Spaces:
Runtime error
Runtime error
File size: 9,036 Bytes
4849edf 2b4eb7c 4849edf 2b4eb7c 4849edf 2b4eb7c 4849edf 2b4eb7c 4849edf 072f36e 2b4eb7c 4849edf 2b4eb7c 4849edf 2b4eb7c 4849edf 2b4eb7c 4849edf 2b4eb7c 4849edf 2b4eb7c 4849edf 2b4eb7c 4849edf 2b4eb7c 4849edf 2b4eb7c 4849edf 0970f1b ef52fbe 0970f1b 2b4eb7c 05117f2 2b4eb7c 4849edf 2b4eb7c 4849edf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# 🚀 Import all necessary libraries
import os
import argparse
from functools import partial
from pathlib import Path
import sys
import random
from omegaconf import OmegaConf
from PIL import Image
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm import trange
from CLIP import clip
from cloob_training import model_pt, pretrained
import ldm.models.autoencoder
from diffusion import sampling, utils
import train_latent_diffusion as train
from huggingface_hub import hf_hub_url, cached_download
import gradio as gr # 🎨 The magic canvas for AI-powered image generation!
# 🖼️ Download the necessary model files
# These files are loaded from HuggingFace's repository
checkpoint = cached_download(hf_hub_url("huggan/distill-ccld-wa", filename="model_student.ckpt"))
ae_model_path = cached_download(hf_hub_url("huggan/ccld_wa", filename="ae_model.ckpt"))
ae_config_path = cached_download(hf_hub_url("huggan/ccld_wa", filename="ae_model.yaml"))
# 📐 Utility Functions: Math and images, what could go wrong?
# These functions help parse prompts and resize/crop images to fit nicely
def parse_prompt(prompt, default_weight=3.):
"""
🎯 Parses a prompt into text and weight.
"""
if prompt.startswith('http://') or prompt.startswith('https://'):
vals = prompt.rsplit(':', 2)
vals = [vals[0] + ':' + vals[1], *vals[2:]]
else:
vals = prompt.rsplit(':', 1)
vals = vals + ['', default_weight][len(vals):]
return vals[0], float(vals[1])
def resize_and_center_crop(image, size):
"""
✂️ Resize and crop image to center it beautifully.
"""
fac = max(size[0] / image.size[0], size[1] / image.size[1])
image = image.resize((int(fac * image.size[0]), int(fac * image.size[1])), Image.LANCZOS)
return TF.center_crop(image, size[::-1])
# 🧠 Model loading: the brain of our operation! 🔥
# Load all the models: autoencoder, diffusion, and CLOOB
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print('loading models... 🛠️')
# 🔧 Autoencoder Setup: Let’s decode the madness into images
ae_config = OmegaConf.load(ae_config_path)
ae_model = ldm.models.autoencoder.AutoencoderKL(**ae_config.model.params)
ae_model.eval().requires_grad_(False).to(device)
ae_model.load_state_dict(torch.load(ae_model_path))
n_ch, side_y, side_x = 4, 32, 32
# 🌀 Diffusion Model Setup: The artist behind the scenes
model = train.DiffusionModel(192, [1,1,2,2], autoencoder_scale=torch.tensor(4.3084))
model.load_state_dict(torch.load(checkpoint, map_location='cpu'))
model = model.to(device).eval().requires_grad_(False)
# 👁️ CLOOB Setup: Our vision model to understand art in human style
cloob_config = pretrained.get_config('cloob_laion_400m_vit_b_16_16_epochs')
cloob = model_pt.get_pt_model(cloob_config)
checkpoint = pretrained.download_checkpoint(cloob_config)
cloob.load_state_dict(model_pt.get_pt_params(cloob_config, checkpoint))
cloob.eval().requires_grad_(False).to(device)
# 🎨 The key function: Where the magic happens!
# This is where we generate images based on text and image prompts
def generate(n=1, prompts=['a red circle'], images=[], seed=42, steps=15, method='plms', eta=None):
"""
🖼️ Generates a list of PIL images based on given text and image prompts.
