File size: 2,596 Bytes
b281633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24c9f0c
 
b281633
 
 
 
 
 
 
 
 
 
 
2ec3d55
 
 
 
 
 
 
 
 
 
 
b281633
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from transformers import pipeline
import wikipedia
import random
import gradio as gr
model_name = "deepset/electra-base-squad2"
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)

def get_wiki_article(topic):
    topic=topic
    try:
        search = wikipedia.search(topic, results = 1)[0]
    except wikipedia.DisambiguationError as e:
        choices = [x for x in e.options if ('disambiguation' not in x) and ('All pages' not in x) and (x!=topic)]
        search = random.choice(choices)
    try:
        p = wikipedia.page(search)
    except wikipedia.exceptions.DisambiguationError as e:
        choices = [x for x in e.options if ('disambiguation' not in x) and ('All pages' not in x) and (x!=topic)]
        s = random.choice(choices)
        p = wikipedia.page(s)
    return p.content, p.url

def get_answer(topic, question):
    w_art, w_url=get_wiki_article(topic)
    qa = {'question': question, 'context': w_art}
    res = nlp(qa)
    return res['answer'], w_url, {'confidence':res['score']}


inputs = [
          gr.inputs.Textbox(lines=2, label="Topic"),
          gr.inputs.Textbox(lines=2, label="Question")
]
outputs = [
            gr.outputs.Textbox(type='str',label="Answer"),
            gr.outputs.Textbox(type='str',label="Wikipedia Reference Article"),
            gr.outputs.Label(type="confidences",label="Confidence in answer (assuming the correct wikipedia article)"),
]

title = "AI Wikipedia Search"
description = 'Contextual Question and Answer'
article = ''
examples = [
    ['Health', 'What are the top ten health conditions that wellness addresses?'],
    ['Medicine', 'What are the AI Healthcare opportunities in medicine?'],
    ['Insurance', 'What types of health insurance are available?'],
    ['Financial Services', 'With financial services what are the new trends?'],
    ['Neuropathy', 'With neuropathy and neuro-muskoskeletal issues, and what are the treatments available?'],
    ['Alzheimers', 'What causes alzheimers?'],
    ['Cancer', 'What available cancer treatments work?'],
    ['Chemotherapy', 'What are possible care options for patients in chemotherapy?'],
    ['Ontology', 'What is an ontology?'],   
    ['Taxonomy', 'What is a taxonomy?'],
    ['Prescription', 'What are online stores or applications that I can get a prescription filled and delivered?']     
]

gr.Interface(get_answer, inputs, outputs, title=title, description=description, article=article, examples=examples, flagging_options=["strongly related","related", "neutral", "unrelated", "strongly unrelated"]).launch(share=False,enable_queue=False)