as ds
UseMemory=True
HF_TOKEN=os.environ.get("HF_TOKEN")
def SaveResult(text, outputfileName):
basedir = os.path.dirname(__file__)
savePath = outputfileName
print("Saving: " + text + " to " + savePath)
from os.path import exists
file_exists = exists(savePath)
if file_exists:
with open(outputfileName, "a") as f: #append
f.write(str(text.replace("\n"," ")))
f.write('\n')
else:
with open(outputfileName, "w") as f: #write
f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
f.write(str(text.replace("\n"," ")))
f.write('\n')
return
def store_message(name: str, message: str, outputfileName: str):
basedir = os.path.dirname(__file__)
savePath = outputfileName
# if file doesn't exist, create it with labels and a few default rows
from os.path import exists
file_exists = exists(savePath)
if not file_exists:
with open(savePath, "w") as f: # Create and write column headers and default content
f.write("time, message, name\n") # Column headers
# Write a few default rows (if needed)
f.write(f"{str(datetime.now())}, Welcome to Chatback!, System\n")
f.write(f"{str(datetime.now())}, How can I assist you today?, System\n")
# Proceed to add the actual message if name and message are provided
if name and message:
with open(savePath, "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=["time", "message", "name"])
writer.writerow(
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip()}
)
# Load and sort the dataframe
df = pd.read_csv(savePath)
df = df.sort_values(df.columns[0], ascending=False)
return df
mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
def take_last_tokens(inputs, note_history, history):
if inputs['input_ids'].shape[1] > 128:
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
history = history[1:]
return inputs, note_history, history
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay.
note_history.append(note)
note_history = '</s> <s>'.join(note_history)
return [note_history]
title = "💬ChatBack🧠💾"
description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions.
Current Best SOTA Chatbot: https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F """
def get_base(filename):
basedir = os.path.dirname(__file__)
print(basedir)
#loadPath = basedir + "\\" + filename # works on windows
loadPath = basedir + filename
print(loadPath)
return loadPath
def chat(message, history):
history = history or []
if history:
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
else:
history_useful = []
history_useful = add_note_to_history(message, history_useful)
inputs = tokenizer(history_useful, return_tensors="pt")
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
reply_ids = model.generate(**inputs)
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
history_useful = add_note_to_history(response, history_useful)
list_history = history_useful[0].split('</s> <s>')
history.append((list_history[-2], list_history[-1]))
df=pd.DataFrame()
if UseMemory:
#outputfileName = 'ChatbotMemory.csv'
outputfileName = 'ChatbotMemory3.csv' # Test first time file create
df = store_message(message, response, outputfileName) # Save to dataset
basedir = get_base(outputfileName)
return history, df, basedir
with gr.Blocks() as demo:
gr.Markdown("<h1><center>🍰Gradio chatbot backed by dataframe CSV memory🎨</center></h1>")
with gr.Row():
t1 = gr.Textbox(lines=1, default="", label="Chat Text:")
b1 = gr.Button("Respond and Retrieve Messages")
with gr.Row(): # inputs and buttons
s1 = gr.State([])
df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate")
with gr.Row(): # inputs and buttons
file = gr.File(label="File")
s2 = gr.Markdown()
b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file])
demo.launch(debug=True, show_error=True)
|