"""
zero_embed = torch.zeros([1, cloob.config['d_embed']], device=device)
target_embeds, weights = [zero_embed], []
# Parse text prompts
for prompt in prompts:
txt, weight = parse_prompt(prompt)
target_embeds.append(cloob.text_encoder(cloob.tokenize(txt).to(device)).float())
weights.append(weight)
# Parse image prompts
for prompt in images:
path, weight = parse_prompt(prompt)
img = Image.open(utils.fetch(path)).convert('RGB')
clip_size = cloob.config['image_encoder']['image_size']
img = resize_and_center_crop(img, (clip_size, clip_size))
batch = TF.to_tensor(img)[None].to(device)
embed = F.normalize(cloob.image_encoder(cloob.normalize(batch)).float(), dim=-1)
target_embeds.append(embed)
weights.append(weight)
# Adjust weights and set seed
weights = torch.tensor([1 - sum(weights), *weights], device=device)
torch.manual_seed(seed)
# 💡 Model function with classifier-free guidance
def cfg_model_fn(x, t):
n = x.shape[0]
n_conds = len(target_embeds)
x_in = x.repeat([n_conds, 1, 1, 1])
t_in = t.repeat([n_conds])
clip_embed_in = torch.cat([*target_embeds]).repeat_interleave(n, 0)
vs = model(x_in, t_in, clip_embed_in).view([n_conds, n, *x.shape[1:]])
v = vs.mul(weights[:, None, None, None, None]).sum(0)
return v
# 🎞️ Run the sampler to generate images
def run(x, steps):
if method == 'ddpm':
return sampling.sample(cfg_model_fn, x, steps, 1., {})
if method == 'ddim':
return sampling.sample(cfg_model_fn, x, steps, eta, {})
if method == 'plms':
return sampling.plms_sample(cfg_model_fn, x, steps, {})
assert False
# 🏃♂️ Generate the output images
batch_size = n
x = torch.randn([n, n_ch, side_y, side_x], device=device)
t = torch.linspace(1, 0, steps + 1, device=device)[:-1]
pil_ims = []
for i in trange(0, n, batch_size):
cur_batch_size = min(n - i, batch_size)
out_latents = run(x[i:i + cur_batch_size], steps)
outs = ae_model.decode(out_latents * torch.tensor(2.55).to(device))
for j, out in enumerate(outs):
pil_ims.append(utils.to_pil_image(out))
return pil_ims
# 🖌️ Interface: Gradio's brush to paint the UI
# Gradio is used here to create a user-friendly interface for art generation.
def gen_ims(prompt, im_prompt=None, seed=None, n_steps=10, method='plms'):
"""
💡 Gradio function to wrap image generation.
"""
if seed is None:
seed = random.randint(0, 10000)
prompts = [prompt]
im_prompts = []
if im_prompt is not None:
im_prompts = [im_prompt]
pil_ims = generate(n=1, prompts=prompts, images=im_prompts, seed=seed, steps=n_steps, method=method)
return pil_ims[0]
# 🖼️ Gradio UI: The interface where users can input text or image prompts
iface = gr.Interface(
fn=gen_ims,
inputs=[
gr.Textbox(label="Text prompt"),
gr.Image(optional=True, label="Image prompt", type='filepath')
],
outputs=gr.Image(type="pil", label="Generated Image"),
examples=[
["Virgin and Child, in the style of Jacopo Bellini"],
["Art Nouveau, in the style of John Singer Sargent"],
["Neoclassicism, in the style of Gustav Klimt"],
["Abstract Art, in the style of M.C. Escher"],
['Surrealism, in the style of Salvador Dali'],
["Romanesque Art, in the style of Leonardo da Vinci"],
["landscape"],
["portrait"],
["sculpture"],
["photo"],
["figurative"],
["illustration"],
["still life"],
["cityscape"],
["marina"],
["animal painting"],
["graffiti"],
["mythological painting"],
["battle painting"],
["self-portrait"],
["Impressionism, oil on canvas"],
["Katsushika Hokusai, The Dragon of Smoke Escaping from Mount Fuji"],
["Moon Light Sonata by Basuki Abdullah"],
["Twon Tree by M.C. Escher"],
["Futurism, in the style of Wassily Kandinsky"],
["Surrealism, in the style of Edgar Degas"],
["Expressionism, in the style of Wassily Kandinsky"],
["Futurism, in the style of Egon Schiele"],
["Cubism, in the style of Gustav Klimt"],
["Op Art, in the style of Marc Chagall"],
["Romanticism, in the style of M.C. Escher"],
["Futurism, in the style of M.C. Escher"],
["Mannerism, in the style of Paul Klee"],
["High Renaissance, in the style of Rembrandt"],
["Magic Realism, in the style of Gustave Dore"],
["Realism, in the style of Jean-Michel Basquiat"],
["Art Nouveau, in the style of Paul Gauguin"],
["Avant-garde, in the style of Pierre-Auguste Renoir"],
["Baroque, in the style of Edward Hopper"],
["Post-Impressionism, in the style of Wassily Kandinsky"],
["Naturalism, in the style of Rene Magritte"],
["Constructivism, in the style of Paul Cezanne"],
["Abstract Expressionism, in the style of Henri Matisse"],
["Pop Art, in the style of Vincent van Gogh"],
["Futurism, in the style of Wassily Kandinsky"],
["Futurism, in the style of Zdzislaw Beksinski"],
["Aaron Wacker, oil on canvas"],
],
title='Art Generator and Style Mixer from 🧠 Cloob and 🎨 WikiArt - Visual Art Encyclopedia',
description="Trained on images from the [WikiArt](https://www.wikiart.org/) dataset, comprised of visual arts",
article='Model used is: [model card](https://huggingface.co/huggan/distill-ccld-wa).'
)
# 🚀 Launch the Gradio interface
iface.launch(enable_queue=True)
|