File size: 8,220 Bytes
a8505b9
 
 
 
 
 
 
 
 
 
d20b868
a8505b9
561b096
 
 
 
 
a8746ce
a8505b9
efbb9f2
ff41990
efbb9f2
 
 
 
ff41990
 
 
 
 
561b096
a8505b9
 
 
 
 
 
 
561b096
a8505b9
561b096
 
5a48628
 
a8505b9
561b096
 
 
 
 
 
 
a8505b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561b096
a8505b9
 
561b096
a8505b9
 
a8746ce
 
a8505b9
 
 
 
 
561b096
a8505b9
 
 
 
 
 
 
561b096
 
a8505b9
 
 
 
 
561b096
a8505b9
 
 
 
 
 
 
 
 
561b096
a8505b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561b096
a8505b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import gradio as gr
import io, base64
import numpy as np
import tensorflow as tf
import mediapy
import os
import sys
import streamlit as st
import firebase_admin
import datetime
import transformers

from transformers import pipeline
from PIL import Image
from huggingface_hub import snapshot_download
from firebase_admin import credentials
from firebase_admin import firestore


#import os
#os.system("pip install gradio==2.7.5.2")
#import torch
#import zipfile
#import torchaudio
#from glob import glob
#import gradio as gr


             

# firestore singleton is a cached multiuser instance to persist shared crowdsource memory
@st.experimental_singleton
def get_db_firestore():
    cred = credentials.Certificate('test.json')
    firebase_admin.initialize_app(cred, {'projectId': u'clinical-nlp-b9117',})
    db = firestore.client()
    return db

#start firestore singleton
db = get_db_firestore()

# create ASR ML pipeline
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
#asr = pipeline("automatic-speech-recognition", "snakers4/silero-models")

# create Text Classification pipeline
classifier = pipeline("text-classification")

# create text generator pipeline
story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator")

# transcribe function
def transcribe(audio):
    text = asr(audio)["text"]
    return text

def speech_to_text(speech):
    text = asr(speech)["text"]
    return text

def text_to_sentiment(text):
    sentiment = classifier(text)[0]["label"]
    return sentiment 

def upsert(text):
    date_time =str(datetime.datetime.today())
    doc_ref = db.collection('Text2SpeechSentimentSave').document(date_time)
    doc_ref.set({u'firefield': 'Recognize Speech', u'first': 'https://huggingface.co/spaces/awacke1/Text2SpeechSentimentSave', u'last': text, u'born': date_time,})
    saved = select('Text2SpeechSentimentSave', date_time)
    # check it here:  https://console.firebase.google.com/u/0/project/clinical-nlp-b9117/firestore/data/~2FStreamlitSpaces
    return saved
      
def select(collection, document):
    doc_ref = db.collection(collection).document(document)
    doc = doc_ref.get()
    docid = ("The id is: ", doc.id)
    contents = ("The contents are: ", doc.to_dict())
    return contents
          
def selectall(text):
    docs = db.collection('Text2SpeechSentimentSave').stream()
    doclist=''
    for doc in docs:
        #docid=doc.id
        #dict=doc.to_dict()
        #doclist+=doc.to_dict()
        r=(f'{doc.id} => {doc.to_dict()}')
        doclist += r
    return doclist 

# image generator
image_gen = gr.Interface.load("spaces/multimodalart/latentdiffusion")

# video generator
os.system("git clone https://github.com/google-research/frame-interpolation")
sys.path.append("frame-interpolation")
from eval import interpolator, util

ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
interpolator = interpolator.Interpolator(model, None)

# story gen
def generate_story(choice, input_text):
    query = "<BOS> <{0}> {1}".format(choice, input_text)
    generated_text = story_gen(query)
    generated_text = generated_text[0]['generated_text']
    generated_text = generated_text.split('> ')[2]
    return generated_text
    
# images gen
def generate_images(text):
    steps=50
    width=256
    height=256
    num_images=4
    diversity=6
    image_bytes = image_gen(text, steps, width, height, num_images, diversity)
    generated_images = []
    for image in image_bytes[1]:
        image_str = image[0]
        image_str = image_str.replace("data:image/png;base64,","")
        decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
        img = Image.open(io.BytesIO(decoded_bytes))
        generated_images.append(img)
    return generated_images
    
