Spaces:
Build error
Build error
File size: 6,270 Bytes
bfb646b 285d9a7 bfb646b eebc5c8 bfb646b 285d9a7 bfb646b 285d9a7 bfb646b 285d9a7 bfb646b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
import torch
import time
import librosa
import soundfile
import nemo.collections.asr as nemo_asr
import tempfile
import os
import uuid
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch
# PersistDataset -----
import os
import csv
import gradio as gr
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/Carddata.csv"
DATASET_REPO_ID = "awacke1/Carddata.csv"
DATA_FILENAME = "Carddata.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
SCRIPT = """
<script>
if (!window.hasBeenRun) {
window.hasBeenRun = true;
console.log("should only happen once");
document.querySelector("button.submit").click();
}
</script>
"""
try:
hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=DATA_FILENAME,
cache_dir=DATA_DIRNAME,
force_filename=DATA_FILENAME
)
except:
print("file not found")
repo = Repository(
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
def generate_html() -> str:
with open(DATA_FILE) as csvfile:
reader = csv.DictReader(csvfile)
rows = []
for row in reader:
rows.append(row)
rows.reverse()
if len(rows) == 0:
return "no messages yet"
else:
html = "<div class='chatbot'>"
for row in rows:
html += "<div>"
html += f"<span>{row['inputs']}</span>"
html += f"<span class='outputs'>{row['outputs']}</span>"
html += "</div>"
html += "</div>"
return html
def store_message(name: str, message: str):
if name and message:
with open(DATA_FILE, "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
writer.writerow(
{"name": name.strip(), "message": message.strip(), "time": str(datetime.now())}
)
commit_url = repo.push_to_hub()
return ""
iface = gr.Interface(
store_message,
[
inputs.Textbox(placeholder="Your name"),
inputs.Textbox(placeholder="Your message", lines=2),
],
"html",
css="""
.message {background-color:cornflowerblue;color:white; padding:4px;margin:4px;border-radius:4px; }
""",
title="Reading/writing to a HuggingFace dataset repo from Spaces",
description=f"This is a demo of how to do simple *shared data persistence* in a Gradio Space, backed by a dataset repo.",
article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})",
)
mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
def take_last_tokens(inputs, note_history, history):
"""Filter the last 128 tokens"""
if inputs['input_ids'].shape[1] > 128:
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
history = history[1:]
return inputs, note_history, history
def add_note_to_history(note, note_history):
"""Add a note to the historical information"""
note_history.append(note)
note_history = '</s> <s>'.join(note_history)
return [note_history]
def chat(message, history):
history = history or []
if history:
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
else:
history_useful = []
history_useful = add_note_to_history(message, history_useful)
inputs = tokenizer(history_useful, return_tensors="pt")
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
reply_ids = model.generate(**inputs)
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
history_useful = add_note_to_history(response, history_useful)
list_history = history_useful[0].split('</s> <s>')
history.append((list_history[-2], list_history[-1]))
store_message(message, response) # Save to dataset
return history, history
SAMPLE_RATE = 16000
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
model.change_decoding_strategy(None)
model.eval()
def process_audio_file(file):
data, sr = librosa.load(file)
if sr != SAMPLE_RATE:
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
# monochannel
data = librosa.to_mono(data)
return data
def transcribe(audio, state=""):
# Grant additional context
# time.sleep(1)
if state is None:
state = ""
audio_data = process_audio_file(audio)
with tempfile.TemporaryDirectory() as tmpdir:
# Filepath transcribe
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
soundfile.write(audio_path, audio_data, SAMPLE_RATE)
transcriptions = model.transcribe([audio_path])
# Direct transcribe
# transcriptions = model.transcribe([audio])
# if transcriptions form a tuple (from RNNT), extract just "best" hypothesis
if type(transcriptions) == tuple and len(transcriptions) == 2:
transcriptions = transcriptions[0]
transcriptions = transcriptions[0]
state = state + transcriptions + " "
store_message(state, state) # Save to dataset
return state, state
iface = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(source="microphone", type='filepath', streaming=True),
"state",
],
outputs=[
"textbox",
"state",
],
layout="horizontal",
theme="huggingface",
title="ASR Streaming Conformer Transducer Large - English",
description="Demo for English speech recognition using Conformer Transducers",
allow_flagging='never',
live=True,
article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})"
)
iface.launch()
|