Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 12,119 Bytes
ca0a025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import torch
import transformers
import gradio as gr
from ragatouille import RAGPretrainedModel
from huggingface_hub import InferenceClient
import re
from datetime import datetime
import json
import arxiv
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
import os
import glob
# ποΈ App configuration - tweak these knobs for maximum brain power! π§ πͺ
retrieve_results = 20
show_examples = True
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']
# π LLM acting instructions - "To be, or not to be... verbose" π€
generate_kwargs = dict(
temperature = None,
max_new_tokens = 512,
top_p = None,
do_sample = False,
)
# π§ββοΈ Summoning the RAG model - "Accio knowledge!" πβ¨
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
try:
gr.Info("ποΈ Setting up the knowledge retriever, please wait... π°οΈ")
rag_initial_output = RAG.search("What is Generative AI in Healthcare?", k = 1)
gr.Info("π Retriever is up and running! Time to flex those brain muscles! πͺπ§ ")
except:
gr.Warning("π± Oh no! The retriever took a coffee break. Try again later! β")
# π The grand introduction - roll out the red carpet! π
mark_text = '# π©Ίπ Search Results\n'
header_text = "## πArxivπPaperπSearch - π΅οΈββοΈ Uncover, π Summarize, and 𧩠Solve π¬ Research π€β Puzzles βοΈ with π Papers and π€ RAG AI π§ \n"
# π°οΈ Time travel to find when our knowledge was last updated π
try:
with open("README.md", "r") as f:
mdfile = f.read()
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
match = re.search(date_pattern, mdfile)
date = match.group().split(': ')[1]
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
header_text += f'Index Last Updated: {formatted_date}\n'
index_info = f"Semantic Search - up to {formatted_date}"
except:
index_info = "Semantic Search"
database_choices = [index_info, 'Arxiv Search - Latest - (EXPERIMENTAL)']
# π¦ Arxiv API - the wise old owl of academic knowledge π
arx_client = arxiv.Client()
is_arxiv_available = True
check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results)
if len(check_arxiv_result) == 0:
is_arxiv_available = False
print("π΄ Arxiv search is taking a nap, switching to default search ...")
database_choices = [index_info]
# π Show examples - a teaser trailer for your brain! πΏπ§
sample_outputs = {
'output_placeholder': 'The LLM will provide an answer to your question here...',
'search_placeholder': '''
1. What is MoE?
2. What are Multi Agent Systems?
3. What is Self Rewarding AI?
4. What is Semantic and Episodic memory?
5. What is AutoGen?
6. What is ChatDev?
7. What is Omniverse?
8. What is Lumiere?
9. What is SORA?
'''
}
output_placeholder = sample_outputs['output_placeholder']
md_text_initial = sample_outputs['search_placeholder']
# π§Ή Clean up the RAG output - nobody likes a messy mind! π§Όπ§
def rag_cleaner(inp):
rank = inp['rank']
title = inp['document_metadata']['title']
content = inp['content']
date = inp['document_metadata']['_time']
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
# π Craft the perfect prompt - it's showtime for the LLM! π¬
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
if formatted:
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and let's think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
message = f"Question: {question}"
if 'mistralai' in llm_model_picked:
return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]"
elif 'gemma' in llm_model_picked:
return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n"
return f"Context:\n {context} \n Given the following info, take a deep breath and let's think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
# π΅οΈββοΈ Get those juicy references - time to go treasure hunting! ππ
def get_references(question, retriever, k = retrieve_results):
rag_out = retriever.search(query=question, k=k)
return rag_out
def get_rag(message):
return get_references(message, RAG)
# π€ Save the response and read it aloud - it's karaoke time for your brain! π§ πΆ
def SaveResponseAndRead(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>π Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">π Read Aloud</button>
</body>
</html>
'''
gr.HTML(documentHTML5)
# π File management functions - because even AI needs a filing system! ποΈπ€
def save_response_as_markdown(question, response):
timestamp = datetime.now().strftime("%Y%m%d%H%M")
filename = f"{timestamp}_{question[:50]}.md" # Truncate question to 50 chars for filename
with open(filename, "w", encoding="utf-8") as f:
f.write(response)
return filename
def list_markdown_files():
files = glob.glob("*.md")
files.sort(key=os.path.getmtime, reverse=True)
return [f for f in files if f != "README.md"]
def delete_file(filename):
if filename != "README.md":
os.remove(filename)
return f"Deleted {filename}"
return "Cannot delete README.md"
def display_markdown_contents():
files = list_markdown_files()
output = ""
for file in files:
with open(file, "r", encoding="utf-8") as f:
content = f.read()
output += f"## {file}\n\n```markdown\n{content}\n```\n\n"
return output
# π¨ Building the UI - it's like LEGO, but for brains! π§ ποΈ
with gr.Blocks(theme = gr.themes.Soft()) as demo:
header = gr.Markdown(header_text)
with gr.Group():
msg = gr.Textbox(label = 'Search', placeholder = 'What is Generative AI in Healthcare?')