# reductionism - interpolate 4 images - todo - unhardcode the pattern
def generate_interpolation(gallery):
    times_to_interpolate = 4
    generated_images = []
    for image_str in gallery:
        image_str = image_str.replace("data:image/png;base64,","")
        decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
        img = Image.open(io.BytesIO(decoded_bytes))
        generated_images.append(img)
    generated_images[0].save('frame_0.png')
    generated_images[1].save('frame_1.png')
    generated_images[2].save('frame_2.png')
    generated_images[3].save('frame_3.png')
    input_frames = ["frame_0.png", "frame_1.png", "frame_2.png", "frame_3.png"]
    frames = list(util.interpolate_recursively_from_files(input_frames, times_to_interpolate, interpolator))
    mediapy.write_video("out.mp4", frames, fps=15)
    return "out.mp4"

demo = gr.Blocks()

with demo:
    audio_file = gr.inputs.Audio(source="microphone", type="filepath")
    text = gr.Textbox()
    label = gr.Label()
    saved = gr.Textbox()
    savedAll = gr.Textbox()   
    b1 = gr.Button("Recognize Speech")
    b2 = gr.Button("Classify Sentiment")
    b3 = gr.Button("Save Speech to Text")
    b4 = gr.Button("Retrieve All")
    b1.click(speech_to_text, inputs=audio_file, outputs=text)
    b2.click(text_to_sentiment, inputs=text, outputs=label)
    b3.click(upsert, inputs=text, outputs=saved)
    b4.click(selectall, inputs=text, outputs=savedAll)
    
    with gr.Row():
        # Left column (inputs)
        with gr.Column():
            input_story_type = gr.Radio(choices=['superhero', 'action', 'drama', 'horror', 'thriller', 'sci_fi'], value='sci_fi', label="Genre")
            input_start_text = gr.Textbox(placeholder='A teddy bear outer space', label="Starting Text")
            
            gr.Markdown("Be sure to run each of the buttons one at a time, they depend on each others' outputs!")
            
            # Rows of instructions & buttons
            with gr.Row():
                gr.Markdown("1. Select a type of story, then write some starting text! Then hit the 'Generate Story' button to generate a story! Feel free to edit the generated story afterwards!")
                button_gen_story = gr.Button("Generate Story")
            with gr.Row():
                gr.Markdown("2. After generating a story, hit the 'Generate Images' button to create some visuals for your story! (Can re-run multiple times!)")
                button_gen_images = gr.Button("Generate Images")
            with gr.Row():
                gr.Markdown("3. After generating some images, hit the 'Generate Video' button to create a short video by interpolating the previously generated visuals!")
                button_gen_video = gr.Button("Generate Video")
                
            # Rows of references
            with gr.Row():
                gr.Markdown("--Models Used--")
            with gr.Row():
                gr.Markdown("Story Generation: [GPT-J](https://huggingface.co/pranavpsv/gpt2-genre-story-generator)")
            with gr.Row():
                gr.Markdown("Image Generation Conditioned on Text: [Latent Diffusion](https://huggingface.co/spaces/multimodalart/latentdiffusion) | [Github Repo](https://github.com/CompVis/latent-diffusion)")
            with gr.Row():
                gr.Markdown("Interpolations: [FILM](https://huggingface.co/spaces/akhaliq/frame-interpolation) | [Github Repo](https://github.com/google-research/frame-interpolation)")
            with gr.Row():
                gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=gradio-blocks_story_and_video_generation)")
                
        # Right column (outputs)
        with gr.Column():
            output_generated_story = gr.Textbox(label="Generated Story")
            output_gallery = gr.Gallery(label="Generated Story Images")
            output_interpolation = gr.Video(label="Generated Video")
            
    # Bind functions to buttons
    button_gen_story.click(fn=generate_story, inputs=[input_story_type , input_start_text], outputs=output_generated_story)
    button_gen_images.click(fn=generate_images, inputs=output_generated_story, outputs=output_gallery)
    button_gen_video.click(fn=generate_interpolation, inputs=output_gallery, outputs=output_interpolation)

demo.launch(debug=True, enable_queue=True)