File size: 4,422 Bytes
c18db37
 
 
 
08af166
 
 
 
 
 
 
6266cf4
ff0ccdb
 
 
6266cf4
de6d7ec
9b06b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1b669a
85064b1
 
 
 
9b06b1e
 
 
f240a0c
9b06b1e
8f99b37
9b06b1e
 
08af166
85064b1
 
 
 
 
c18db37
 
 
 
 
 
 
 
 
 
 
 
c60c8cf
 
 
 
 
 
c18db37
dd5e8e8
 
f60697c
c18db37
 
 
 
 
 
 
 
 
 
 
 
 
 
85064b1
 
c18db37
 
 
 
 
 
 
85064b1
c18db37
 
6ca51ed
f60697c
5816dc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch
import gradio as gr

# PersistDataset -----
import os
import csv
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime

from typing import List, Dict
import httpx
import pandas as pd

# -------------------------------------------- For Memory - you will need to set up a dataset and HF_TOKEN ---------
UseMemory=True
if UseMemory:
   DATASET_REPO_URL="https://huggingface.co/datasets/awacke1/ChatbotMemory.csv"
   DATASET_REPO_ID="awacke1/ChatbotMemory.csv"
   DATA_FILENAME="ChatbotMemory.csv"
   DATA_FILE=os.path.join("data", DATA_FILENAME)
   HF_TOKEN=os.environ.get("HF_TOKEN")
if UseMemory: 
   try:
      hf_hub_download(
      repo_id=DATASET_REPO_ID,
      filename=DATA_FILENAME,
      cache_dir=DATA_DIRNAME,
      force_filename=DATA_FILENAME
      )
   except:
      print("file not found")
      repo = Repository(
      local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
      )

def get_df(name: str):
    dataset = load_dataset(str, split="train")
    return dataset
    
def store_message(name: str, message: str):
    if name and message:
        with open(DATA_FILE, "a") as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ])
            writer.writerow(
                {"time": str(datetime.now()), "message": message.strip(), "name": name.strip()  }
            )
        commit_url = repo.push_to_hub()

        f=get_df(DATASET_REPO_ID)
        print(f)
    return ""
# ----------------------------------------------- For Memory
    
mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)

def take_last_tokens(inputs, note_history, history):
    """Filter the last 128 tokens"""
    if inputs['input_ids'].shape[1] > 128:
        inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
        inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
        note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
        history = history[1:]
    return inputs, note_history, history
    
def add_note_to_history(note, note_history):
    """Add a note to the historical information"""
    note_history.append(note)
    note_history = '</s> <s>'.join(note_history)
    return [note_history]

title = "💬ChatBack🧠💾"
description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. 
 Current Best SOTA Chatbot:  https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F  """

def chat(message, history):
    history = history or []
    if history: 
        history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
    else:
        history_useful = []
    history_useful = add_note_to_history(message, history_useful)
    inputs = tokenizer(history_useful, return_tensors="pt")
    inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
    reply_ids = model.generate(**inputs)
    response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
    history_useful = add_note_to_history(response, history_useful)
    list_history = history_useful[0].split('</s> <s>')
    history.append((list_history[-2], list_history[-1]))  
    ret = store_message(message, response) # Save to dataset  -- uncomment with code above, create a dataset to store and add your HF_TOKEN from profile to this repo to use.
    return history, history

gr.Interface(
    fn=chat,
    theme="huggingface",
    css=".footer {display:none !important}",
    inputs=["text", "state"],
    outputs=["chatbot", "state", "text"],
    title=title,
    allow_flagging="never",
    description=f"Gradio chatbot backed by memory in a dataset repository.",
    article=f"The memory dataset for saves is [{DATASET_REPO_URL}]({DATASET_REPO_URL}) 🦃Thanks!🦃 Check out HF Datasets: https://huggingface.co/spaces/awacke1/FreddysDatasetViewer  SOTA papers code and datasets on chat are here: https://paperswithcode.com/datasets?q=chat&v=lst&o=newest"
    ).launch(debug=True)