with gr.Accordion("Advanced Settings", open=False):
with gr.Row(equal_height = True):
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
input = gr.Textbox(show_label = False, visible = False)
gr_md = gr.Markdown(mark_text + md_text_initial)
with gr.Tab("Saved Responses"):
refresh_button = gr.Button("π Refresh File List")
file_list = gr.Dropdown(choices=list_markdown_files(), label="Saved Responses")
delete_button = gr.Button("ποΈ Delete Selected File")
markdown_display = gr.Markdown()
# π Update the file list - keeping things fresh! πΏ
def update_file_list():
return gr.Dropdown(choices=list_markdown_files())
refresh_button.click(update_file_list, outputs=[file_list])
delete_button.click(delete_file, inputs=[file_list], outputs=[markdown_display]).then(update_file_list, outputs=[file_list])
file_list.change(lambda x: open(x, "r", encoding="utf-8").read() if x else "", inputs=[file_list], outputs=[markdown_display])
# π The grand finale - where the magic happens! π©β¨
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
prompt_text_from_data = ""
database_to_use = database_choice
if database_choice == index_info:
rag_out = get_rag(message)
else:
arxiv_search_success = True
try:
rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
if len(rag_out) == 0:
arxiv_search_success = False
except:
arxiv_search_success = False
if not arxiv_search_success:
gr.Warning("π΄ Arxiv Search is taking a siesta, switching to semantic search ...")
rag_out = get_rag(message)
database_to_use = index_info
md_text_updated = mark_text
for i in range(retrieve_results):
rag_answer = rag_out[i]
if i < llm_results_use:
md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
prompt_text_from_data += f"{i+1}. {prompt_text}"
else:
md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
md_text_updated += md_text_paper
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
return md_text_updated, prompt
# π§ Asking the LLM - it's like a really smart magic 8-ball! π±β¨
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
model_disabled_text = "LLM Model is taking a vacation. Try again later! ποΈ"
output = ""
if llm_model_picked == 'None':
if stream_outputs:
for out in model_disabled_text:
output += out
yield output
return output
else:
return model_disabled_text
client = InferenceClient(llm_model_picked)
try:
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
except:
gr.Warning("π¦ LLM Inference hit a traffic jam! Take a breather and try again later.")
return ""
if stream_outputs:
for response in stream:
output += response
SaveResponseAndRead(response)
yield output
return output
else:
return stream
# π¬ Action! Process the query and save the response
def process_and_save(message, llm_results_use, database_choice, llm_model_picked):
md_text_updated, prompt = update_with_rag_md(message, llm_results_use, database_choice, llm_model_picked)
llm_response = ask_llm(prompt, llm_model_picked, stream_outputs=False)
full_response = f"Question: {message}\n\nResponse:\n{llm_response}\n\nReferences:\n{md_text_updated}"
filename = save_response_as_markdown(message, full_response)
return md_text_updated, prompt, llm_response, filename
# π¬ Lights, camera, action! Let's get this show on the road! π
msg.submit(process_and_save, [msg, llm_results, database_src, llm_model], [gr_md, input, output_text, file_list]).then(update_file_list, outputs=[file_list])
# π Launch the app - let the knowledge party begin! ππ§
demo.queue().launch() |